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Background and purpose: Impaired upper extremity (UE) motor function is a

common disability after ischemic stroke. Exposure to extremely low frequency

and low intensity electromagnetic fields (ELF-EMF) in a frequency-specific

manner (Electromagnetic Network Targeting Field therapy; ENTF therapy) is

a non-invasive method available to a wide range of patients that may enhance

neuroplasticity, potentially facilitating motor recovery. This study seeks to

quantify the benefit of the ENTF therapy on UE motor function in a subacute

ischemic stroke population.

Methods: In a randomized, sham-controlled, double-blind trial, ischemic

stroke patients in the subacute phase with moderately to severely impaired UE

function were randomly allocated to active or sham treatment with a novel,

non-invasive, brain computer interface-based, extremely low frequency and

low intensity ENTF therapy (1–100Hz, <1G). Participants received 40min of

active ENTF or sham treatment 5 days/week for 8 weeks;∼three out of the five

treatments were accompanied by 10min of concurrent physical/occupational

therapy. Primary e�cacy outcome was improvement on the Fugl-Meyer

Assessment – Upper Extremity (FMA-UE) from baseline to end of treatment

(8 weeks).

Results: In the per protocol set (13 ENTF and 8 sham participants), mean age

was 54.7 years (±15.0), 19% were female, baseline FMA-UE score was 23.7

(±11.0), and median time from stroke onset to first stimulation was 11 days

(interquartile range (IQR) 8–15). Greater improvement on the FMA-UE from

baseline to week 4 was seen with ENTF compared to sham stimulation, 23.2

± 14.1 vs. 9.6 ± 9.0, p = 0.007; baseline to week 8 improvement was 31.5 ±

10.7 vs. 23.1± 14.1. Similar favorable e�ects at week 8 were observed for other

UE and global disability assessments, including the Action Research Arm Test
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(Pinch, 13.4 ± 5.6 vs. 5.3 ± 6.5, p = 0.008), Box and Blocks Test (a�ected hand,

22.5± 12.4 vs. 8.5± 8.6, p < 0.0001), andmodified Rankin Scale (−2.5± 0.7 vs.

−1.3 ± 0.7, p = 0.0005). No treatment-related adverse events were reported.

Conclusions: ENTF stimulation in subacute ischemic stroke patients was

associatedwith improvedUEmotor function and reduced overall disability, and

results support its safe use in the indicated population. These results should be

confirmed in larger multicenter studies.

Clinical trial registration: https://clinicaltrials.gov/ct2/show/NCT04039178,

identifier: NCT04039178.

KEYWORDS

ischemic stroke, ELF-EMF, ENTF, neurostimulation, NIBS, magnetic field therapy,

upper extremity motor function, neurorecovery

Introduction

Stroke is a leading cause of adult disability worldwide (1–

3). While early reperfusion interventions improve outcomes (4),

they are delivered to a small proportion of patients, leaving

many stroke survivors with residual disabilities, impairments

and dependency on others. This is accompanied by a large

economic burden on both a personal and societal level, as a

result of direct medical cost, as well as indirect costs due to

underemployment and premature death (5).

Beyond the acute phase, standard of care focuses on

rehabilitation through a coordinated effort of medical, social,

educational, and vocational approaches to retrain an individual

with newly acquired disabilities (6). Effective rehabilitation

programs employ highly intensive and repetitive physical

therapy to enhance neurologic recovery (7), possibly via

direct influence on functional reorganization in the brain (i.e.,

plasticity). However, there is considerable variability among

facilities in the implementation of therapeutic approaches that

maximize functional recovery (8–11). Further, despite receiving

standard rehabilitation care, many patients are left with lifelong

disabilities and impairments, never returning to their pre-stroke

ability level. For such people, one of the most common and

persistent disabling symptoms is hemiparesis and upper limb

motor impairment (12–14).

In the subacute post-stroke phase, and in response

to both the initial, primary injury and the ensuing

secondary injury cascade, the central nervous system (CNS)

attempts to repair and reorganize itself via the secretion

of survival-promoting agents (such as growth factors and

anti-inflammatory cytokines), recovering damaged networks,

and sprouting collateral synaptic connections to restore

motor and cognitive functions (15–18). In preclinical models,

neuroplasticity can be altered by external factors, including

pharmacologic agents, electrical stimulation, and environmental

stimulation (18).

Non-invasive brain stimulation (NIBS) techniques have

demonstrated the capacity to enhance neuroplasticity in

preclinical models, and have shown evidence suggestive of

recovery in clinical trials (19–21). NIBS methods include

repetitive transcranial magnetic stimulation (rTMS; (22)),

transcranial direct current stimulation (tDCS; (23)), vagal nerve

stimulation (24), and extremely low frequency, low intensity

electromagnetic fields (ELF-EMF). While many such methods

have been used with relative success, the limited applicability

and strict usability requirements are such that none have yet to

qualify as a standard of care treatment. ELF-EMF is a promising

noninvasive therapeutic technique for post-stroke care, shown

in preclinical studies to exert a beneficial effect on many

of the cellular processes that modulate damage and recovery

post-stroke, including calcium signaling, oxidative stress, and

inflammatory response (25, 26). In a randomized clinical trial,

ELF-EMF in the subacute post-stroke period was associated

with increased enzymatic antioxidant activity, reduced oxidative

stress, and improved performance on standardized assessments

of activities of daily living, cognition, and mood (27, 28).

Accordingly, and due to its relative safety and wide range of

applicability, ELF-EMF treatment in the subacute phase may be

a viable post-stroke therapy.

A novel ELF-EMF technique is a non-invasive, brain

computer interface-based (BCI-based), low frequency, low

intensity, frequency-tuned EMF therapy (Electromagnetic

Network Targeting Field therapy; ENTF therapy), designed

to expose impaired neuronal networks to oscillating fields

similar to those of the CNS, in an effort to promote network

reorganization post-injury. The human brain is organized into

complex functional networks (29); healthy activity in the CNS

results from the synchronization of thousands of individual

neurons in the form of sophisticated and organized oscillations.

These synchronous global oscillations within specific frequency

bands represent functionally connected neural networks, which

generate electrical activity measurable with electrophysiological
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techniques, and are a fundamental part of the functionality

of the brain (30, 31). These oscillatory patterns are correlated

with cognitive states, motor functions, and electrophysiological

activity both within and beyond the CNS. Changes in these

patterns have been observed following ischemic stroke, and after

other nervous system disorders like traumatic brain injury (31–

33).

Neural network dynamics are sensitive to endogenous

(34, 35) and exogenous electric and magnetic fields at

specific frequencies (35–37), and oscillating ELF-EMF fields

are hypothesized to promote the return of synchronization

and network reorganization within the targeted networks.

The motivation behind the present study (BQ3) is the

possibility that ELF-EMF exposures can specifically target

these impaired networks by exposing such networks to

oscillating fields similar to those that characterize a healthy

CNS, in order to promote network reorganization post-

injury. The treatment protocol is based upon the most

prominent frequencies of these motor-related oscillations,

extracted using advanced machine learning algorithms from

electrophysiological recordings of large populations of healthy

and impaired individuals performing motor tasks (35).

In a preclinical rodent stroke model, oscillating ELF-EMF

stimulation was associated with decreased edema, increased

white matter integrity, and evidence of neural regeneration (38).

Additionally, initial data from ongoing preclinical collaborative

studies (unpublished) using this technique indicate changes

in measures of oxidative stress, inflammation, and cell death.

Overall, data suggest that such treatment targets cellular

pathways comprising functional neural networks, promotes

neural plasticity, and modulates the secondary injury cascade,

all of which aid clinical recovery.

Accordingly, a pilot randomized, double-blind, sham-

controlled trial of a BCI-based, low frequency, low intensity,

frequency-tuned ENTF therapy to improve upper extremity

motor function and reduce disability in subacute post-stroke

patients was designed and executed. Greater improvement in

upper extremity motor function is expected in individuals who

receive ENTF treatment, as compared to those in the sham

control group.

Materials and methods

Study design and participants

This study, the BQ3 trial (NCT04039178), was a prospective,

randomized, double-blind, sham-controlled study. See

Supplementary Table S1 for full study entry criteria.

The trial was conducted at the BLK Super Specialty Hospital,

New Delhi, India, a multi-specialty private hospital accredited

by the Joint Commission International. Study operations were

overseen by JSS Medical Research, an international, full-service

contract research organization. The hospital institutional review

board provided ethics approval, and written informed consent

was obtained from all participants.

The main inclusion criteria for this study were: patients 4–

21 days post-ischemic stroke with first stroke or no prior upper

extremity impairment, right hand dominant, with a Fugl-Meyer

Assessment – Upper Extremity (FMA-UE) score between 10 and

45. Patients were also screened for their ability to participate

in the treatment procedures based on their ability to be seated

for 70 consecutive minutes, and follow a three-step command.

Patients who were not medically stable, with a physiological,

neurological, or psychiatric history that might confound study

measures, or contraindications for MRI scanning were not

considered for this study.

Randomization and blinding

The study was planned for 50 participants, the first four of

whom would be assigned directly to the treatment group (run-

in phase). The remaining 46 participants were to be randomly

assigned to active ENTF or sham stimulation (randomized

phase) in a 1:1 ratio (block randomization; SAS-generated), by

an individual not otherwise associated with the study. After

determining group allocation, the individual keyed in group

assignment to the device (required only once per participant).

Participants and study staff were not aware of group assignment.

The device does not produce any perceptible light, sound,

or sensation during the ELF-EMF activity; sham stimulation

consists of the same general treatment flow, but with the

wave generator inactive during the session, and as governed

by the group assignment saved for each participant within the

device. Thus, experience with the BQ device during sessions

was the same irrespective of group assignment, allowing for

proper blinding.

Materials

Treatment was administered with a proprietary BCI-

based stimulation device (BQ 1.0; BrainQ Technologies Ltd.,

Jerusalem, Israel; product manual available upon request),

exposing the entire brain and the cervical and upper thoracic

portion of the spinal cord to the ENTF. The device technology

uses machine learning algorithms (Python, 3.6) to identify high

resolution spectral patterns that characterize motor functions

within EEG measurements recorded during functional motor

tasks. For this custom-made algorithm, EEG data from healthy

and unhealthy individuals was collected while executing discreet

motor tasks. A novel normalization technique was used to

reduce inter-subject variability. Machine learning models were

used to differentiate between healthy and unhealthy data traces.

The explanatory features used by these models to generate
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their decisions were then used to inform a non-invasive and

frequency-specific, extremely low frequency (1–100Hz), low

intensity (<1 Gauss) electromagnetic field treatment applied to

a participant’s CNS, delivered via a magnetic coil. The device

emitted ELF-EMF only for participants in the ENTF group but

not for those in the sham group.

Procedure

ENTF or sham therapy was provided 5 days a week

for ∼8 weeks, for a total of 40 treatment sessions. During

each treatment session, participants received 40minutes of

treatment with the BQ device (active or sham). During ∼3

weekly sessions, concurrent with the ENTF or sham therapy,

participants performed 10minutes of upper extremity physical

therapy/occupational therapy-based exercises (e.g., gripping a

ball, reaching) with the guidance of a therapist. Separate

from the treatment sessions, participants also received ∼1 h of

physical therapy per day throughout their participation as part

of the hospital’s standard clinical regimen.

Outcome measures

The primary clinical efficacy outcome was change in upper

extremity motor function from baseline to end of treatment

(week 8), measured with the FMA-UE, a performance-based

impairment index designed to assess motor function, balance,

sensation and joint function in patients with post-stroke

hemiparesis (39, 40). FMA-UE was assessed throughout the

course of treatment at baseline, week 4, week 8 and week 12.

However, due to early trial closure because of the COVID-19

pandemic, follow-up assessments at week 12 were not completed

for many participants (available data for <80%), so analyses

included only changes at week 4 and week 8.

Secondary clinical efficacy outcomes were: Action Research

Arm Test [ARAT, coordination, dexterity, and function (41)];

Box & Blocks Test [BBT, gross manual dexterity (42)];

Fugl-Meyer Assessment – Lower Extremity (FMA-LE) (39,

40); modified Rankin Scale (mRS) of global disability (43);

National Institutes of Health Stroke Scale [NIHSS, stroke-

related neurological deficit (44)]; Patient-Reported Outcome

Measurement Information System Global 10 [PROMIS-10,

patient-reported assessment of global health and quality of

life (45)]. Notably, some prespecified outcome measures

were not analyzed due to <80% valid data. These include:

cognitive measures [Trail Making Test (46); Montreal Cognitive

Assessment (47)], as they were administered in English, which

was not most participants’ primary language; imaging (MRI),

because of variability in scan parameters due to use of multiple

scanners; and blood biomarkers, as some growth factors were

out of the detection range for many subjects (28, 48). EEG

was collected as an additional, exploratory endpoint, and was

analyzed separately from the clinical results; these results are

reported elsewhere (49).

The primary safety outcome was adverse events during the

trial period.

Statistical analyses

Statistical analyses were conducted with SAS V9.4 (SAS

Institute, Cary NC, USA). For behavioral outcomes, continuous

variables were generally summarized by mean and standard

deviation (SD), and categorical variables by percentage. Changes

from baseline in continuous outcomes were analyzed by analysis

of variance (ANOVA) or repeated measures ANOVA (SAS

PROC MIXED), with each outcome modeled as a function of

treatment group; if >1 post-baseline visit, each outcome was

also modeled as a function of visit, as well as the treatment

group∗visit interaction. Baseline value for the respective

outcome was entered as a covariate to adjust for variation in

baseline score between the groups. LSmeans (model estimated

means) per group and the differences between the groups

were estimated from the models, along with respective levels

of significance. If >1 post-baseline visit, then the treatment

group∗visit interaction term was the parameter of interest, and

the LSmeans per group, as well as the differences between the

groups at each visit, were estimated from the models, along

with respective levels of significance. Continuous demographic

and baseline data were compared between the groups with a

Wilcoxon two-sample test. Categorical variables were compared

using Fisher’s exact test when the response was binary, and with

a Cochran Armitage trend test when the response was ranked

(e.g., mRS). Nominal two-sided p values are presented without

post-hoc testing to correct for multiple comparisons given that

this was a pilot study.

As a pilot study, sample size justification was formulated

based on the literature regarding the study’s primary outcome,

as well as the treatment characteristics of the target population

(50). The sample size calculation assumed 80% power, a 5-

point difference between groups on the FMA-UE, and a SD

of 6, resulting in a study with 46 participants. The study was

designed to include 46 randomized participants, preceded by 4

treatment-only run-in participants, for a total sample size of 50.

The prespecified primary analysis set for efficacy evaluation

was the per protocol (PP) set, defined as all participants who

were randomized and participated in 80% of the treatment

visits, were not absent for more than 5 consecutive visits, and

completed the week 8 outcome evaluation; the PP set consisted

of 8 participants allocated to sham stimulation, and 13 to ENTF

stimulation. Participant characteristics were evaluated in the

intention to treat (ITT) analysis set, defined as all randomized

participants who completed at least one treatment session (sham

or active); the ITT set consisted of 9 sham and 15 ENTF
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FIGURE 1

Participant study flow diagram.

participants. The as treated (AT) safety set, defined as all

participants (including the n=4 treatment-only run-ins) who

received at least one treatment session, consisted of 9 sham and

19 ENTF participants.

Results

The study was conducted between first enrollment on

December 11, 2018 and final study visit on March 21, 2020. As

emergence of the COVID-19 pandemic precluded continuation

of study operations, the study was discontinued early, and data

was analyzed after enrollment of 4 run-in and 24 randomized

participants. Participant study flow diagram is shown in

Figure 1.

Participant baseline characteristics in the PP set are shown in

Table 1. Participant characteristics were generally well balanced

across the treatment groups. Participant baseline characteristics

in the ITT and the AT safety sets were similar to the PP set

(Supplementary Tables S2, S3).

E�cacy outcomes

For FMA-UE (primary clinical efficacy outcome measure),

performance score improvements were greater in the ENTF

compared to the sham group throughout treatment, both

at week 4 (p = 0.007) and week 8 (Table 2; Figure 2).

In terms of absolute numerical values, a ceiling effect was

noted at week 8. In the active stimulation group, 77%

of participants attained scores in the top 10% of the

scale, including 46% receiving the highest score (66/66).

By comparison, only 38% of the sham group attained

scores in the top 10% and no participants attained the

highest score.
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TABLE 1 Participant demographics*.

Sham Group (n = 8) ENTF Group (n = 13) Total (n = 21)

Age, yrs, mean (±SD) 55.3 (±10.1) 54.3 (±17.8) 54.7 (±15.0)

Sex, female (%) 25% 15% 19%

Race-Ethnicity, South-Asian (%) 100% 100% 100%

Hand dominance, right (%) 100% 100% 100%

Affected hand, right (%) 63% 38% 48%

Time from stroke onset to first treatment,

days, median (IQR)

14.0 (10.8–16.0) 9.0 (7.0–14.0) 11.0 (8.0–15.0)

FMA-UE Baseline, mean (±SD) 18.8 (±8.7) 26.8 (±11.5) 23.7 (±11.0)

mRS Baseline, mean (±SD) 3.4 (±0.7) 3.6 (±0.5) 3.5 (±0.6)

*No significant differences were noted between groups at baseline.

Score changes for secondary efficacy outcomes related

to motor function generally reflect greater improvement

for ENTF compared with sham control, with limited

exception (Table 2). Specifically, greater improvement for

ENTF was found for the ARAT total score (Figure 3A) and

three out of four of the ARAT subscales, most notably,

the Pinch subscale (p = 0.008, Figure 3B). Significantly

greater improvement was also seen on the BBT in the

affected hand (week 6: p = 0.02; week 8: p < 0.0001,

Figure 3C); the non-affected hand also showed greater

improvement in the ENTF group. Significantly greater

improvement was also seen in the FMA-LE scores changes

(Table 2).

In addition, both mRS and NIHSS scores showed greater

improvement for the ENTF group. On the mRS, the ENTF

group showed significantly greater reduction in degree of

disability between baseline and week 8; −2.5 ± 0.7 vs. −1.3

± 0.5, p = 0.0005. Notably, 92% of participants in the

ENTF group improved by at least two points compared to

only 25% in the sham group (Figure 4A). By week 8, 77%

of participants in the ENTF group vs. 25% in the sham

group had an mRS score of 1 or 0, indicative of little

to no residual disability (Figure 4B). In contrast, patient-

reported efficacy outcomes related to generic health-related

quality of life (PROMIS-10) did not show a difference

in degree of improvement between treatment groups. A

descriptive table of raw scores for each of the analyzed clinical

outcome measures at all assessment time points is included in

Supplementary Table S4.

Safety outcomes

Two adverse events (AEs) were reported, neither related to

the ENTF treatment. There were no device-related infections

or unexpected device-related adverse events. Additionally, there

were no complaints of discomfort during ENTF treatment.

Discussion

In this double-blind, randomized, sham-controlled trial,

frequency-tuned ELF-EMF stimulation with the BQ device,

or ENTF therapy, was associated with enhanced recovery of

upper extremity function when initiated in the subacute period

and continued for 2 months as compared to sham control.

Beneficial results were evident not only for the primary outcome

measure (FMA-UE), but also for several other measures of upper

extremity function, including the BBT (manual dexterity) and

the ARAT (coordination, dexterity, and function). Moreover,

ELF-EMF treatment was associated with a greater reduction of

global disability in daily activities (mRS). In addition, there was

no evidence of safety concerns, and there were no participant

complaints of discomfort during treatment.

There was an indication of beneficial effect on lower

extremity function in addition to upper extremity function,

suggesting a general enhancement of motor function beyond

the upper extremity. In contrast, ENTF stimulation was not

associated with benefit on a generic measure of mental

and physical health-related quality of life. Indeed as the

intervention in this study was specifically designed to target

motor impairment, it cannot be assumed that generic physical

and mental health measures would show differential benefits

between the two groups. Still, it should be noted that these were

subjective patient-reported ratings.

The magnitude of benefit of ENTF treatment was robust and

clinically meaningful across multiple metrics of upper extremity

motor function, and especially the FMA-UE (51, 52). Further,

the reduction of global disability as assessed by themRS supports

a strong positive effect on overall functioning. The substantial

difference in outcomes between active and sham-treated groups

was not related to unusually poor performance in the control

arm. The degree of improvement on the FMA-UE in the control

group was typical of those in prior natural history studies (51,

52). Similarly, in terms of overall stroke disability, the degree

of improvement on the mRS in the control group was similar
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TABLE 2 E�cacy outcome measures*.

Sham group (n = 8) ENTF group (n = 13) Significance**

Primary outcome measure

FMA-UEWeek 4 9.6± 9.0 23.2± 14.1 0.007

FMA-UEWeek 8 23.1± 14.1 31.5± 10.7 0.06

Secondary outcome measures

mRSWeek 8 −1.3± 0.5 −2.5± 0.7 0.0005

ARAT Grasp, Week 8 8.1± 7.6 9.1± 6.8 0.15

ARAT Grip, Week 8 5.4± 4.1 6.8± 3.7 0.13

ARAT Pinch, Week 8 5.3± 6.5 13.4± 5.6 0.008

ARAT gross movement, Week 8 3.8± 2.1 2.8± 1.9 0.50

ARAT total score, Week 8 22.5± 17.1 32.1± 14.2 0.09

BBT (Affected hand), Week 2 0.5± 0.8 1.3± 1.7 0.07

BBT (Affected hand), Week 4 1.4± 1.5 6.8± 5.5 0.08

BBT (Affected hand), Week 6 3.3± 3.6 10.9± 7.1 0.02

BBT (Affected hand), Week 8 8.5± 8.6 22.5± 12.4 <0.0001

BBT (Non-affected hand), Week 2 2.9± 0.6 1.8± 2.0 0.04

BBT (Non-affected hand), Week 4 4.4± 2.1 9.0± 5.0 0.08

BBT (Non-affected hand), Week 6 7.8± 2.1 12.4± 5.4 0.08

BBT (Non-affected hand), Week 8 9.4± 3.9 18.4± 7.4 0.0003

FMA-LE, Week 8 9.9± 6.5 13.8± 7.8 0.03

NIHSS, Week 8 −4.8± 3.2 −6.6± 3.4 0.03

PROMIS-10

global physical health, Week 8

9.0± 5.2 11.0± 6.8 0.33

PROMIS-10

global mental health, Week 8

13.0± 7.2 14.7± 6.1 0.48

*All values represent change from baseline (mean±SD).

**From LSmean adjusted means.

to that in control groups in prior large trials and observational

studies (53–57).

EEG recordings (exploratory) of study participants reflected

a pattern of brain activity indicative of recovery exclusively

in the ENTF group (49). More specifically, the EEG results

are consistent with improvement in movement inhibition or

motor learning (58) as well as increased signal complexity, a

characteristic of healthy brain activity (59). In effect, the EEG

data provide evidence for a biomarker of recovery putatively

linked to plasticity (59) in the ENTF group but not in the

sham group.

At the neuronal level, given the continued degradation of

neurons in the days and weeks following a stroke, as well

as the secondary injury cascade whereby cells adjacent to

the site of injury continue to degrade (60), a non-invasive

treatment that targets affected cells and networks during this

critical time period and prevents further degradation has great

clinical utility, addressing a gap in subacute care options.

The most challenging question regarding the effect of ELF-

EMF on (neuronal) tissue is in identifying the transduction

mechanism by which the applied field and the biological

medium interact, achieving such effects. Although the exact

mechanism remains unknown, two different steps have to

be taken into account when contemplating the mechanism

of action of ELF-EMF: 1) the initial interaction between the

external magnetic field (MF) and the biological system and 2)

the cascade of biological events leading to the physiological/

behavioral effect seen in this as well as other studies, both human

and animal (61, 62).

Regarding the initial interaction step, there are two plausible

transduction mechanisms: electric currents inducing minor

changes in the conductive tissues (unlikely for intensities <1G

such as used in this study), and possible direct action of the MF

on endogenous magnetoreception (63). As for the cascade of

biological events that follow, it has been shown that ELF-EMF

effects are likely to involve a number of cellular targets such

as changes in intracellular Ca2+ signaling (64–69), elements

of the oxidative stress cascade (70, 71), nitric oxide (72, 73),

G-protein receptor coupling (74, 75), and the inflammatory

response (76, 77), to name a few. Some of these cellular targets

have been identified and described in the studies conducted

previously by members of this group, as well as by others in
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FIGURE 2

Fugl-Meyer Assessment – Upper Extremity (FMA-UE) score
changes from baseline to week 4 and week 8 (range: 0-66; 66 is
greatest mobility/optimal recovery). FMA-UE absolute score
change from baseline to week 4 (sample mean, error bars
correspond to SD; significance based on di�erence in LSmeans)
was significantly greater for the ENTF group than sham group
(23.2 ± 14.1 vs. 9.6 ± 9.0; p = 0.007; ** < 0.01). Absolute score
change from baseline to week 8 was also greater, though not
significantly so, for the ENTF group than sham group (31.5 ±

10.7 vs. 23.1 ± 14.1; p = 0.06).

the field, revealing a candidate for the cascade of events that

may ultimately give rise to the observed effects on the cellular,

network and behavioral levels.

For example, in human neuroblastoma and rat pituitary

cells, ELF-EMF exposure increases proliferation and inhibits

programmed cell death by up-regulating the expression of

voltage-gated Ca2+ (Cav) channels [5–1,000µT and frequencies

of 1–100Hz, (65)]. Additionally, it has been shown that ELF-

EMF increases generation and metabolism of nitric oxide (NO)

in poststroke patients, promoting cellular processes that support

neuroplasticity, and thusmay enhance post-stroke rehabilitation

(27). Furthermore, ELF-EMF exposure (50Hz, 1 mT, 1 to 7

h/day for 7 days) significantly enhanced neurogenesis in the

dentate gyrus (DG) of adult mice, as demonstrated by increased

numbers of cells double-labeled for BrdU and doublecortin (78).

Converging evidence has been obtained from within our

own rodent stroke study. While no adverse effects (e.g.,

abnormal changes in body weight) were observed, results

indicate that daily exposure to ENTF treatment (7.86Hz,

1G) over 8 weeks post-injury significantly improved the

Neurological Severity Score (NSS) in the treatment group.

Importantly, a significant increase in the number of BrdU

positive cells was found in the dentate gyrus, in addition to the

restoration of biomarkers indicative of healthy cortical tissue

in the injured parietal cortex of ENTF-treated mice. These

results further support the hypothesis that ENTF treatment

may promote neurogenesis (38). Additionally, in rats with

spinal cord injury, diffusion tensor imaging (DTI) revealed that

FIGURE 3

Evolution of upper extremity function secondary e�cacy
outcomes (sample mean; error bars correspond to SD;
significance based on di�erence in LSmeans). (A) Action
Research Arm Test (ARAT) total score from baseline to week 8
(absolute score change: ENTF group 32.1 ± 14.2 vs. sham group
22.5 ± 17.1, p = 0.09). (B) ARAT Pinch subscale score from
baseline to week 8 (absolute score change: ENTF 13.4 ± 5.6 vs.
sham 5.3 ± 6.5, p = 0.008; ** p < 0.01). (C) Box and Blocks Test
(BBT) a�ected hand scores from baseline through weeks 2, 4, 6
(absolute change score: ENTF 10.9 ± 7.1 vs. sham 3.3 ± 3.6, p =

0.02; *p < 0.05) and 8 (absolute change score: 22.5 ± 12.4 vs.
8.5 ± 8.6, p < 0.0001; ****p < 0.0001).

those receiving ENTF treatment showed evidence of structural

neuroplasticity, compared to the spinal cord degradation

observed in non-treated rats (61).

The substantial number of published studies clearly

demonstrate effects from cellular to physiological, and

consequently behavioral, suggesting a robust mechanism

of action mediating the effect of ELF-EMF on the brain.

The present results extend these findings to a clinical post-

stroke population, and demonstrate the effectiveness of

ENTF treatment in accelerating recovery in the subacute

phase post-stroke.

Importantly, the present results provide useful data on the

safety and feasibility of ENTF treatment as there were no
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FIGURE 4

Change in modified Rankin Scale (mRS) from baseline to week 8. (A) Individual participant trajectories from baseline to week 8, yielding greater
group reduction in disability severity in the ENTF compared to sham group, −2.5 ± 0.7 vs. −1.3 ± 0.5, p = 0.0005. (B) Distribution of final mRS
scores at week 8, with more favorable outcomes evident in ENTF vs. sham group.

safety concerns or complaints about comfort. Indeed, a non-

invasive, user-friendly device with a favorable safety profile may

be ideally suited for use after a patient returns home. Further,

in the wake of the COVID-19 pandemic, efficacious treatment

options that minimize in-hospital exposure are valuable for an

older, vulnerable, post-stroke population. The ability to integrate

such treatment into a care plan that is patient-centered and

addresses the normally fragmented treatment pathway remains

an important target of future studies.

This study has several limitations. First, though results

are robust across multiple metrics, sample size was small. In

addition, there were limited long-term follow-up evaluations

to assess the continued effects of the treatment on recovery.

COVID-19 restrictions forced a reduction of the planned sample

size and follow-up duration, thus studies with larger samples

and longer-term follow-up are needed. Second, the FMA-

UE and ARAT measures appeared suboptimal for moderately

impaired participants due to reasonable likelihood of reaching

the maximum score (79). Indeed, the trend towards meaningful

improvement of the FMA-UE (p = 0.06) coupled with an

overwhelming majority of treated participants in the top 10%

of the metric at end of treatment, it is likely that the benefit

to the treatment group was not fully captured in this score. In

comparison, there was continued improvement on BBT which

has a greater responsive range. Third, the study was conducted

at a single site in participants of one ethnicity. Multicenter trials

in larger, more diverse populations are desirable.

In conclusion, this study demonstrates efficacy of extremely

low frequency, low intensity frequency-tuned ENTF exposure

in improving upper extremity motor function and reducing

disability during the subacute phase in post-ischemic stroke

patients. There was clinically meaningful improvement in

upper extremity motor function and overall disability reduction

as measured by multiple metrics, including FMA-UE, mRS,

ARAT, BBT, and NIHSS. Given the high stroke prevalence

and limited treatment options beyond the acute phase, these

results represent a promising avenue for alternative treatment

that non-invasively targets and rehabilitates compromised brain

processes, and is applicable to a wide swath of post-stroke

patients. The current findings should be extended by examining

ENTF treatment in a larger sample with longer follow-up, as

well as examining direct indices of plasticity and feasibility of

continuing treatment at home. Additionally, future work may

explore the generalizability of this approach to other functional

domains (e.g., cognitive function), as well as other neurological

and neurodegenerative disorders.
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