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Brain arteries are routinely imaged in the clinical setting by various modalities,

e.g., time-of-flight magnetic resonance angiography (TOF-MRA). These

imaging techniques have great potential for the diagnosis of cerebrovascular

disease, disease progression, and response to treatment. Currently, however,

only qualitative assessment is implemented in clinical applications, relying

on visual inspection. While manual or semi-automated approaches for

quantification exist, such solutions are impractical in the clinical setting as

they are time-consuming, involve too many processing steps, and/or neglect

image intensity information. In this study, we present a deep learning-based

solution for the anatomical labeling of intracranial arteries that utilizes

complete information from 3D TOF-MRA images. We adapted and trained

a state-of-the-art multi-scale Unet architecture using imaging data of 242

patients with cerebrovascular disease to distinguish 24 arterial segments. The

proposed model utilizes vessel-specific information as well as raw image

intensity information, and can thus take tissue characteristics into account.

Our method yielded a performance of 0.89 macro F1 and 0.90 balanced class

accuracy (bAcc) in labeling aggregated segments and 0.80 macro F1 and 0.83

bAcc in labeling detailed arterial segments on average. In particular, a higher F1

score than 0.75 for most arteries of clinical interest for cerebrovascular disease

was achieved, with higher than 0.90 F1 scores in the larger, main arteries. Due

to minimal pre-processing, simple usability, and fast predictions, our method

could be highly applicable in the clinical setting.

KEYWORDS

anatomical labeling, intracranial arteries, cerebrovascular, stroke, deep learning,

UNET

Frontiers inNeurology 01 frontiersin.org

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2022.1000914
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2022.1000914&domain=pdf&date_stamp=2022-10-17
mailto:adam.hilbert@charite.de
https://doi.org/10.3389/fneur.2022.1000914
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fneur.2022.1000914/full
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Hilbert et al. 10.3389/fneur.2022.1000914

Introduction

Intracranial arteries are complex vascular structures.

The structural diversity of arteries is not only dependent

on individual anatomy but is changing over time owing

to physiological and pathophysiological processes (1). One

of the most common reasons is cerebrovascular disease,

which is characterized by changes in the vasculature

presenting as occlusion or stenosis of blood vessels (2).

One such cerebrovascular disease is stroke, a widespread

and devastating disease. Arterial brain vessels are routinely

depicted in the clinical setting by various modalities, e.g.,

time-of-flight magnetic resonance angiography (TOF-MRA),

contrast-enhanced magnetic resonance angiography (CE-

MRA), or computed tomography angiography (CTA). These

imaging techniques have great potential to be utilized for

the diagnosis, prognostication of disease, and monitoring of

disease progression (3). Moreover, from a clinical perspective,

they play a crucial role in the assessment of eligibility and

response to treatment or successful invasive interventions,

such as thrombectomy or coiling. For this purpose, however,

the information within the images needs to be extracted

and quantified. Currently, only qualitative assessment is

implemented in clinical applications, relying on visual

inspection, which is heavily affected by reader experience

and gives rise to limitations, such as interrater variability or

differentiation between natural variation vs. pathology. While

manual or semi-automated approaches for quantification

exist, such solutions are impractical in the clinical setting as

they are time-consuming and/or involve too many processing

steps. Thus, there is a strong need for the automation of vessel

quantification in the clinical setting.

In the context of arterial brain vessels, automation is based

on two main steps. First, brain vessels have to be extracted in the

3D space, i.e., segmentation (4). Second, standard anatomical

labels need to be assigned to segments of the segmented vessel

tree, e.g., a certain segment is identified as belonging to the

internal carotid artery (ICA). In the context of cerebrovascular

disease, this allows for the exact localization of stenosis, vessel

impediments or occlusions, facilitating treatment decisions, and

assisting intervention.

Importantly, automated tools need to be computationally

light and easily deployed on clinical workstations. The ease

of deployment in the software environments of workstations

depends on the number of software components (e.g., for pre-

processing steps) and how many of them are proprietary. In

addition, outputs have to be accurate, robust to pathological

deformations or artifacts, and easy to read by clinicians. In the

context of segmentation, such models already exist, e.g., Hilbert

et al.(5). However, we are not aware of any automated tool

for anatomical labeling tailored to the clinical setting with the

above specifications.

While anatomical labeling of arteries has been studied in

the research setting, most works have not emphasized the

aspect of usability in the clinical setting. Existing solutions can

be categorized into two main groups, such as location-based

approaches and graph-based approaches.

Location-based methods mainly promote classic medical

image processing techniques, such as co-registered segment

atlases, maps, or reference points to determine the labels of

the overlaid arteries (6–8). Consequently, their application and

accuracy highly depend on (1) atlas creation or reference point

delineation, which demands domain expertise and extensive

data, as well as (2) co-registration; a potentially unstable

mechanism in case of pathologies and image artifacts.

In case of graph-based methods, the vasculature is

represented as a continuous relational graph of nodes and edges,

nodes representing all unique points in arterial centerlines and

edges connecting them (9–13). Segments of the intracranial

arteries are defined between bifurcations, i.e., between nodes that

are connected to more than two nodes. Frequently, nodes within

a segment—with two connected edges—are neglected to reduce

the computational burden due to the size of the graph (11). This

means, however, that (1) for labeling of an arterial segment, only

bifurcation and ending nodes are taken into account, limiting

the method’s ability to identify segment-specific abnormalities

and (2) methods are bound to a priori extraction of bifurcations.

Published works differ in the methodology of assigning labels

to the nodes, commonly realized by probabilistic modeling. The

main disadvantage of graph-based approaches is the need for

a connected vascular tree. In the case of intracranial arteries,

this can be a major issue. Besides natural variations, e.g., the

Circle of Willis, most cerebrovascular disorders cause structural

abnormalities of the vasculature due to severe stenosis or

occlusion (14). This can lead to missing arteries in imaging—i.e.,

disconnected vessel tree—and translate to lower performance in

patients where the potential clinical impact would be highest.

Moreover, both directions exclusively focus on features

crafted from vessels or arterial centerlines, such as coordinates,

distances, direction, average radius, or length of segments. Given

that vessels comprise only about 1% of the brain volume (15),

99% of the information in a 3D scan, e.g., tissue characteristics

around vessels, is not utilized. Such information can play

an important role in the localization and facilitate better

recognition of pathological variations due to their reflective

effect on surrounding tissue.

As an alternative, we present a novel deep learning (DL)-

based artificial intelligence (AI) solution for anatomical labeling

of intracranial arteries that utilizes holistic information from

3D TOF-MRA images. We adapted a multi-scale Unet-based

architecture, called BRAVE-NET, which has demonstrated state-

of-the-art performance in brain vessel segmentation. Our model

was trained on 242 patients with cerebrovascular disease

derived from two datasets. Model input consisted of raw image
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intensities as image input and artery centerlines with radius as

vessel-specific input. Our proposed pipeline relies on minimal

pre-processing compared to pipelines in the literature and could

be deployed on any clinical workstation or scanner.We analyzed

a total number of 24 arterial segments and achieved excellent

performance on intracranial arteries of major clinical interest in

cerebrovascular disease and promisingly high performance on

smaller artery branches.

Our contribution can be summarized as:

• Investigate the performance of image intensity and

vessel-specific information for anatomical labeling of

intracranial arteries.

• Applying deep learning to label a large number of arterial

segments of intracranial arteries.

• Reducing necessary pre-processing steps to the minimum.

• Demonstrating utilization of bifurcation information for

image intensity-based labeling of intracranial arteries

through segment washing.

• Showcasing adaptability and versatility of the BRAVE-NET

vessel segmentation architecture.

Materials and methods

Data

Patients

Retrospective data from the PEGASUS (16) and 1000Plus

(17) studies were analyzed in this study. The PEGASUS study

enrolled patients with steno-occlusive cerebrovascular disease

with stenosis and/or occlusion of the middle cerebral artery or

internal carotid artery in at least 70% of the cases. Of the total

of 82 patients, four patients did not have TOF-MRA imaging

and six patients were excluded due to low-quality imaging due to

patient motion, resulting in 72 patients included in our analysis.

The 1000Plus study enrolled patients with acute ischemic stroke

within 24 h after symptom onset. In an ongoing process, raw

imaging data are processed via semi-manual segmentation

and anatomical labeling ground-truth creation. This is done

according to the study-ID of the patients without any bias

toward patient criteria. At the time of this study, 170 patients

were fully processed and ready for analysis. Thus, in total, we

included 242 patients in our analysis.

Both studies were carried out in accordance with the

recommendations of the authorized institutional ethical review

board of Charité Universitätsmedizin Berlin. All patients gave

written informed consent in accordance with the Declaration

of Helsinki.

Accessibility

Due to data privacy laws, the imaging data used in this study

cannot be currently published. Implementation of the proposed

network, as well as the training, prediction, and evaluation

frameworks can be found on GitHub at https://github.com/

prediction2020/vessel_annotation.

Image sequence specifications

Time-of-flight (TOF) magnetic resonance angiography

(MRA) images from two datasets were used to train models.

TOF-MRA is one of the most important methods for non-

contrast neurovascular and peripheral MRA and is thus

frequently used in cerebrovascular patients. In both PEGASUS

and 1000Plus studies, TOF imaging was acquired with a

Magnetom Trio 3T whole-body system (Siemens Healthcare,

Erlangen, Germany) using a 12-channel receive radiofrequency

(RF) coil (Siemens Healthcare) tailored for head imaging. Voxel

sizes were 0.52× 0.52× 0.65mm, matrix sizes 312× 384× 127

voxels, TR/TE = 22/3.86ms, respectively, time of acquisition

3:50 (min:s) and flip angles= 18 degrees.

Data preparation

Anatomical labeling of arteries depends on a priori

identification (segmentation) of the arteries and artery segments

through the extraction of bifurcation points. Our proposed

labeling model not only uses raw image information but also

makes use of vessel-specific information extracted from a

priori segmentation of the vessel tree. In the following, we

describe how we prepared our data to have the correct input

characteristics. Importantly, all models presented are agnostic

to these preparation steps as long as the correct input format

is provided. Thus, other data preparation and segmentation

procedures are compatible with the presented models. An

illustration of our data processing pipeline is shown in Figure 1.

Image and vessel-specific information realize our models’ input

and thus are essential for making predictions (filled black

arrows). However, segment information is only required for

ground-truth creation (orange arrows) or optionally for post-

processing of model predictions (dashed black arrows).

Image and vessel-specific information

Time-of-flight magnetic resonance angiography images

were utilized in two ways. First, raw scans coming directly from

the scanner, i.e., without any common post-processing steps like

non-uniformity correction or brain extraction, were gathered.

The raw image intensities served as the primary input to our

models, termed image input.

Second, vessel centerlines with the corresponding radius

at a certain voxel coordinate were extracted, involving two

processing steps: (1) we utilized the brain vessel segmentation

ground-truth from Hilbert et al. (5), yielding from a semi-

automated procedure described in the Data Labeling section of

Hilbert et al. (5). This way we aimed to ensure highest quality

of input for anatomical labeling; however, we note that this
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FIGURE 1

Proposed data processing pipeline. Black arrows show steps necessary for retrieving (filled) and optionally post-processing (dashed) predictions,

while orange arrows highlight steps only required for ground-truth creation—i.e., not for making predictions. (1) Data preparation includes

processing steps for the extraction of model input such as segmentation and centerline extraction, as well as the extraction of segment

information necessary for ground-truth creation. (2) Training involves patch extraction and training of the BRAVE-NET architecture. Patch-wise

predictions are used during training for performance assessment and for the reconstruction of whole-brain predictions after training. (3a)

Whole-brain predictions can directly be evaluated by voxel-wise scores or (3b) optionally further refined in post-processing via segment

washing. For this step, segment information is additionally utilized. (4) Post-processed predictions can be evaluated by both voxel-wise and

segment-wise scores.

step is directly replaceable by predictions of the BRAVE-NET

segmentation model, which would yield comparably accurate

segmentations. In particular, cerebral arteries constituting the

circle of Willis and the major brain-supplying arteries, such as

the internal carotid arteries, the vertebral arteries, and the basilar

artery were labeled. (2) Segmentations were thinned into a one

voxel thin centerline with the radius values encoded in the voxel

value by the implementation of the technique described in detail

in Selle et al. (18).

Both image and vessel-specific input values were scaled

between 0 and 1, using min–max scaling with training

set statistics.

Segment information

Additionally, the resulting centerline representation was

used to extract segment information. Vessels were divided

into segments based on bifurcation points, so that each

voxel between two bifurcations gets assigned to the same

segment. This step was implemented to facilitate ground-truth

labeling as part of the in-house software, described previously

in Frey et al. (19). A list of segments with corresponding

coordinates yields from the skeletonization algorithm of Selle

et al. (18). While it is a necessary step for ground-truth creation,

retrieving predictions from the model does not depend on

this step, as shown in Figure 1. However, we show a way to

utilize segment information via an optional post-processing

technique—segment washing—, to improve the consistency of

voxel-wise predictions of any model. This shows a potential step

toward graph-based approaches, where segment information is

directly ingrained in the method and is a natural prerequisite.

Data labeling

Ground-truth labels of the arterial brain vessel segments

were generated semi-manually using a standardized pipeline

that has been described previously (19). Briefly, using the

aforementioned segmentation, centerline and segment

information vessels were labeled using an in-house graphical

user interface dedicated to the anatomical labeling of vessels

by OUA (5 years of experience in stroke imaging and vessel

labeling), EA (5 years of experience in stroke imaging

and vessel labeling), or JB (4 years of experience in stroke

imaging and vessel labeling). All created ground-truth

labels were consecutively cross-checked by another rater.
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FIGURE 2

Schematic illustration of intracranial arteries included in our

analysis.

During the labeling process, around 80% of the included

patients were found to have missing arterial segments due to

pathological variation.

In a first step, 24 classes of vessel segments were labeled,

with background and non-annotated vessels leading to 26 classes

in total: internal carotid artery (ICA), internal carotid artery

Circle of Willis segment (ICA CoW), middle cerebral artery

first segment (M1), middle cerebral artery second segment

superior (M2 sup), middle cerebral artery second segment

inferior (M2 inf), anterior cerebral artery first segment (A1),

anterior communicating artery (AcomA), anterior cerebral

artery second segment (A2), vertebral artery (VA), basilar

artery (BA), posterior communicating artery (PcomA), posterior

cerebral artery first segment (P1), and posterior cerebral artery

second segment (P2). The arteries in the left (Sinister, S-) or

right (Dexter, D-) hemisphere are distinguished, except for

the unpaired AcomA and BA. Figure 2 provides a schematic

illustration of the intracranial arteries of interest for our analysis.

We refer to this constellation of segments as detailed in

the following.

In a second step, several classes were aggregated into

clinically relevant groups resulting in 11 vessel classes in addition

to the background non-annotated vessels, hence 13 classes in

total: D/S-(ICA, ICA CoW), D/S-(M1, M2 sup, M2 inf), (D-A1,

D-A2), (S-A1, S-A2, AcomA), BA, D/S-VA, and D/S-(PcomA,

P1, P2). This constellation of segments is termed as aggregated

in the following.

Cross-validation and patch extraction

We employed a 4-fold cross-validation methodology to

ensure the robustness of all models toward different training and

evaluation sets. Data were split with random sampling into four

distinct training and test sets with no overlapping test patients.

The final number of patients was 182 and 60 in each training and

test set, respectively; including equal numbers of Pegasus, as well

as 1000Plus patients across folds. The random patient selections

into folds defined by the framework were saved to ensure all

models were trained with the same training sets and evaluated

with the same test sets.

Deep learning solutions to voxel-wise classification

tasks—especially in the field of medical imaging—are

frequently realized in a so-called patch-wise paradigm for

two main reasons. Namely, training of DL models for image

processing on whole-brain volumes at once demands significant

computational resources and requires numerous images.

Thanks to the voxel-wise labeled ground-truth, one can

reformulate and relax the classification task to an arbitrary

neighborhood of any voxel, called an image patch. This way

training networks mean less computational burden and as the

image of a single patient can yield multiple patches, the number

of training samples is increased.

In our case, TOF images and the extracted arterial

centerlines with radius values were used as model input.

We extracted 3D image and centerline patches together with

corresponding ground-truth patches around artery voxels for

training. For each arterial segment, we randomly sampled

eight voxel coordinates and extracted patches around them

in two sizes: 128 × 128 × 64 voxels and 256 × 256 × 128

voxels. The maximal number of available voxels was used in

patients where less than eight voxels were labeled as a certain

segment. As centerlines were generated from the same TOF

image, the resulting image and centerline patches corresponding

to a certain voxel are naturally aligned and centered on the

same coordinate.

Data augmentation

A common practice for increasing model performance and

generalization in the field of deep learning is data augmentation

by various transformations. This can aid the applicability and

generalization of models in cases of yet unseen input variations,

hence in the real-world application as well. As an additional

experiment, we augmented the training patches by rotations

in random axis and random angles in the range from −60◦

to +60◦. The training dataset was inflated three times, i.e.,

original patches were kept and randomly transformed two

times additionally.

Model architecture

Our proposed architecture is the BRAVE-NET multi-scale

segmentation model, developed originally for arterial vessel

segmentation (5). BRAVE-NET brings an intuitive extension to
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FIGURE 3

BRAVE-NET architecture. Detailed explanation can be found in Hilbert et al. (5).

the widely used the Unet architecture (20), namely the parallel

extraction of low and high-resolution features around a certain

voxel. The added context path operates with a larger receptive

field down-sampled by half, which allows the identification of

the spatial context of a given vessel, lost due to patch-wise

training. To feed the standard encoder and context path of

the network, patches of two sizes—centered around the same

voxel—are required as input.

Compared to 5, the spatial input dimensions of the network

were changed to 128 × 128 × 64 and 256 × 256 × 128 voxels

for the original encoder and context path, respectively. Channel

dimension—i.e., feature dimension—of the input layers was

increased to two so that the network can process image and

vessel-specific features together. Due to the increased spatial

dimension of patches, we lowered the number of convolutional

filters in the first level to 16; consequently, all consecutive levels

operate on half the amount of feature maps. For regularization,

we found the L2 norm more effective than the dropout, thus

removing all dropout layers from the network and applying 1e-

3 L2 norm on convolutional weights. The output of the network

was also adjusted—including deep supervision outputs—to yield

labeling of the 26 or 13 arterial segment labels for the detailed

and aggregated vessel constellations, respectively. All other

parameters of the BRAVE-NET architecture were kept intact.

The architecture is depicted on Figure 3.

Model training and evaluation

Experimental setup and training scheme

Input patches of size (128 × 128 × 64) and (256 ×

256 × 128) with image and vessel-specific features with

ground-truth label patches of size (128 × 128 × 64) were

used to train our models. Models were implemented in the

Python programming language using the TensorFlow deep

learning framework (21) and trained on a high-performance

deep learning workstation using a single NVIDIA Titan RTX

GPU. We used the Adam optimizer (22) with an initial learning

rate of 1e-3 and categorical cross-entropy loss function. The

weight in convolutional layers was initialized using the Glorot

uniform initialization scheme (23).

We compared our proposed DL-based labeling network to

a classical machine learning baseline, namely a random forest

(RF) classifier trained and evaluated on voxels sampled from the

same training and test sets of patients across all folds. Training

sets for the RF contained an equal amount of voxels per segment

label sampled from each patient. We used 50 estimators in the

RF model.

Models were trained and evaluated separately for aggregated

and detailed vessel constellations, while considering the

same patients in the training and test sets of the cross-

validation framework.

Segment washing

We formulated anatomical labeling of arterial brain vessels

as a voxel-wise classification task, where each voxel in a 3D

image separately gets assigned to one of the vessel segment

labels by the model regardless of the voxel’s location. Thus,

the output of trained models can naturally contain multiple

predicted labels in a single anatomical vessel segment. While

this does not impede the visualization of model output, the

interpretation might be challenging in case of a high degree of

heterogeneity. As Unet-based segmentation models are known
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to have great local integrity, this phenomenon is mostly expected

in areas near bifurcation points, where the network has to assign

different labels to voxels with seemingly similar characteristics.

Segment information—i.e., bifurcation information—along

the vessel tree, however, can offer a straightforward adjustment

of voxel-wise predictions. For this purpose, we developed the

following post-processing technique, called segment washing.

Segment information was translated into a 3D map of the same

dimensions as the TOF-MRA image of the patient. In this map,

each voxel between two bifurcation points was assigned the same

segment ID. Using this mapping on the predictions, the Softmax

scores within a segment were summed up per segment and

the label with the highest total Softmax score was assigned to

all voxels within the segment. In other words, this procedure

washes each segment through with the label of the highest

average likelihood and yields homogenous labeling within each

segment along the vessel tree.

Performance evaluation

To measure class-specific performance of models, we used

primarily the F1 score, defined as the harmonic mean of

precision and recall, ranging from 0 to 1. Scores were calculated

per segment label and per segment group in case of the detailed

and aggregated vessel constellation, respectively. To evaluate the

overall performance, macro F1 score (mF1) and balanced class

accuracy (bAcc) were computed by averaging the class F1 scores

and class recalls, respectively, overall vessel segment labels.

Using the above-mentioned metrics, we approached the

evaluation of model performance from two angles. First, voxel-

wise performance scores were computed from the direct model

outputs. This way the exact performance of the proposed DL

models is evaluated on the level of voxel classification. However,

as longer segments encompass more centerline voxels, voxel-

wise performance scores are skewed toward the identification

of longer segments. Moreover, to enable a more practical

interpretation of the performance, the assessment of anatomical

labeling on a segment level can be considered. Hence, second,

we included the evaluation of segment-wise classification

performance to adhere to better clinical interpretation. Segment-

wise scores were calculated from post-processed outputs with

segment washing. All voxel-wise predictions in a given segment

were pulled together and counted as a single prediction

associated with the segment. Thus, these scores are not tampered

with by the variability across segment sizes.

Moreover, we evaluate performance per vessel segment

labels considered in the detailed and aggregated vessel

constellations by class-specific F1 score. Here, we categorize

performance as excellent (>0.9), good (>0.75), moderate

(>0.6), and poor (<0.6) to allow better overall interpretation.

All evaluationmetrics were calculated on whole-brain labels,

reconstructed from patch-wise predictions of the models in

case of both aggregated and detailed vessel constellations.

Background and non-annotated classes were excluded from the

calculation of the metrics. We report mean values and standard

deviation across test sets defined by the cross-validation

framework. To cope with the different output dimensions of the

network and the ground-truth dimension, we did not consider

the last slice of network output when calculating the metrics.

Results

In the following experiments, we trained three models

in both aggregated and detailed vessel constellations: (1) a

random forest classifier (RF), (2) our proposed BRAVE-NET

architecture, referred to as proposed, and (3) our proposed

BRAVE-NET architecture with additional augmentation

of training data, referred to as proposed-augmented. The

contribution of segment washing was assessed by applying this

step consecutively to the predictions of a certain model; no

additional model training was performed.

On a voxel level, most deep learning approaches significantly

outperformed the random forest classifier. The proposed

BRAVE-NET architecture performed similarly to the standard

Unet architecture, but slightly outperformed it with a macro F1

score of 0.89 and a balanced class accuracy score of 0.90 for

aggregated and 0.80 and 0.83 for detailed segment classes (RF

mF1 of 0.54, 0.34 and bAcc of 0.77 and 0.57, respectively). While

comparing various inputs, we can see that the combination

of image and vessel-specific information yielded the highest

performance. The addition of the segment washing step yielded

notable improvement. Augmentation of training data led to a

smaller improvement, however, seemed to deliver comparable

benefits as segment washing on top of the proposed model with

image and vessel inputs. Detailed results are shown in Table 1.

Similarly, on a segment level, the models trained with

augmented data yielded higher performance, with a macro

F1 score of 0.85 and a balanced accuracy of 0.88 for

aggregated, and 0.78 and 0.82 for detailed vessel cases,

respectively. Here, all results are reflective of predictions post-

processed with segment washing, as this step is naturally

required to compute segment-wise scores. The segment-wise

performance scores of the models appeared only slightly

worse than their voxel-wise scores. Detailed results are shown

in Table 2.

Lastly, for the evaluation of per class performance, we

report the mean F1 score across test sets for each vessel

segment, both for aggregated (Figure 4) and detailed vessel

constellations (Figure 5). Here, results are shown for the best,

proposed augmented models with subsequent segment washing

on predictions. In case of aggregated segments, seven out of

11 class labels yielded excellently and four good performances,

with the group of dexter M1, M2 sup, and M2 inf just

meeting the criteria. In case of detailed segments, six out

of 24 class labels yielded excellent, 10 good, four moderate,
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TABLE 1 Voxel-wise test results of the random forest classifier (RF), a Unet, the BRAVE-NET networks, referred to as proposed and BRAVE-NET

networks trained with augmented training data, referred to as proposed-augmented.

Voxel-wise scores Aggregated segments Detailed segments

Model Input Segment washing mF1 bAcc mF1 bAcc

RF Image+ vessel – 0.54 0.77 0.34 0.57

Unet Image+ vessel – 0.83 0.83 0.71 0.73

Unet Image+ vessel ✓ 0.86 0.85 0.75 0.77

Proposed Image – 0.50 0.47 0.40 0.40

Proposed Image ✓ 0.63 0.55 0.47 0.45

Proposed Vessel – 0.79 0.80 0.68 0.72

Proposed Vessel ✓ 0.84 0.84 0.74 0.76

Proposed Image+ vessel – 0.84 0.84 0.73 0.76

Proposed Image+ vessel ✓ 0.88 0.88 0.78 0.80

Proposed-augmented Image+ vessel – 0.86 0.87 0.76 0.79

Proposed-augmented Image+ vessel ✓ 0.89 0.90 0.80 0.83

Results are shown for models trained on aggregated and detailed vessel constellations and subsequent application of segment washing of predictions is indicated. Metrics shown are macro

F1 score (mF1) and balanced class accuracy (bAcc). Performance evaluation of the proposed models with segment washing did not involve additional training or retrieval of predictions.

Bold values indicate overall best performance with respect to the given metric.

TABLE 2 Segment-wise test results of the trained BRAVE-NET networks on aggregated and detailed vessel constellations.

Segment-wise scores Segment washing Aggregated segments Detailed segments

mF1 bAcc mF1 bAcc

Proposed ✓ 0.84 0.86 0.75 0.78

Proposed-augmented ✓ 0.85 0.88 0.78 0.82

Scores were computed using the same predictions as in case of voxel-wise scores. Bold values indicate overall best performance with respect to the given metric.

FIGURE 4

Detailed test results of the proposed-augmented model trained on aggregated vessel constellation with subsequent segment washing, values

reflect mean voxel-wise macro F1 scores from cross-validation, error bars correspond to standard deviation across folds.

and four poor performances. The four poor labeling results

belonged to the left and right M2 sup and M2 inf segments.

Moreover, the BRAVE-NET architecture performed similar or

better than the standard Unet in all vessel segments and

significantly better in the smaller segments; figures are provided

in Supplementary material.
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FIGURE 5

Detailed test results of the proposed augmented model trained on detailed vessel constellation with subsequent segment washing; values

reflect mean test voxel-wise macro F1 scores from cross-validation, error bars correspond to standard deviation across folds.

Figures 6, 7 show two example test patients with ground-

truth and aggregated and detailed segment predictions of our

best model with segment washing. Model performance for

both aggregated and detailed constellations was comparable

to the reported average performance. Error maps show

misclassification in green regardless of the true label class.

The color of visualized segments corresponds to coloring in

Figure 4 for aggregated segments and Figures 2, 5 for detailed

segments, respectively.

Automated labeling of a patient’s vessel tree took 8 and 10 s

with our proposed networks in the aggregated and detailed cases,

respectively, using the described GPU system.

Discussion

We adapted a state-of-the-art, multi-scale deep learning

approach for anatomical labeling of intracranial arteries

that uses a novel combination of image and vessel-specific

information in patients with cerebrovascular disease. We

specifically analyzed the performance of networks trained with

single inputs and have shown superior performance when

combining image and vessel-specific information. Moreover,

we gave a comprehensive overview of the necessary processing

steps to realize fully automated labeling of intracranial artery

segments from raw TOF-MRA. We highlighted which of these

steps deem essential for model training and automated labeling

and which serves as optional improvement of predictions.

Our proposed model achieved high average performance in

labeling aggregated, as well as detailed artery segments validated

by multiple metrics. The model showed high performance in

labeling most arteries of clinical interest in cerebrovascular

disease. The presented analysis was conducted in an extensive

patient cohort with vessel pathologies which further emphasizes

the robustness and applicability of our results to an important

clinical need. In our realized pipeline, each necessary processing

step can be automated by publicly available sources making our

approach highly suited for further clinical testing.

Comparison to literature

In Table 3, we provide an overview of the necessary pre-

processing steps, number of patients in the study, number of

arterial segments considered, and best execution times reported

by existing literature and compare them to our developed

models. Since the anatomical labeling paradigm used in our

study and previous works are conceptually different (voxel-

wise segment labeling vs. bifurcation classification), we cannot

provide a direct comparison of prediction performance.

First, vessel segmentation and centerline extraction are an

essential prerequisite of all but one work (8), where only

vessel segmentation was employed. These steps are rather

straightforward, well-researched, and automated solutions exist,

hence we exclude them from our comparison.

While location-based methods rely by nature on co-

registration to the template atlas, only (9) succeeded to

circumvent this step from the graph-based group. Similarly,
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FIGURE 6

Exemplary test patients with D-P1 misclassified on the detailed segment prediction as D-P2, while correctly classified in the aggregated segment

case (yellow arrow). Additionally, while the model trained with detailed segments correctly annotated the D-P2 segment, the model with

aggregated segments left it out from the (D-PcomA, P1, P2) group (blue arrow). Model performance in case of this particular patient was 0.89

and 0.80 mF1 for the aggregated and detailed vessel constellations, respectively. Misclassification is shown with green on the error map. Small,

red patches intersecting a few segments are slight rendering errors and do not originate from incorrect labeling.

bifurcation extraction is a natural prerequisite for graph-

based methods and seemed to be an essential element for

all but one reviewed work (12). Both of these steps help a

great deal in localization and precise distinction of arterial

segments, however, rely heavily on image quality, might

involve exhaustive computations, and can be adversely affected

by pathologies or unusual anatomy—e.g., missing arterial

segments. Furthermore, four out of the five reviewed, graph-

based works required some sort of spatial transformation of

the images prior to labeling. Robben et al. (12) employed scale-

space transformation to 4D to model vessel radius variation

whereas Bilgel et al. (9), Chen et al. (11), and Zhu et al. (13)

applied resampling of the images to isotropic voxel sizes. While

scale-space representation can enhance modeling capacity,

isotropic resampling can introduce noise or severely reduce

resolution (depending on down/up-sampling) prohibiting good

performance in case of highly distinct voxel sizes. Lastly, the

method of Zhang et al. (24) depended on mesh modeling

and standardization of the 3D mesh due to prerequisites

of the applied MeshCNN network. In contrast, the herein

presented DL network clearly relies on the least amount of pre-

processing. Thanks to the translational equivariance property

of convolutional layers there is no need for co-registration,

identification, and learning of local context is realized through

the context path of the BRAVE-NET architecture, while full

3D convolutions enable learning of anisotropic voxel distances

by nature. Through voxel-wise classification, we alleviated the

need for bifurcation extraction and showed the flexibility of our

proposed pipeline in incorporating such information through

segment washing for a slight performance increase. While

the post-processed predictions yielded superior performance,

the difference compared to the proposed model trained
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FIGURE 7

Exemplary test patients with non-annotated S-M2 sup on the detailed segment prediction while correctly classified by the model trained with

aggregated segments (yellow arrow). Model performance in case of this particular patient was 0.90 and 0.79 mF1 for the aggregated and

detailed vessel constellations, respectively. Misclassification is shown with green on the error map. Small, red patches intersecting a few

segments are slight rendering errors and do not originate from incorrect labeling.

with augmented data remained small. Moreover, predictions

as well as bifurcation information about a certain segment

are independent of the preceding and following segments.

This means, neither our deep learning approach nor the

segment washing post-processing technique can be flawed by

missing segments.

Second, the number of patients employed in the reviewed

studies varied. There were five works—beyond ours—that

utilized more than 100 patients. To show clinical applicability,

methods need to provide thorough evaluation including a

great variety and number of patients. Our work comes

second in this aspect, employing two pathology-rich datasets

of cerebrovascular patients. However, important to mention

that even though our reported evaluation was conducted

on whole image volumes, our networks were trained patch-

wise, enabling them to see an increased number of local

variations of arteries (roughly 30.000 and 16.000 training patches

excluding augmentation in case of detailed and aggregated

segments, respectively).

Third, we observed a similar variation in terms of the

considered arterial segments for labeling. Most works—except

(11, 13)—restricted their models to a significantly smaller

portion of intracranial segments, which clearly limits clinical

applicability. Besides being able to process and label most

segments, our model can naturally adapt to any arbitrary

scenario where aggregated groups of arterial segments are of

clinical interest, without the need of redefining computational

graphs or prior knowledge bases.

Fourth, we included execution times in our comparison,

owing to the prompt time criteria of most clinical settings. We

found two among the reviewed works (7, 11) that reported

similar computation times to our method, both corresponding

to predictions in a GPU system. Due to the widespread

availability of GPU technology we do not consider this a higher
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TABLE 3 Overview of existing methods.

Pre-processing No. patients No. segments Execution time

Location-based

Takemura et al. re, be, pt 15 12 n.r.

Dunås et al. re, be 132 14 13m (CPU)

Shen et al. re, be, pt 194 9 15.7 s (GPU)

Graph-based

Bilgel et al. be, tr 30 15 n.r.

Robben et al. re, tr 50 9 510 s (CPU)

Bogunovic et al. re, be 50 9 n.r.

Chen et al. re, be, nm, tr 729 22 0.1 s (GPU)

Other

Zhang et al. nm, mm 109 9 n.r.

Proposed

Proposed detailed – 242 24 10 s (GPU)

Proposed detailed+ segment washing be 242 24 10 s (GPU)

Proposed aggregated – 242 11 8 s (GPU)

Proposed aggregated+ segment washing be 242 11 8 s (GPU)

Methods are compared in terms of required pre-processing steps from the raw image to produce the proposed anatomical labeling (pre-processing), total number of patients included in

the study (number of patients), number of arterial segments considered and labeled by the model (number of segments), and best execution time reported by authors (execution time). Due

to being a prerequisite of each method, vessel segmentation and centerline extraction are omitted from the list of required pre-processing steps. re, registration; be, bifurcation extraction;

pt, additional reference point tracking (Takemura et al.—tracking of center of CoW, Shen et al.—key point tracking); tr, spatial transformation (Robben et al.—scale-space transformation,

Chen et al., Zhu et al., and Bilgel et al.—isotropic reslicing); nm, intensity normalization; mm, mesh modeling; nr, not reported.

requirement than a modern CPU system. We deem near—or

lower than—15-second computational times per whole volume

labeling adequate for real-time clinical usage; thus, we position

our method together with (7, 11) on top of the list from this

aspect. We would like to note, however, that the reviewed and

present study did not use the same computational resources.

This means differences to a certain degree are natural and

data are mainly provided for a more complete overview of the

reviewed works.

In summary, due to outstanding advantages in regard

to necessary pre-processing, sufficient training and evaluation

cohort to enable good generalization and ability to learn

pathologies, great flexibility in adapting to various clinical

definitions of arteries of interest, and fast prediction times, we

claim our solution superior in the applicability for clinical setting

compared to other methods in the literature.

Anatomical labeling in other vascular
structures

Since deep learning, i.e., data-driven solutions depend

primarily on the structure of data they were designed for,

methodologies can apply across different medical specialties.

Beyond intracranial arteries, there has been methodologically

relevant research in anatomical labeling of the vasculature

of other organs (25–28). Recently, Yang et al. proposed an

encouraging and promising solution to anatomical labeling of

coronary arteries (29). Motivated by the limitations of purely

graph-basedmethods, the authors proposed a hybrid framework

combining a graph convolutional network with a condition

extractor mechanism that extracts 3D spatial image features

along the branches by a 3D convolutional neural network and

long short-term memory model. Their sophisticated method

demonstrates another way of extending graph-based methods

by the image processing capability of DL. Even though

intracranial arteries tend to have a bigger variety of tortuous

vascular structures than cardiac arteries, we note the potential

applicability of such hybrid methods in cerebrovascular labeling.

Our proposed post-processing step, segment washing points

toward such a hybrid direction. Taking it further, a hierarchical

refinement as a second step after aggregated prediction or

a combined hierarchical loss function could help to advance

performance in more distal segments. As shown in our results,

our detailed vessel model suffered from limited performance

on the smallest, more tortuous branches, namely the M2

sup and inf segments. Figure 7 shows a perfect example of

potential improvement, where theM2 sup segment was correctly

captured by our model trained with aggregated segments but

was misclassified as non-annotated by the model trained on

detailed segments. Information exchange between the two

models about theM2 sup segment belonging to theMCA branch

could have prevented the detailed model from not labeling the

given segment.
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Clinical aspect

In the clinical setting, arterial brain vessels are routinely

imaged and there is a major clinical need to translate the

information contained within these images into utilizable

biomarkers. This quantifiable information can potentially

be applied for the prediction of disease, disease progression,

and response to treatment (3). For example, in chronic

cerebrovascular disease, this information could inform

monitoring of the disease and the prediction of cerebrovascular

events. In acute stroke, existing and potentially missing vessels

could be flagged. In addition, these tools could also facilitate

the treatment of acute stroke in settings, where specialized

neurologists and radiologists are not available. Here, our model

which does not require post-processing and could be applied

on the scanner console is a promising proof of concept for

the future development of arterial biomarkers. The segmented

and anatomically labeled vasculature can be measured and the

values can be translated into scores. Or, the information can be

utilized directly for data-driven predictive modeling.

Within this context, a major strength of our study is the

utilization of imaging from patients with vessel pathologies

owing to cerebrovascular disease. In contrast to healthy patients,

cerebrovascular disease leads to vascular changes, such as caliber

changes, steno-occlusions, andmissing segments. These changes

add to the already considerable heterogeneity of the vasculature

under healthy conditions. Here, our results are highly promising

as we achieved an overall high performance in this patient

cohort. However, in some areas like the M2 segment, we found

considerably lower performance in contrast to other segments.

We hypothesize that this is related to the variations in the

localization of the MCA rather than specific MCA variants.

MCA variants like fenestrations and duplications are relatively

rare (30). However, the MCA is the phylogenetically youngest

major brain artery system and it evolved together with the

growing frontal, parietal and temporal lobes (31). This allows

the MCA to have a high degree of localization freedom in

contrast to the more constrained anatomical localization of

the phylogenetically older ACA and PCA. Given the clinical

importance of the MCA vessels, e.g., for stroke, the performance

in the MCA regions needs to be improved. If our hypothesis

holds true, this issue can be mitigated by training future models

with even larger amounts of patients capturingmore localization

variations of theMCA. Also here it will be important to include a

sufficient number of patients with pathologies of the vasculature,

as well as natural variations.

Limitations

Our study has recognized limitations. First, the

generalization of DL methods highly depends on the data

source. While the datasets in our study exhibited a large variety

of cerebrovascular disease, we recommend specifically including

datasets with other pathologies, other MR scanner- and imaging

sequence types and other imaging modalities, such as CT,

in future works. Second, due to high resource demand, no

systematic visual assessment of our results was conducted.

We used a 4-fold cross-validation framework to ensure the

robustness of our results, which—combined with our extensive

dataset—creates an extremely time-consuming environment

for visual review. Extensive quantitative evaluation provides

a concise overview of our model’s strengths and weaknesses;

however, understanding model behavior in more detail by

visual assessment cannot be ruled out. Third, we have seen

limited performance in the smallest artery segments of our

detailed vessel models, namely in M2 sup and M2 inf segments.

Affirmatively, previous works have reported the processing of

narrow and tortuous brain vessels by DL methods challenging

(5, 15). We believe that this challenge could be mitigated by

the previously noted extensions toward exploiting hierarchies

between aggregated groups and detailed segments. Another

limitation in this context is that we developed our labeling

framework in this first iteration for the most common

anatomical variant, where the M1 bifurcates into M2 superior

and M2 inferior segments. This accounts for around 80% of

patients. It is likely that the performance for the M2 segments

will increase when trifurcations and the presence of many small

vessels will also be accounted for.

Conclusion

In conclusion, we could demonstrate that deep learning

can be utilized with high accuracy for anatomical labeling

of intracranial arteries using TOF-MRA images. Our results

suggest that the extensive information on image intensities can

be efficiently and beneficially exploited. Due to minimal pre-

processing, simple usability, and fast predictions, our method

has excellent potential with regard to applicability in the

clinical setting compared to current approaches shown in the

literature. Furthermore, we have shown that the employed

state-of-the-art segmentation architecture further excels in the

field of anatomical labeling. Owing to the dependence on

anatomical labeling and vessel segmentation, this suggests high

promises of interconnected implementations for an even faster

and more efficient pipeline. We believe our work provides a

crucial step toward realizing the promises and impact of AI

in the quantification of cerebrovascular information and thus

contributes to a solution for an important clinical need.
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