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GNE myopathy is an ultrarare muscle disease characterized by slowly

progressivemuscleweakness. Symptoms typically start in early adulthood, with

weakness and atrophy in the tibialis anteriormuscles andwith slow progression

over time, which largely spares the quadriceps muscles. Muscle biopsy shows

atrophic fibers and rimmed vacuoles without inflammation. Inherited in an

autosomal recessive manner, patients with GNE myopathy carry mutations in

the GNE gene which a�ect the sialic acid synthesis pathway. Here, we look

at the history and clinical aspects of GNE myopathy, as well as focus on prior

treatment trials and challenges and unmet needs related to this disorder.
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Introduction

GNE myopathy is a rare inherited muscle disease. Known by many different

names (“Nonaka distal myopathy,” “distal myopathy with rimmed vacuoles,”

“hereditary inclusion body myositis,” “quadriceps-sparing myopathy,” among others),

this condition results in progressive muscle weakness resulting from changes

in the bifunctional enzyme UDP-N-acetylglucosamine (GlcNAc) 2-epimerase/N-

acetylmannosamine (ManNAc) kinase.

This disorder was first described in the early 1980s byNonaka et al. in Japan, but since

then has been seen throughout the world, often in clusters (1). GNE myopathy is rare,

though recent evidence suggests that the disorder may be more prevalent than previously

thought (2). Initial symptoms typically appear in the third decade of life, with distal leg

weakness often affecting the ankle dorsiflexors and resulting in foot drop. This is followed

by slowly progressive muscle weakness affecting arms and legs, with relative sparing of

the quadriceps muscles. Workup may reveal normal or mildly increased creatine kinase

(CK) level, and muscle biopsy may show rimmed vacuoles and 14–18 nm filamentous

inclusions, without inflammatory infiltration. Diagnosis is confirmed with homozygous

or compound heterozygous GNE gene mutations.

The estimated worldwide prevalence of GNEmyopathy is 1–9 per million (3). Recent

work demonstrated that 31% of patients with undiagnosed genetic myopathies in the

Indian subcontinent were found to have pathogenic GNE mutations (2, 4). This was

further demonstrated in a more recent assessment (5). An estimated 1 in 203 people

worldwide are thought to carry a potentially pathogenic GNEmutation. Despite this, the

number of reported cases of GNE myopathy worldwide remains only slightly over 1,000,
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TABLE 1 Common GNE myopathy variants and associated regions.

Mutation Ethnicity or region commonly reported

p.C44S Japanese (12)

p.D207V Japanese, Chinese (11, 13)

p.V603L Japanese (14)

p.L539S Chinese (13)

p.I618T Bulgarian Roma, Rajasthani region of India (2, 15, 16)

p.V727M Indian (17, 18)

p.M743T Middle Eastern (4, 19, 20)

p.D409Y North British (21)

p.A662V North British (21)

which is likely much less than the actual number of cases.

Previously this discrepancy may have been at least partly related

to the many names associated with the disorder, and presently

may be affected by factors such as access to genetic testing and

differences in clinical features such as a lack of vacuoles on

biopsy in many cases (6).

The GNE gene product is an enzyme which is critical in

the production of sialic acid. Sialic acid is a monosaccharide

which binds to glycoproteins and glycolipids with several

functions including cellular recognition and adhesion (7).

Therapeutic trials have focused on this pathway, with the goal

of supplementing sialic acid levels.

History and geographic variations

In 1981, Ikuya Nonaka et al. described three cases from

two families with distal weakness “predominantly affecting the

tibialis anterior muscles,” and muscle biopsy showing rimmed

vacuoles containing “numerous concentric lamellar bodies” (1).

In 1984, Zohar Argov described nine cases among four Iranian-

Jewish families presenting with generalized weakness, where the

“quadriceps muscle was the only leg muscle which retained

its normal power” (8). The autosomal-recessive inheritance

pattern was also characterized. In 1995, Mitrani-Rosenbaum

et al. localized the implicated gene to chromosome 9p1-q1 (9).

In 2001, this was further specified to mutations involving the

GNE gene (10). As the separately described cases were found to

have a similar genetic basis by 2002, it became evident that these

disorders represented the same condition (11).

The genetic characterization of GNE myopathy has

highlighted regional genotypes (Table 1). The Middle East,

Japan, India, Britain, and other regions of the world have

mutations common to their respective areas. In the Middle

Eastern population for example, the p.M743T mutation is

frequently seen, and is seen in the surrounding region consistent

with migration history. All of the Israeli patients described

by Argov were found to be homozygous for the p.M743T

mutation (referred to as the p.M712T mutation in the previous

nomenclature system) (19). Argov identified 129 patients from

55 families, all of which were homozygous for the p.M743T

mutation. Likewise, the common mutation among those of

Iranian-Jewish descent is the p.M743T mutation, suggesting

a founder effect. This genotype is also common in nearby

locations such as Uzbekistan, Afghanistan, and Iraq, likely due

to local population expansion. This mutation is also frequently

identified in California, United States due to the Iranian-Jewish

population in this region resulting from migration since the

early twentieth century. This mutation is also frequently

identified in Iranians of non-Jewish descent along with the less

common p.R277Q variant (22). The p.M743T mutation has also

been described in Muslim patients in Tunisia (23).

GNE mutations in other areas of the world also exhibit a

founder effect. In the Bulgarian Roma population for example,

the p.I618T mutation accounts for more than 99% of mutations

causing GNE myopathy (15). Notably, this same mutation is

prominent among the Rajasthani people in North West India.

Khadilkar et al. assessed 26 GNE patients from northwestern

India. In this analysis, all 7 patients of Rajasthani origin harbored

the p.I618T mutation, the same mutation seen in the Bulgarian

Roma, with 5 of those 7 being homozygous for this mutation

(16). All of the patients from the state of Rajasthan were from the

Maheshwari and Jain communities specifically. It is speculated

that the Roma population of Europe originated from this region

of northwestern India including from the state of Rajasthan,

during a period of migration possibly between the fifth and tenth

centuries. This theory is further supported by studies analyzing

single nucleotide polymorphisms as well as mitochondrial gene

sampling (24, 25).

Outside of the Rajasthan population of northwest India,

the most prevalent GNE mutation in the Indian subcontinent

is the p.V727M mutation. Nalini et al. found that patients

from six out of the eight families studied were found to have

the p.V727M mutation. This mutation was also found in each

of the four patients from Thailand as described by Liewluck

et al., suggesting a possible founder mutation in this region as

well (26).

In the North of Britain including Northern England,

Scotland, and North Ireland, Chaouch et al. identified two

frequently recurring mutations in GNE patients in that region,

the p.A662V, and the p.D409Y mutations. 18 of 20 identified

GNE myopathy patients in this region carried at least one

of these two mutations (21), and 10 of the 20 patients were

compound heterozygotes for both mutations. In this cohort, the

mutations characteristic of other Middle Eastern or Japanese

populations were not seen.

In Japan, where GNE myopathy was first described, a

number of different mutations are seen. In a 2014 analysis of 212

Japanese patients with GNE myopathy, 63 different mutations

were observed. The most frequent mutation in the Japanese

population is the p.V603L mutation, accounting for over 48%
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of total mutations (27). The second most common mutation

in Japan is the p.D207V, which is considered to be a milder

phenotype in contrast with the p.V603L mutation which may

be more severe (27). Similar to other areas of the world, the

variants characteristic in the Japanese population are also seen

in neighboring regions in East Asia including China and Korea.

Though some mutations are considered to be more severe

than others, the correlation between genotype and phenotype is

not entirely clear. Some evidence suggests phenotypic similarity

among patients with the samemutation. Several of the Bulgarian

Roma patients described by Chamova et al. presented with hand

weakness, though still the vast majority initially presented with

ankle dorsiflexion weakness (15). In fact, despite nearly all of

the patients being homozygous for the samemutation, there was

variability in presentation including age of onset and presenting

symptoms. The Northern Irish patients with the p.A662V

mutation were reported to exhibit a gradient of weakness in the

deep finger flexors with more involvement of the index finger

in comparison to the little finger (21). A potential correlation

has also been considered regarding whether the epimerase or

kinase domain is affected. Homozygotes for mutations affecting

the kinase domain (KD/KD genotype) in the Japanese cohort

appeared to have a more severe course in comparison to

compound heterozygotes with one of the mutations affecting the

kinase domain and the other mutation affecting the epimerase

domain (KD/ED genotype) (28). However, it should be noted

that the majority of the kinase domain mutations were the

p.V603L mutation, which is considered to be a more severe

phenotype as noted above (13). A more recent analysis of 89

patients from many countries showed that patients with the

KD/ED genotype reported an earlier loss of ambulation in

comparison to the KD/KD or ED/ED genotypes, though this did

not reach statistical significance (29).

Pogoryelova et al. reviewed GNE registry data and 11

articles including 759 patients in order to further investigate the

potential genotype/phenotype correlation. It was estimated that

genotype accounts for 20% of the phenotypic variability seen

in GNE myopathy (30). Several phenotypic trends were seen

among patients with the same mutations. For example, patients

harboring the p.L539S mutation appear to have an age of onset

an average of 7.2 years earlier than those who do not have this

mutation. The p.V603L seems to result in a lower probability

of ambulation at age 40, but did not appear to affect the age of

onset. It is also noted that some features that appear to be more

prominent in some regions, such as the Beevor sign which has

been described in the Indian cohort, may be attributable to other

factors or observational bias.

However, the overall evidence remains unclear that genotype

reliably influences phenotype. Every cohort described, despite

sharing common mutations, shows variable presentations

including weakness pattern and age of onset. It is also notable

that the Middle Eastern cohort described by Argov included

five clinically unaffected subjects despite homozygosity for the

TABLE 2 Common features of GNE myopathy.

Clinical features • Typical onset in 3rd decade of life

• Initial symptom most often foot drop

• Slow progression to upper extremities and

proximal muscles

• Spares quadriceps muscles

• Not associated with cardiomyopathy

• Respiratory dysfunction uncommon, may

be seen in non-ambulatory patients

Genetics • Autosomal recessive inheritance

• Biallelic mutations in GNE gene

• No clear genotype/phenotype correlation

Muscle pathology features • Fiber size variation

• Endomysial fibrosis

• Rimmed vacuoles

• Amyloid deposition

• Non-inflammatory muscle biopsy

• 14–18 nm filamentous inclusions on

electron microscopy

prevalent mutation even at 50 and 68 years of age suggesting

incomplete penetrance (4).

Clinical manifestations

There are a number of clinical features which are

commonly seen in GNE myopathy (Table 2). Symptoms

most frequently appear in the third decade of life, though

cases have been reported with onset as early as age 10

and as late as 61 years of age (31). The majority of

patients present with distal weakness in the legs, typically

of the tibialis anterior muscles resulting in foot drop. The

weakness is slowly progressive, eventually causing symmetric

lower and upper extremity weakness, classically sparing the

quadriceps muscles.

Weakness in the upper extremities typically appears about

10 years after onset of symptoms in the legs, and most often

presents as grip weakness. Though the distribution of weakness

in the upper extremities may be variable, intrinsic hand

muscles and deep finger flexors are typically most prominently

affected. There may also be scapular weakness resembling a

scapuloperoneal syndrome, though typically scapular weakness

is seen only later in the disease course (32). Scapular winging is

not uncommon, and was observed in 11 out of 26 patients in the

North British cohort (21).

A common phenotypic feature is the preservation of

the quadriceps muscles until late in the disease process.

One observation made by Argov was that of a wheelchair-

dependent patient in his 60s, extending his knees with his
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granddaughter sitting on his ankles (33). Often, this sparing

of the quadriceps persists despite profound weakness resulting

in loss of ambulation. This also seems to be quite consistent

among nearly all cases, though the underlying cause of this

is not known (34). It is notable that the quadriceps muscle

contains similar amounts of GNE protein as other muscles (34).

It is not known whether there may be some compensatory

mechanism which is found in the quadriceps muscle that is

not found in other muscles, though this has not been found.

Regardless, the maintained strength in the quadriceps muscles

allows for ambulation much later in the course of the disease

than may be expected based on the extent of weakness of

other muscles.

In general, respiratory function is not significantly affected

in patients with GNE myopathy. Patients from the British

and non-Jewish Iranian cohorts all had normal respiratory

function (21, 22). Patients from the Bulgarian Roma cohort were

reported to have some reduction of forced vital capacity (FVC),

though overall respiratory function was relatively preserved.

In this cohort, FVC was reduced to 60–75% in 5 out of 27

individuals. This may be related to disease severity, which was

also observed in a natural history study in the Japanese cohort

showing that FVC declines in non-ambulatory patients (35).

In the Japanese cohort, 12 out of 39 patients had at least mild

respiratory dysfunction with FVC <80%. 11 of the 12 patients

were non-ambulatory. Respiratory dysfunction, if present tends

to correlate with overall disease severity. In one case however,

significant respiratory dysfunction was described in a patient

who had a late onset of weakness in his 50s (36). Overall, the

respiratory dysfunction is typically mild, and severe respiratory

dysfunction is not typical, even with advanced progression of

the disease.

Likewise, there does not appear to be significant cardiac

involvement in GNE myopathy. The Bulgarian Roma cohort

did have reports of cardiac abnormalities, though it is not

clear whether these were related, and the majority were

not clinically significant (15). These included changes seen

on echocardiogram or electrocardiogram. However, cardiac

involvement has been seen in a mouse model study. About 20%

of Gne knockout mice expressing the GNE p.D207V mutation

were found to have cardiac fibrosis. Amyloid deposition and

occasional rimmed vacuoles were also seen in cardiac muscle

tissue (37). These mice were also found to have similar findings

in the diaphragm muscle.

Thrombocytopenia has recently been reported in patients

with GNE myopathy in some East Asian patients. In 2014,

Zhen et al. described two adult patients from a family who

both had GNE myopathy and thrombocytopenia (38). In

that same year, Izumi et al. separately reported two adult

patients from one family who also had GNE myopathy and

congenital thrombocytopenia. These patients were compound

heterozygotes and the mutations were not the same between

families (39). Additional cases have since been described,

including two infant patients with congenital thrombocytopenia

due to GNE mutations who may be pre-symptomatic for

muscle disease.

Diagnostic features

Patients presenting with distal weakness in a pattern and

age of onset concerning for GNE myopathy may undergo

testing including electromyography, genetic testing, and muscle

biopsy. The diagnosis typically relies on a clinical presentation

consistent with GNE myopathy as well as characteristic muscle

pathology findings. Confirmation of the diagnosis is made by

genetic testing showing pathogenic homozygous or compound

heterozygous mutations affecting both alleles of the GNE gene.

Advances in genetic testing over the past few decades, along with

its availability and reliability have led to its widespread use as a

diagnostic test.

Serum creatinine phosphokinase (CK) levels may be normal

to mildly elevated (15, 20). This would be expected to decrease

over time with disease progression, and the CK level in non-

ambulatory patients may be normal or low (40).

Electromyography is expected to show myopathic features

particularly in clinically affected muscles. Testing may show the

presence of spontaneous activity such as fibrillation potentials

and positive sharp waves indicative of muscle membrane

irritability (21).

Muscle imaging is increasingly used in neuromuscular

conditions. In the case of GNE myopathy, muscle imaging

may reveal patterns of atrophy and can also be helpful for

muscle biopsy site selection. Magnetic resonance imaging

(MRI) findings typically demonstrate muscle atrophy and fatty

replacement most significantly in the ankle dorsiflexors with

sparing of the quadriceps muscles consistent with the clinical

pattern of weakness. In one assessment of the imaging features

of 13 GNE myopathy patients, several muscles appeared to be

affected more than others. Even relatively early in the disease,

severe involvement was seen in the biceps femoris short head

to a greater degree than the distal muscles such as the tibialis

anterior, extensor hallucis and digitorum longus, soleus and

gastrocnemius muscles (41). Muscle ultrasonography has also

been used to assess patients with GNE myopathy. In an analysis

of six patients of Iranian-Jewish descent and homozygous for

the p.M743T mutation all had a target-like appearance of

the hamstring muscles with central atrophy and peripheral

sparing (42).

Muscle biopsy shows several consistent features. In the

description by Nonaka from 1981, muscle biopsy showed

remarkable fiber size variation with endomysial fibrosis.

Rimmed vacuoles were seen as well as atrophic muscle fibers.

Electron microscopy showed the presence of intracytoplasmic

vacuoles with concentric lamellar bodies and autophagic

vacuoles (1). 14-18nm filamentous inclusions are also seen.
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Biopsy also demonstrates amyloid deposition with Congo-red

staining. Vacuoles with strong acid phosphatase positivity and

reactivity with lysosomal markers are also seen, indicating

evidence of autophagic activity (25). Significant inflammatory

infiltration is not expected in GNE myopathy. Biopsy of

unaffected muscles typically does not show these characteristic

findings. In one patient described by Nonaka, biopsy of the

relatively spared vastus medialis muscle showed only minimal

fiber size variation and only a few fibers with acid phosphatase

positive cytoplasmic spots.

Biomarkers

There has been research interest into a number of

potential biomarkers for GNE myopathy. A reliable biomarker

is of value both for the purposes of diagnosis as well as

evaluating response to potential treatments, possibly reducing

the need for serial muscle biopsies. Sialylation of blood-based

glycans is one such biomarker that has been recently studied.

Leoyklang et al. studied the sialylation of plasma O-glycan

species in GNE myopathy patients and found that those

with GNE myopathy had a significantly higher proportion of

unsialylated vs. sialylated species in comparison to healthy

controls (43). This was measured by assessing the unsialylated

Thomsen-Friedenreich (T) antigens compared to the sialylated

(ST) antigens. All GNE myopathy patients had an increased

T/ST ratio.

Sialylation of other molecules has also been shown to be

a potential diagnostic marker. Valles-Ayoub et al. looked at

sialylation of neural crest cell adhesion molecules (NCAM), and

found that NCAM was hyposialylated in patients with GNE

myopathy (44). NCAMs are thought to play a role in myogenesis

and neuromuscular development, making them a relevant

target. One challenge in prior investigations is that the majority

of serum proteins are secreted from hepatocytes and may not

accurately represent sialylation of muscle-related components.

Muscle imaging has also been proposed as a potential

biomarker. Liu et al. used MRI and proton maGNEtic resonance

imaging (H-MRS) among GNE myopathy patients representing

a wide range of disease progression (45). They found that

quantitative and qualitative muscle imaging with MRI and H-

MRS is a useful, non-invasive approach to characterize and

monitor disease progression.

There may also be a potential use for lectins in quantifying

sialylation levels. Lectins are proteins which bind sugars,

and specific lectins bind specific carbohydrate sequences.

Certain lectins bind to sialic acid. Others bind to desialylated

carbohydrate sequences which could potentially be used to

demonstrate hyposialylation in patients with GNE myopathy.

Studies so far have focused on lectin characterization in muscle

tissue via fluorescent staining and have shown promise as

potential biomarkers (46, 47).

Genetics

GNE myopathy follows an autosomal recessive inheritance

pattern. The majority of affected individuals are compound

heterozygotes, particularly in locations where there is not

a single dominant mutation. 21 out of 26 patients in the

British Isles cohort were found to be compound heterozygotes

despite the presence of two commonly occurring mutations in

that region. Pathogenic GNE mutations are most commonly

missense mutations, though nonsense, insertions, deletions,

intronic variants and splice site mutations have also been

reported (21, 48). There have been over 200 reported pathogenic

mutations in the GNE gene besides the known founder

mutations (3). The majority of pathogenic GNE gene mutations

are sporadic or involving a few families, though some mutations

recur frequently in certain populations (40).

The GNE gene is located on chromosome 9p12-13 and

contains 13 exons (40). There are at least eight GNE mRNA

splice variants, the largest of which are referred to as the

hGNE1 and hGNE2 isoforms. hGNE1 was the isoform initially

described, and covers 722 amino acids. The hGNE2 isoform

covers 753 amino acids (49). Therefore, there is a discrepancy of

31 amino acids between the previously accepted nomenclature

and the updated nomenclature, as recommended by an

international consortium on the subject in 2014. For example,

the so-called Middle Eastern variant affecting the Iranian-

Jewish population was previously referred to as the p.M712T

variant, but is now known as the p.M743T variant. Likewise, the

Japanese variant previously referred to as the p.V572L variant

is now known as the p.V603L variant. This difference of 31

base pairs represents the discovery of the additional N-terminal

sequence (50).

In mice, it has been observed that complete deletion of the

GNE gene is not survivable (51), and no patients have been

identified with complete gene knockout (52). This suggests that

GNE plays an essential role in early development. GNE is active

in themuscle, though rodent studies have shown that the highest

GNE expression is in other tissues including liver, brain, lung,

and kidney (53). Perhaps surprising considering the purported

pathogenic mechanisms, these tissues are not affected in patients

with GNE myopathy (21). GNE gene expression is found in

high levels in immature myoblasts, with lower levels found in

mature skeletal muscle (54). The expression of GNE is increased

in damaged and regenerating muscle fibers. Though typically

found in the cytoplasm, the GNE protein has been found to

be significantly translocated from the cytoplasm to the nucleus

in regenerating muscle fibers which may suggest a change

in functioning of the GNE protein through the regeneration

process (55).

As the GNE protein is bifunctional containing both kinase

and epimerase functions, mutations may affect either of these

domains. For example, the p.M743T mutation affects the kinase
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domain, and the p.D207V mutation affects the epimerase

domain. Functionally however, an abnormality in one domain

has been shown to also affect the other domain (31).

Etiology

GNE myopathy has been thought to be related to

sialic acid. The GNE gene product plays an important

role in the biosynthesis of sialic acid. It catalyzes the

first two steps in the pathway of sialic acid production.

The GNE gene encodes both UDP-N-acetylglucosamine

(GlcNAc) and 2-epimerase/N-acetylmannosamine (ManNAc)

kinase, constituting both portions of the enzyme. GlcNAc

epimerase catalyzes the production of ManNac from UDP-

GlcNAc, and ManNac kinase catalyzes the production of

ManNAc-6-P from ManNac. These reactions represent

the rate-limiting initial two steps in the production of N-

acetylneuraminic acid (Neu5Ac), also known as sialic acid

(Figure 1).

GNE protein levels may not directly correlate with disease.

Krause et al., using immunofluorescence detection of the GNE

protein, observed that the GNE protein is expressed at the

same levels in GNE patients and it is in normal controls (56).

Therefore, it is thought that the disorder may be more related

to dysfunction of the GNE protein rather than the quantity.

GNE is expressed in all tissues, though it remains unclear as

to why skeletal muscle is affected and other tissues are not,

though mouse models have shown significant disease in other

tissues (57).

The relationship between sialic acid levels and GNE

myopathy may not be a simple one either. Sialic acid has been

found to be reduced in some studies. An early observation

indicated reduction of sialic acid levels in one Japanese patient

(58). Additional work on fibroblast and myocyte cultures of

GNE patients showed the reduction to be as much as a

60–75% in comparison to normal (59). Sialylation appeared

to be restored when cells were fed ManNAc or sialic acid.

Salama et al. observed that myoblasts derived from patients

with homozygous epimerase domain mutations resulted in

significantly reduced membrane-bound sialic acid, though

homozygous kinase domain or compound mutations did not

have the same effect. This may indicate that dysfunction of

either the epimerase or kinase component of the enzyme, though

expected to have the same effect, may not equally affect the

overall sialylation in muscle cells. Additionally, sialic acid levels

in normal control subjects have a broad range. Sialic acid levels

were assessed in cultured muscle fibers which showed overlap

in levels between cells from affected individuals and normal

controls (60).

Role of sialic acid

Sialic acids are monosaccharides attached to the terminus

of cell surface glucoconjugates, where they have an important

role in cellular recognition and adhesion, regulate glycoprotein

stability, and may function in wound healing (7, 51, 60). They

also play a role in tumor formation, progression, and metastasis

(61). They act as ligands for cellular receptors or other intrinsic

protein receptors found in the body, as well as those of extrinsic

viruses and other toxins (62). Sialic acids are involved in

fertilization and embryogenesis, and though it is known that

GNE gene knockout in mice is not survivable, the mechanism

as to why this is the case is not known (51).

Sialic acid is also important for platelet function.

Thrombocytopenia appears to be related to desialylation

of platelets causing subsequent platelet destruction. Sørensen

et al. demonstrated that this platelet clearance is a result

of asialoglycoprotein receptor-expressing scavenger cells

(63). This is the same mechanism which appears to cause

thrombocytopenia in patients with sepsis. Under normal

conditions, platelets gradually lose surface sialic acid over time

as a result of sialidases. Interestingly, oseltamivir has been

shown in case reports to increase platelet counts in patients

with immune thrombocytopenia, likely as a result of its role

as a sialidase inhibitor and thus decreasing the clearance of

platelets (64). As detailed above, there is increasing evidence of

a relationship between GNE myopathy and thrombocytopenia.

Sialic acid is also implicated in other disorders, though

these result in an excess rather than a deficiency of sialic acid.

One disorder of sialic acid production also associated with

mutations in the GNE gene is known as sialuria. In normal

conditions, the allosteric site of GNE epimerase is inhibited

by sialic acid acting as a feedback inhibition mechanism.

Sialuria is an autosomal dominant condition characterized

by excess cytoplasmic accumulation of free sialic acid due

to dysfunction of this feedback inhibition (65). This is a

very rare disorder characterized by intellectual disability and

hepatomegaly. The sialidoses are another group of disorders that

result in the accumulation of intralysosomal sialic acid resulting

from the inability to remove sialic acids from glucoconjugates by

dysfunctional lysosomal sialidase (66).

It is not entirely clear if the disruption of the known

functions of sialic acid explains the extent of muscle disease in

GNE myopathy. As the role of sialic acid and how it relates

to myopathy is uncertain, additional mechanisms have also

been considered. Sialic acid plays a role in proliferation, so one

consideration is that reduced sialic acid may induce muscle

fiber apoptosis. Singh and Arya showed in a cell-based model

that cells with GNE mutations had defective cell proliferation.

These GNE mutant cells were also found to have abnormal

mitochondrial structural changes and transmembrane potential
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FIGURE 1

Sialic acid biosynthesis pathway. The biosynthesis of sialic acid in the cell. Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), a

metabolite of the glycolytic and hexosamine pathways, is epimerized to N-Acetylmannosamine (ManNAc) and then phosphorylated to

N-Acetylmannosamine-6-phosphate (ManNAc-6-P) by sequential components of the GNE enzyme, representing the two rate-limiting steps in

the production of sialic acid. In the nucleus, sialic acid is further metabolized into the active form of sialic acid, cytidine-5’-monophosphate

N-acetylneuraminic acid (CMP-sialic acid) and then added to glycoproteins in the Golgi during the process of sialylation. CMP-sialic acid also

provides feedback inhibition of UDP-GlcNAc 2-epimerase.

alterations suggesting a mitochondria-dependent cell apoptosis

mechanism (67).

GNE myopathy is also known to be associated with the

accumulation of amyloid β-peptide (Aβ) in muscle cells. Bosch-

Morató et al. proposed a disease mechanism where amyloidosis

may be the result of hyposialylation, ultimately resulting in

muscle fiber apoptosis in GNE myopathy (52). Hyposialylated

myoblasts were found to have significantly increased uptake

of extracellular Aβ1-42. The Aβ1-42 uptake was subsequently

prevented when these cells were resialylated. The mechanism of

amyloid β-peptide endocytosis was found to be clathrin based

when due to hyposialylation, as opposed to caveolin based,

another known mechanism of amyloid β-peptide endocytosis.

Treatment trials

There have been a number of therapeutic trials in GNE

myopathy, though there remains no approved treatment at this

time. Trials have focused on increasing sialic acid as well as

immunomodulatory therapy.

A trial looking at the efficacy of IVIg in 2007 showed

mixed results. In this case, IVIg was investigated for its

potential to provide sialic acid (68). Four patients were

treated with IVIg with a loading dose followed by 3 weekly

maintenance infusions. There were some gains noted in

strength, though objective testing was less definitive. For

example, grip strength improved an average of 5% by the

end of the study, matching the improvement seen in tongue

strength, which is not thought to be affected in GNE

myopathy. Additionally, muscle biopsy did not show evidence

of increased sialylation in muscle tissue after the course

of IVIg.

Other potential therapies have focused on the production

of sialic acid. Results from mouse studies have indicated that

ManNAc may be a promising treatment. One such study by

Galeano et al. published in 2007 included mice homozygous

for the M743T mutation. Mice given oral ManNAc showed

increased survival as well as increased GNE protein expression,

as well as increased sialylation of NCAM and podocalyxin

(69). Another mouse model study in 2009 showed significant

improvement in strength, prevention of atrophy, reduction in

amyloid deposits and rimmed vacuoles among other markers

(70). Additionally, it was shown that administration of a

precursor of ManNAc known as peracetylated ManNac, or

tetra-O-acetyl-N-acetylmannosamine (Ac4ManNAc) increased

sialylation and improved strength in mice. Sialyllactose has also

been studied for use as a potential treatment and was included

in this study as well and produced similar results. Sialyllactose is

a conjugated sialic acid which is broken down in the lysosome to
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release free sialic acid. Further mouse model studies reinforced

these results, showing increased sialic acid levels in the blood,

as well as recovery of muscle size to the levels of wild type

mice and improvement of rimmed vacuoles and amyloid on

biopsy (71).

Sialic acid and its precursors then became a focus of

potential therapies in humans. A phase 2 clinical trial in

2012 investigated the use of a sialic acid precursor in patients

with GNE myopathy. An extended-release form of free sialic

acid N-Acetylneuraminic acid (Neu5Ac) was used due to the

rapid clearance of free sialic acid. Administration of this

extended-release form appeared to demonstrate significant

improvement in upper extremity composite strength (72).

However, the subsequent phase 3 trial did not reproduce these

findings (73).

ManNAc is being studied for use in humans with GNE

myopathy. The phase 1 ManNAc trial showed a prolonged

increase in plasma Neu5Ac levels (74). This may seem

unexpected in consideration of the known sialic acid

biosynthesis pathway in which ManNAc must be further

catalyzed by ManNAc kinase, the very enzyme known

to be dysfunctional in GNE myopathy. This increase in

Neu5Ac was even found among patients homozygous

for kinase domain mutations. This may be at least in

part related to the action of GlcNAc kinase having some

ability to phosphorylate ManNAc. Also, it appears that

the ManNAc given by supplementation is not affected by

feedback inhibition.

The phase 2 clinical trial of ManNAc in GNE myopathy

started in 2015 and published in 2021. This trial demonstrated

safety and tolerability of ManNAc, as well as indicating a slower

rate of decline in both upper and lower extremity strength, as

well as increased plasma sialic acid (Neu5Ac) and sarcolemmal

sialylation (75). A multi-center study of ManNAc for GNE

myopathy has just started (NCT04231266).

As GNE myopathy is a genetic condition, gene therapy

has been an area of interest as a potential treatment. The

GNE gene was prepared as a lipoplex and administered

to one patient intravenously every 60 days for a total of

7 doses. It appeared to be well tolerated, and appeared to

show stability or modest improvement (76). Aside from

this single case of compassionate use of an investigational

treatment, gene therapy has not been investigated in

GNE myopathy.

Future directions

Some aspects of GNE myopathy may benefit from further

study (Table 3). Certain aspects relating to pathogenesis

and disease characteristics may still be of value to our

understanding of the disease and for potential treatments.

For instance, the animal models of GNEM do not have

TABLE 3 Areas for future study—Unmet needs in GNE myopathy.

• Lack of phenotypically appropriate animal model

• Reliable antibodies to GNE protein not available

• Doubts about whether hyposialylation is the causative mechanism

• Lack of reliable biomarkers (MRI vs. lectin staining vs. biochemical serum

markers)

• Resolution of common and difficult to interpret variants of unknown

significance

• Need for better assays to measure GNE enzymatic function

a reliable muscle phenotype. The knock-in mouse models

showed glomerular disease that is not seen in human

models as well as neonatal death unless treated with sialic

acid increasing therapy (69). Gne(−/−)hGNED207V-transgenic

mice showed early involvement of the gastrocnemius and

quadriceps muscles in mice which is usually a late finding in

humans (70).

There is a dearth of validated antibodies to GNE to help

detection of the protein in tissues. The reasons underlying the

relative sparing of the quadriceps muscles remains unknown.

If the factors responsible for this sparing could be identified,

then perhaps these factors may give insight into potential

treatments. The role of sialic acid in disease pathogenesis is

still not entirely clear. At the least, there does not appear

to be a direct correlation of muscle disease with GNE gene

expression or sialic acid levels. There may be more complex

factors involved.

The search for adequate biomarkers is currently an area of

ongoing study. Reliable biomarkers are essential in determining

response to a potential treatment. GNE myopathy trials

have often relied on motor strength assessments, muscle

biopsy features, and patient-reported outcomes. An appropriate

biomarker may ideally allow for a more objective response to

treatment monitoring and may also aid in diagnosis.

Gene therapy remains another area of interest. This mode of

treatment does have risks however, including immune responses

and malignancy (77). The death of a participant in a gene

therapy trial for ornithine transcarbamylase deficiency in 1999

due to immune response, as well as the uncertainty regarding

these treatments resulted in a cautious approach for many

years. The Food and Drug Administration has only recently

approved gene therapy treatments for other conditions since

2017. Recombinant adeno-associated viruses (rAAV) have often

been studied as gene delivery vectors. AAV8 was found in a

mouse model study to be able to deliver the GNE gene to muscle

cells and appeared safe and efficient (78). It should be noted

that a significant number of people have antibodies to AAV8

(79). There were four recent unfortunate deaths in a trial using

the AAV8 vector for gene delivery in myotubular myopathy

(80, 81). At least three of these deaths appear to be related to
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liver dysfunction. Other AAV vectors are being used in gene

therapy treatment for Duchenne muscular dystrophy and spinal

muscular atrophy.

Conclusion

From the initial descriptions of what would be later named

GNE myopathy, to the genetic characterization and more recent

treatment trials, there has been substantial advancement in the

understanding of this disorder. Despite these advances however,

unanswered questions remain. As of yet there is no approved

disease-modifying treatment. Management continues to focus

on supportive therapies. Several features of this disorder have

not yet been fully explained, including why the quadriceps and

other organs are spared despite the ubiquity of the GNE gene, as

well as a full understanding of the role of sialic acid in the disease

process. GNEmyopathy is still likely underdiagnosed. Improved

awareness and better access to appropriate testing is likely to

identify more affected patients. Ideally, as more is understood

about this disorder over time, a viable treatment may be found.
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