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Impedance measurement of human tissue can be performed either in vivo or ex vivo. The

majority of the in-vivo approaches are non-invasive, and few are invasive. To date, there

is no gold standard for impedance measurement of intracranial tissue. In addition, most

of the techniques addressing this topic are still experimental and have not found their way

into clinical practice. This review covers available impedance measurement approaches

in the neuroscience in general and specifically addresses recent advances made in the

application of impedance measurement in the field of surgical neurooncology. It will

provide an understandable picture on impedance measurement and give an overview

of limitations that currently hinders clinical application and require future technical and

conceptual solutions.
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INTRODUCTION

The electrical conductivity of a biological tissue is determined by its molecular composition, cellular
structure, amounts of intra- and extra-cellular fluids, concentration and mobility of ions in those
fluids, temperature and other factors (1–3). Impedance, from an electrical point of view, is the
obstruction to the flow of an alternating current and is dependent on the frequency of the applied
current (4, 5). Bioimpedance is composed of resistance, which is caused by water content and
reactance, which is caused by the capacitance of the cell membrane (4, 6). The estimation of tissue
impedance has been a matter of research for decades. It has sparked interest in many medical
fields (7). Especially in the domain of oncology, impedance measurement has been successfully
applied for diagnostic purposes to distinguish cancerous from benign tissue, e.g., in breast and
prostate cancers (8, 9). This application is based on the assumption that cancerous tissue exhibits
changes in the ions concentration and consequently in the water content, leading to a change
in electrical conductivity (7). In the neurosciences, there has been different approaches to study
electrical properties of intracranial tissues. These approaches had to deal with many obstacles,
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which are mainly related to physiological barriers surrounding
the brain as well as anatomical and functional considerations.
In this mini review, we will give a summary of the available
approaches on investigating electrical properties of human brain.
In addition, we will address recent advances in studying tissue
impedance of the brain in the field of neurooncology.

TECHNIQUES OF MEASURING
BIOIMPEDANCE OF INTRACRANIAL
TISSUES

Impedance measurement per se is not technically demanding.
However, this changes when it comes to bioimpedance as
several limitations have to be considered depending on
the setting in which the measurement is performed. We
therefore divided approaches to measure impedance into
non-invasive ones, that are performed non-invasively and
without exposing intracranial tissues, and intraoperative
approaches that applies invasive measurement or require
exposing intracranial tissues.

Non-invasive Approaches
Studying electrical impedance of human brain tissues has
been mainly based on non-invasive methods. In general, a
current is injected through the scalp and current distribution
within the skull is interpreted through recordings on the
skull with EEG-electrodes. Electrical impedance tomography
(EIT) is an in-vivo approach that relies on this principle and
enables the internal impedance of an object to be imaged non-
invasively (10). Although it has not found a way into clinical
practice yet, EIT might enable imaging of brain function and
pathology (11). Its experimental applications currently include
localization of epileptic foci (12, 13) and monitoring cerebral
edema, ischemia and intracranial hemorrhage (14–17). Notably
in combination with stereoelectroencephalography (SEEG) (18)
in the presurgical work-up for epilepsy, EIT might add new
information or be even superior to the available imaging
modalities in defining epileptic foci. Apart from epileptology,
the question whether EIT would add a value to existing
imaging tools such as CT and MRI scans, particularly in the
neurooncology, is justified, given that EIT exhibits significant
limitations. On the one hand, scalp and skull are known to
diminish the amplitude of the signal (19) and on the other hand
the amount of current passing through the brain is probably
too small compared to the current shunted by the scalp and
therefore the sensitivity to resistivity differences within the brain
might be insufficient (13). Romsauerova et al. applied multi-
frequency EIT in seven human subjects with brain tumors,
arteriovenous malformations or chronic stroke and observed no
reproducible changes between pathologies (20). They explained
their negative results by the fact that the variability induced by
themethod itself might be higher than the presumable differences
between pathologies.

A further non-invasive approach that was proposed to deal
with technical difficulties of EIT and produce images with a
spatial resolution is magnetic resonance electrical impedance

FIGURE 1 | Illustration of a glioma with the assumed correlation between

increasing tumor malignancy and decreasing electrical resistivities of the tumor

tissue in comparison to surrounding white matter. Braun color represents

necrotic tumor area with the lowest resistivity value (4 �
*m) followed by

contrast enhancing tumor area in beige (5 �
*m), low grade part in yellow (6

�
*m), edema in red (9 �

*m) and white matter outside the edema in white (13

�
*m). For reference, please see the text.

tomography (MREIT) (3). It is an imaging technique that
reconstructs the conductivity distribution inside the subject
using magnetic flux density or current density measurements
acquired by a magnetic resonance imaging system (14, 15).
Algorithms are currently being developed to optimize the
use of acquired images to reconstruct electric field and
current density distributions (21). In a similar way, MR-
electrical properties tomography (EPT) non-invasively images
the conductivity and permittivity maps in vivo from the
radiofrequency field signals obtained with MRI. Unlike the
MREIT, EPT does not induce additional external energy other
than the inherent radiofrequency fields. However, due to the
large number of EPT approaches with a large variety in
requirements, assumptions and complexity, and since the EPT
field is relatively new, most methods are not at the stage of clinical
use yet (22).
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Intraoperative Approaches and
Prospective Role of Impedance
Measurement in Surgical Neurooncology
Therapeutic approaches to treat brain tumors have mainly

addressed their biological properties. The electrical properties of
brain tumors are largely unknown. The reason for this is that to

date no suitable technique has been developed for performing
an in-vivo measurement of the electrical resistivity of brain and
tumor tissue, nor are normative values available for resistivity

of various brain tissues, including white matter. Although ex-
vivo measurement of electrical resistivity is a feasible technique,
its results, however, do not reflect necessarily the real in-vivo

resistivity values of intracranial tissues. This can be attributed
to the fact that cell death starts directly after tissue excision

and leads to an increase in tissue resistivity (23). In addition,
electrical resistivity is known to correlate with blood perfusion
into tissue (24), which stops as soon as the tissues are removed.

Approaches to directly measure tissue resistivity during brain
surgery are scarce. The first one was reported by Latikka et
al., who performed resistivity measurement using a monopolar
needle electrode in nine patients. Mean resistivity values were 3.5
�

∗m for gray matter and 3.9 �
∗m for white matter. Values for

tumor tissues ranged from 2.3 to 9.7 �
∗m (25).

The second approach was introduced by Koessler et al.
who performed measurements of human brain tissue resistivity
using intracerebral multicontact electrodes designed for SEEG
in fifteen epileptic patients. The electrodes were placed in a
stereotactic procedure. They found mean resistivity values of 3.8
�

∗m for gray matter, 5.2 �
∗m for white matter and 3.5 �

∗m for
epileptogenic zones (26). A newmethod was proposed to use EIT
in combination with SEEG. It was applied in 15 cases and the
results suggested that adding EIT to SEEG measurements might
improve the diagnostic yield in epilepsy (18).

The third approach was recently presented by our group
in a prospective cohort of ninety-two patients who underwent
surgery for brain tumors (27). The aim of the study was to

investigate the feasibility of in vivo measurement of electrical
impedance during tumor resection. Moreover, we intended to

investigate potential differences between tumor tissue and white

matter as well as between different tumor subtypes. For this
purpose, we used a bipolar probe that is approved for brain

stimulation to measure the electrical impedance and the tips
of the bipolar probe were half embedded in the exposed tissue

during surgery. The measurement was performed in the white

matter within and outside peritumoral edema as well as in non-
enhancing, enhancing and necrotic tumor areas. The position of

the probe within the studied tissue was confirmed using MRI-
based intraoperative neuronavigation that was installed before

skin incision. The probe was calibrated ex-vivo and with a

simulation program in order to calculate the electrical resistivity.
White matter outside peritumoral edema had higher resistivity
values (13.3 ± 1.7 �

∗m) than within peritumoral edema (8.5
± 1.6 �

∗m), and both had higher values than brain tumors
including low grade gliomas (6.4 ± 1.3 �

∗m) and enhancing
areas in glioblastomas (WHO IV:5± 1�

∗m) (27). In addition, no
overlap was found between resistivity values of brain and tumor

tissues stemming from the same patient. Resistivity values of
whitematter were on average 158% higher than the highest tumor
values. Resistivity of edema was on average 85% higher than the
highest tumor values. Resistivity of white matter was on average
60% higher than resistivity of edema. Thus, our results suggested
that tumor tissue, depending on the degree of malignancy, can
differ in its electrical resistivity from surrounding healthy tissue
(Figure 1). These finding, if further verified, might create the
basis for a resistivity-guided tumor resection.

DISCUSSION

Impedance measurement currently seems to be a promising tool
in the field of epilepsy surgery. Non-invasively, it can add to
the armamentarium of the currently present tools (e.g., EEG,
subdural grids, and SEEG) to identify epileptogenic area (18,
28). Invasively, it harbors potential to help the surgeon identify
epileptogenic zones during resection (26). Large and perhaps
multi-center clinical trials are needed to move the application
of impedance measurement in epilepsy surgery into routine
clinical practice.

There is so far no published data that confirms a potential
role of EIT in diagnostic or treatment of brain tumors. Other
impedance-based imaging such as MREIT and EPT have not
reached a stage of being a useful supplement to the available
imaging modalities. Moreover, it also seems that technical
breakthroughs are needed to make these techniques of a clinical
merit (22, 29).

Through recent reports, a new possibility to understand
electrical properties of brain tissue and tumors is emerging.
Intraoperative impedance measurement at exposed brain und
tumor tissues seems to be feasible. Its results can fundamentally
change the role of impedance from a purely diagnostic tool
toward one that offer direct assistance during tumor resection.
One has to mention that our intraoperative approach, as
well as previously described intraoperative approaches were
limited by the fact that impedance measurement was not
performed at a wide range of frequencies, which would be
necessary to involve extra- and intracellular compartments in
the impedancemeasurement (30). In addition, themeasurements
were undertaken at certain spots within the brain, which limits
the ability to generalize the obtained resistivity values. Moreover,
neither of those approaches considered the anisotropy of the
white matter that is supposed to affect impedance measurement,
even though, the range within which the anisotropy would affect
results of electrical impedance measurement remains unknown.
A further hurdle is that calibration and/or calculation the
geometry of the used probe to estimate electrical resistivity
was always necessary, because the ideal technique to measure
electrical resistivity with the classical 4-point probes method
is currently not feasible in the setting of brain surgery.
Therefore, technical and conceptual solutions will be needed to
overcome these limitations and allow for future application of
the emerging knowledge about electrical resistivity in the field
of neurooncology.

In summary, impedance measurement still has a
long way to go, before it can be implemented in the
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clinical practice of neurooncology. A gold standard to
measure tissue impedance within the brain has not been
established yet. In addition to producing imaging, impedance
measurement has the potential to play a role in identifying
tumor tissue during surgical resection of brain tumors.
Therefore, research efforts should pay more attention to this
important aspect.
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