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Introduction: Age is the main risk factor for the development of

neurocognitive disorders, with Alzheimer’s disease being the most common.

Its physiopathological features may develop decades before the onset of

clinical symptoms. Quantitative electroencephalography (qEEG) is a promising

and cost-e�ective tool for the prediction of cognitive decline in healthy older

individuals that exhibit an excess of theta activity. The aim of the present

study was to evaluate the feasibility of brain connectivity variable resolution

electromagnetic tomography (BC-VARETA), a novel source localization

algorithm, as a potential tool to assess brain connectivity with 19-channel

recordings, which are common in clinical practice.

Methods: We explored di�erences in terms of functional connectivity among

the nodes of the default mode network between two groups of healthy older

participants, one of which exhibited an EEGmarker of risk for cognitive decline.

Results: The risk group exhibited increased levels of delta, theta, and beta

functional connectivity among nodes of the default mode network, as well

as reversed directionality patterns of connectivity among nodes in every

frequency band when compared to the control group.

Discussion: We propose that an ongoing pathological process may be

underway in healthy elderly individuals with excess theta activity in their

EEGs, which is further evidenced by changes in their connectivity patterns.

BC-VARETA implemented on 19-channels EEG recordings appears to be a

promising tool to detect dysfunctions at the connectivity level in clinical

settings.

KEYWORDS

healthy aging, EEG connectivity, default mode network, cognitive decline, BC-

VARETA, functional connectivity
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Introduction

As life expectancy has increased in recent years, so has

the prevalence of neurocognitive disorders—formerly known

as mild cognitive impairment and dementia—since age is

the main risk factor for the development of these disorders.

Neurocognitive disorders are classified according to their

etiology, with Alzheimer’s disease (AD) being the most common

(1). The physiopathological features of AD may develop in

individuals from years to decades before the onset of clinical

features (2), and beta-amyloid (βA) depositions can be found in

20–50% of healthy and cognitively normal older adults (3, 4).

Given that early interventions that take place before clinical

signs appear are more effective, research on the early detection

of AD or the identification of biomarkers with good predictive

power has become increasingly important.

TheNational Institute onAging andAlzheimer’s Association

(NIA-AA) has released recommendations for the detection of

biomarkers during the preclinical stage of the disease, which

include Pittsburgh Compound B positron emission tomography

(PIB-PET), cerebrospinal fluid (CSF) phosphorylated tau

concentrations and evaluating the degree of gray matter atrophy

using magnetic resonance imaging (MRI) (5, 6). However, even

though the use of these tools has been validated and they are

recommended for research, they have limited value in everyday

clinical settings, especially in developing countries, due to their

elevated costs or their invasive nature.

A non-invasive and cost-effective tool to assess brain

function is the electroencephalogram (EEG), which measures

the electrical activity of the brain with surface electrodes

placed on the subject’s scalp. EEG provides information about

brain function with high temporal resolution and has proven

to be a useful tool in the study of neuropsychopathology,

since the recorded electrical activity reflects the overall

interaction between multiple groups of neurons. As research

on the preclinical phase of AD and other dementias has

received increasing attention, so has the validation of EEG

biomarkers (7).

A quantitative analysis of the EEG (qEEG) may be

performed to determine the power, among other measures,

of specific discrete frequencies (or frequency bands) and can

be used to compare these values to a normative database to

establish whether the EEG of a certain subject deviates from

their age-expected values. The qEEG, therefore, appears to be a

promising tool for predicting future cognitive decline in healthy

elderly individuals (8–10), and future progression to dementia in

patients with MCI (11–13). Moreover, using variable resolution

electromagnetic tomography (VARETA), Prichep (14) reported

that in healthy older adults that declined over the course

of 7–10 years, the most likely current sources of the most

abnormal narrow band within the theta frequency range

were the hippocampus, parahippocampal gyrus, amygdala, and

parietotemporal cortex; however, this study did not present the

results of other frequency bands. Musaeus et al. (10) have also

suggested that theta activity is positively related to cognitive

decline in a sample of almost 400 subjects. Further research

has established that low-frequency activity in the EEG is related

to AD-CSF biomarkers in both healthy participants (15) and

participants with dementia (16).

Considering this evidence, our research group has

hypothesized that an excess of theta activity in the EEG might

distinguish between two subpopulations of healthy elderly

individuals, one of which may be developing a pathological

process that is currently subclinical in nature. We have reported

that these individuals with an excess of theta activity present

atypical patterns in event-related potentials compared to those

of a control group with normal EEGs in tasks involving semantic

processing (17) and inhibitory control (18), as well as changes

in cortical volume using MRI (19), which we have suggested to

be a compensatory mechanism.

Since the brain is organized into functional networks and

AD has long been considered a “disconnection syndrome”

(20, 21), the study of EEG activity should go beyond the

characterization of independent regions. Numerous functional

connectivity studies using magneto/electroencephalography

(M/EEG), have found differential changes along the AD

continuum [(22–24); See Lejko et al. (25) for a recent review

and meta-analysis regarding alpha connectivity]. Of particular

interest for the present study is the default mode network

(DMN), which involves several brain areas that are inhibited

during the performance of tasks that involve attention to

external stimuli (26) and has been linked to episodic memory

and internally focused tasks [for a recent review of the DMN,

see (27)]. Research has shown that the functional connectivity

(FC) of the DMN changes as a function of age (28) and that this

FC is further diminished in MCI and AD (29–32). Moreover,

the anatomical regions of the DMN overlap with the typical

distribution of depositions of βA, a physiopathological feature

of AD, and this βA burden is related to the FC of the DMN (3,

33, 34) and here have been reports of reduced DMNdeactivation

during tasks in APOE e4 carriers (35, 36).

Most studies on FC are conducted using the analysis of

blood oxygenation level-dependent (BOLD) signals detected

by functional magnetic resonance imaging (fMRI). This

approach can reflect the neural correlates (responses and

connectivity) of brain function during the execution of tasks

or during the resting state. Additionally, diffusion tension

imaging (DTI) based on MRI allows the extraction of

probabilistic maps of long-range connectivity due to white

matter tracts. These are the gold-standard methods that can,

non-invasively, investigate brain connectivity with sufficient

spatial resolution to reach the columnar level, providing

reliable correlates of spatially distributed neural activity.

Without undermining the usefulness and advantages of these
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techniques, it is important to emphasize that they do not

directly reflect neural dynamics or synaptic transmission.

The BOLD signal is a consequence of a slow (seconds-

long) metabolic/hemodynamic cascade, which is correlated

with synaptic activity. Thus, it does not reach the millisecond

temporal resolution of faster brain rhythms. DTI, on the

other hand, provides structural probabilistic maps of plausible

connections based on the diffusion of water across white matter

tracts but cannot precisely reveal the pathways that influence

neural communication.

Noninvasive M/EEG recordings may account for these

limitations and bridge the gap between other slower and indirect

imaging methods, i.e., the previously mentioned fMRI. Its direct

link to local field potentials (associated with synaptic events) and

high temporal resolution (on the order of milliseconds) allows

the tracking of neural processes underlying human perception

and cognition (37–39). The local field potential of synchronized

neural activity within neural regions (generators) creates a non-

invasive, observable primary current density (PCD). An accurate

estimation of the PCD given these signals thus provides a

representation of the neural dynamics. Therefore, a M/EEG-

based connectivity analysis constitutes a strong approach to

study brain functional networks in the resting state (40,

41).

This paper targets the frequency-specific analysis of the

EEG source activity and functional connectivity with the novel

BC-VARETA toolbox (42). The frequency-specific analysis is

based upon cross-spectra, which summarize all the second-

order multivariate statistical properties of source activity at

each frequency, including the functional connectivity. BC-

VARETA achieves increased spatial resolution due to direct

Bayesian inference with cross-spectral, a priori probabilities

targeting these source cross-spectra from the EEG signals (42,

43).

The present study aims to explore the feasibility of functional

connectivity under aggravating conditions for the spatial

resolution of EEG source analysis commonly found in clinical

settings, i.e., the recording of the EEG with only 19 electrodes.

Consequently, this feasibility is explored by the detection of

differences in terms of functional connectivity as defined by

the Phase Slope Index (PSI) of the DMN between a group of

healthy participants at risk of cognitive decline (i.e., with excess

theta absolute power) and a control group of healthy elderly

individuals with normal EEG.

Materials and methods

This study was approved by the Bioethics Committee of

the Institute of Neurobiology of the National Autonomous

University ofMexico (INEU/SA/CB/109) in accordance with the

Declaration of Helsinki.

Participants

This study was conducted with a total of 215 healthy

volunteers aged 60 or older, which were recruited from

the general population by different means such a radio

announcements, flyers, and word-of-mouth recommendations

from other participants. The participants were interviewed

and assessed to verify whether they fulfilled the inclusion

criteria. The inclusion criteria were: (1) right-handedness, (2)

no history of neurological conditions, (3) no presence of

psychiatric disorders, (4) blood analysis within healthy ranges

for glucose, cholesterol, triglycerides, hemoglobin, and thyroid-

stimulating hormone, (5) a minimum of 9 years of formal

education and (6) an IQ above 80, which was assessed using

the Wechsler Adult Intelligence Scale, Fourth Edition (WAIS-

IV). Moreover, a gerontopsychiatrist evaluated the participants,

and only individuals with a score of 1 or 2 on the Global

Deterioration Scale (44), indicating no objective evidence of

cognitive decline, were included. A sample size calculation was

conducted using G∗ Power (45) considering previous research

from our group. The means and standard deviations for the

highest z-score of absolute theta power were obtained for each

of two groups, which were defined in the same way as in the

present study (see below). For an estimated effect size of d =

2.904 (Mean1 = 0.684, S.D.1 = 0.543; Mean2 = 3.168, S.D.2
= 1.081), a significance level set to α = 0.05 and a statistical

power of 1-β = 0.95, the sample size analysis yielded a result of

5 subjects per group.

After the fulfillment of the inclusion criteria was verified, an

EEG was recorded (see below). The participants with an excess

of theta activity (z > 1.96) in at least one lead were assigned

to the risk group (RG; n = 30). The individuals that exhibited

a normal EEG both in qualitative and quantitative terms, that

is, no abnormal waveforms were observed, and the z scores of

all their quantitative broad-band measures were within −1.64

and 1.64, were assigned to the control group (CG; n = 30).

The participants that exhibited an abnormality different from an

excess of theta activity were not included in this study. Out of

the total sample, 60 participants met the inclusion criteria for

this study (n = 60, mean age, 67.58; standard deviation, 4.61;

38 women).

All participants signed a written informed consent form. The

groups did not differ in terms of sex, age, years of education or

IQ (see Table 1).

Electroencephalography (EEG)

Digital EEGs were recorded in participants at rest with their

eyes closed using a MEDICID IV system (Neuronic Mexicana,

SA, Mexico) and TrackWalkerTM version 2.0 software, with

19 silver electrodes in the International 10–20 system mounted

on an elastic cap (Electro-Cap, International Inc., Eaton, Ohio,
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TABLE 1 Demographic and psychometric assessments of intelligence

of the control group (CG) and the risk group (RG) according to the

WAIS-IV.

CG RG Tests statistic p

N 30 30

Sex 21 f / 9m 17 f/13m χ2 (1)= 1.15 0.28

Family history of dementia 26 n / 4 y 26 n / 4 y χ2 (1)= 0.00 1.00

GDS score 26(1)/4(2) 25(1)/5(2) χ2 (1)= 0.13 0.72

Age 66.9 (4.4) 68.26 (4.78) t (58)= 1.15 0.25

Years of education 15.73 (4.09) 14.7 (2.92) t (58)= 1.13 0.26

VCI 122.8 (9.02) 124.26 (7.89) t (58)= 0.66 0.51

PRI 105.73 (13.42) 105.40 (13.52) t (58)= 0.09 0.92

WMI 105.33 (8.57) 106.56 (6.99) t (58)= 1.11 0.27

PSI 109.5 (17.68) 105.1 (16.12) t (58)= 1.01 0.31

FSIQ 104.16 (21.13) 107.6 (10.53) t (58)= 0.79 0.43

Data are presented as means and standard deviations. VCI, verbal comprehension index;

PRI, perceptual reasoning index; WMI, working memory index; PSI, processing speed

index; FSIQ, full scale IQ.

USA) and referenced to linked earlobes. The participants

were seated in a comfortable chair inside a faradized, sound-

proofed, dimly lit room. The EEG was digitized at a sampling

rate of 200Hz, and the signal was amplified with a gain of

20,000. The impedance of each electrode was kept below 10

kOhm. The EEG was recorded for 10min during the eyes-

closed condition. None of the participants exhibited paroxysmal

abnormalities. None of the participants were under the effects of

any psychopharmacological drug and were instructed not to take

any substance that could induce drowsiness the night before the

recording. During the recording, they were instructed to keep

their eyes closed and remain relaxed. The subjects were also

cautioned not to fall asleep.

Twenty-four artifact-free epochs of 2.56 s each were selected

from each recording by an expert in electroencephalography.

The expert selected EEG segments without intrinsic or extrinsic

artifacts in any channel. The selected segments throughout

the recording had to maintain the frequency and amplitude

characteristics of the posterior dominant rhythm to avoid any

activity associated with drowsiness. The qEEG analysis was

performed offline using a fast Fourier transform, and cross-

spectral matrices were calculated with a frequency resolution

of 0.3906Hz. Absolute and relative power values were obtained

for each frequency band (delta [0.5–3.5Hz], theta (3.5–7.5Hz],

alpha1 (7.5–10Hz], alpha2 (10–12.5Hz], beta1 (12.5–15.5Hz],

beta2 (15.5–20Hz], and beta3 (20–25Hz]). The geometric

power was subtracted for each individual cross-spectrum. This

correction consisted of a rescaling of the power spectrum that

helps to reduce variance not related to physiological factors up

to 42% (46), and z scores for each measure of absolute power

(z-AP) were obtained by comparing the raw data to a normative

database (47). The average power spectra for each group at each

of the 19 leads are shown in Figure 1.

Analysis of the source activity and
functional connectivity from the EEG
data

Consider the EEG source activity ι (t), the vector time

series whose entries ι (s, t) comprise the currents at each source

location s and time t. Consider then EEG data v (t), the

vector time series whose entries v (e, t) comprise the electric

potential at each electrode location e and time t. We estimate

functional connectivity of this source activity ι (t) by definition

of multivariate statistics of the vector time series (48). This

estimation involves the inverse solutions from EEG data v (t),

by definition of solutions to an ill-posed inverse problem in

obtaining EEG source activity ι (t) (49).

Formalizing an inverse problem is linear forward model

(Equation 1), as expressed by the lead field matrix L whose

entries L (e, s) factor the activity ι (s, t) at each source location

s to explain their data v (e, t) at each electrode location e (39,

50, 51). Complementing this forward model are residuals ξ (t),

or vector time series which add onto the data v (t) which is not

explained by lead field L form the source activity ι (t ).

v (t)= Lι (t) + ξ (t) ; ∀t (1)

From the literature for this inverse problem (Equation 1) (52)

formalizing an inverse solution could be the linear inverse model

(Equation 2), as expressed by the pseudo-inverseT (to thematrix

L) whose entries T (s, e) factor the data v (e, t) at each electrode

location e to explain the activity ι (s, t) at each source location s.

From the general literature of inverse problems, pseudo-inverse

T is the proximal operator or back projector that solves an

optimization problem (53–56).

ι (t)= Tv (t) ; ∀t (2)

This pseudo-inverse T (Equation 2) optimizes the cost

function R (ξ (t) ; ∀t) which is upon the reminders of source

activity ι (t) explaining the data v (t). Resolving the inverse

problem with an ill-posed nature which is due to the ill-

condition of matrix L (Equation 1) (57) is the Tikhonov

regularization or constrained optimization which imposes over

the inverse solutions penalization function P (ι (t) ; ∀t) (58). The

target function of constrained optimization is Q (T, v (t) ; ∀t)

(Equation 3) which in addition redefines functions R (ξ (t) ; ∀t)

and P (ι (t) ; ∀t) according to the previous forward model

(Equation 1) and inverse model (Equation 2).

T (v (t) ; ∀t) = argminT {Q (T, v (t) ; ∀t)} (3)

Q (T, v (t) ; ∀t) = R ((I− LT) v (t) ; ∀t) + P (Tv (t) ; ∀t) (4)

We opt for a formalization of the inverse problem (Equation

1) and inverse solution (Equation 2) in the frequency domain

of the time series which aims to obtain the specific patterns of
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FIGURE 1

Average power spectra per group in the surface level EEG. In red, average power spectra across the 19 leads of the International 10–20 system

for the risk group (RG). In blue, average power spectra for the control group (CG). The shaded areas represent the frequencies that exceeded the

probability threshold (p = 0.05).

rhythmic source activity (59–63). A target function (Equations

3, 4) is defined upon cross-spectrum, an essential statistic in

the frequency domain of stationary time series (64). Table 2

summarizes the basic definitions to reproduce our analysis,

including quantities (Table 2, 1–3), models (Table 2, 4–8),

method (Table 2, 9–11), and functional connectivity (Table 2, 12,

13).

For the type of rhythmic source activity, multivariate

statistics in the frequency domain of vector time series ι (t)

define the functional connectivity (65). Our definition bases

upon the Fourier transform ι
(

f
)

whose entries ι
(

s, f
)

represent

the amplitude and phase of these rhythms at each source location

s and frequency f . The sample space for these statistics are

independent realizations of the source activity ιm (t)’s (Table 2,

1) that produce Fourier transform ιm
(

f
)

’s (Table 2, 2).

The source cross-spectrum 6ιι

(

f
)

(Table 2, 3), estimates

the second-order statistic the Fourier transform ιm
(

f
)

’s by the

definition of Hermitian covariance matrix (66–68). This cross-

spectrum 6ιι

(

f
)

is sufficient statistic for the type of stationary

time series emerging during resting state or task in a block design

from the DMNs (68–70).

Estimation of 6ιι

(

f
)

is more precise with direct (cross-

spectral) inverse solution from the EEG cross-spectrum 6vv
(

f
)

,

also sufficient statistic for independent realizations of the data

vm (t)’s that produce Fourier transform vm
(

f
)

’s (Table 2, 1–3).

Achieving this cross-spectral inverse solution are the forward

model (Table 2, 4) and the inverse model (Table 2, 5) in

frequency domain. The lead field matrix L and pseudo-inverse

L in these models project forward and backward between the

source ιm
(

f
)

’s and their data vm
(

f
)

’s frequency specific patterns

of amplitude and phase.

A cost function R
(

6ξξ

(

f
))

is upon the residuals ξm
(

f
)

(Table 2, 6) as defined by the trace operator of their cross-

spectrum6ξξ

(

f
)

(Table 2, 7). Complementing this cost function

is a penalization function P
(

6ιι

(

f
))

(Table 1, 8) as defined by

the Elastic Net nuclear quasinorm, linear combination of square

root trace and trace operators of the cross-spectrum 6ιι

(

f
)

.

Elastic Net nuclear quasinorm pursues structured sparsity of

the cross-spectrum topographic projection
(

spectrum σ̂ 2
ιι

(

f
)

=

diag
(

6̂ιι

(

f
)

))

ameliorating extreme distortions due to ill-

condition of the EEG Lead field matrix L.

Constrained optimization is for target function

Q
(

T,6vv
(

f
))

(Table 2, 9) minimized by pseudo-inverse

T
(

6vv
(

f
))

(Table 2, 10) defined as matrix function of the data

cross-spectrum 6vv
(

f
)

which provides cross-spectral inverse

solution 6ιι

(

f
)

(Table 2, 11). From this cross-spectrum 6ιι

(

f
)

at each frequency f we first determine the coherence Cιι

(

f
)

(Table 2, 12) and second the functional connectivity Kιι

(

f0
)

(Table 2, 13) as defined by the Phase Slope Index (PSI) of each

frequency band (delta, theta, alpha, beta). For these frequency

bands f0 represents the starting frequency and 1f0 the band
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TABLE 2 Summary of the qEEG analysis.

Quantity Source Data

1. Time series ιm(t);m = 1 . . .M vm(t);m = 1 . . .M

2. Fourier transform ιm(f );m = 1 . . .M vm(f );m = 1 . . .M

3. Cross-spectrum 6u(f ) = (6M
(m=1)ιm(f )ι

†
m(f ))/M 6vv(f ) = (6M

(m=1)vm(f )v
†
m(f ))/M

Model

4. Forward vm(f ) = Lιm(f )+ ξm(f )

5. Inverse ιm(f ) = Tvm(f ) also 6u(f ) = T6vv(f )T†

6. Reminders ξm(f ) = (I − LT)vm(f ) also 6ξξ(f ) = (I − LT)6vv(f )(I − LT)†

7. Cost function R
(

6ξξ

(

f
))

= tr
(

6ξξ

(

f
))

8. Penalization function P
(

6ιι

(

f
))

= α1
(

f
)

tr
1
2

(

6ιι

(

f
))

+ α2
(

f
)

tr
(

6ιι

(

f
))

Method

9. Target function Q
(

T,6vv

(

f
))

= R
(

(I− LT)6vv

(

f
)

(I− LT)†
)

+ P
(

T6vv

(

f
)

T†
)

10. Inverse solution T
(

6vv

(

f
))

= argminT
{

Q
(

T,6vv

(

f
))}

11. Cross-spectrum 6ιι

(

f
)

= T
(

6vv

(

f
))

6vv

(

f
)

T†
(

6vv

(

f
))

Functional connectivity

12. Coherence Cιι

(

s, s
′
, f

)

=
6ιι

(

s,s
′
,f
)

√

6ιι(s,s,f )6ιι

(

s
′ ,s′ ,f
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Defining functional connectivity for the DMN is here

from the matrix entries Kιι

(

s, s
′
, f0

)

averaged over the rows

s and columns s
′
that correspond to cortical regions. These

regions are described by Buckner et al. (26) and have

been used in numerous studies involving the DMN. The

selected anatomical regions were the dorsomedial prefrontal

cortex (dMPFC), posterior cingulate and retrosplenial cortex

(PCC/Rsp), inferior parietal cortex (IPC), lateral temporal

cortex (LTC), ventromedial prefrontal cortex (vMPFC) and

hippocampal formation (HF+), which includes the entorhinal

and parahippocampal cortices.

Statistical analysis

The statistical analyses used in this study were based on a

non-parametric method, permutation-based statistics tests (71).

The major advantages of the permutation-based framework

for electrophysiology data analysis are related to the lack of

assumptions as to parametric data distribution and the ability

to appropriately conduct multiple comparisons controlling

for Type I error (72, 73). Therefore, for permutation-based

tests, the statistical distribution is not based on a formula

(wherein statistical significance is based on assumptions as to

the distribution). Instead, the statistical distribution is obtained

empirically from the data by simulating situations that could

have arisen under the null hypothesis with the data obtained

(significance based on data). To build up each empirical null
hypothesis distribution, we used 5,000 random permutations.

The statistical significance was assessed by counting the number
of null hypothesis tests (permutations) values higher than

the observed statistic test value and dividing it by the total
number of null hypothesis tests (number of permutations).

The permutation-based test does not require a specific null
hypothesis distribution such as the Gaussian or F-distribution.
The significance level to reject the null hypothesis was set

to p = 0.05. Finally, a multiple comparison correction was
applied. One commonly used approach for this end is the

Bonferroni correction which is based on dividing the p-

value by the number of tests carried out. However, even

when Bonferroni correction is suitable in some brain data

analyses like hypothesis-driven tests, it is not appropriate

for time-frequency decomposition results where many tests

are performed over time points, frequency bins, and ROIs

(74). The Bonferroni correction assumes that the tests are

independent, which is not the case for brain data, where

a strong correlation is found among the time series points,

frequency bands, and neighboring neural populations. In

this work, we applied the pixel-based multiple comparisons

correction. Correcting for multiple comparisons using pixel-

based statistics relies on creating a distribution of the pixel from
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each iteration of permutation testing with the most extreme

statistical value.

Results

Figure 1 shows the power spectra across the 19 leads for

each group. This indicates a general slowing of the EEG

signal in healthy participants considered at risk for cognitive

decline. The qEEG maps shown in Figure 2 illustrate the

probability values associated with each comparison at each

frequency band.

The differences between the RG and the CG in functional

connectivity strength across the analyzed frequencies are shown

for each node of the DMN in Figure 3. This connectivity

strength represents the relation of each node with all

the other nodes in the network. The participants in the

RG exhibited significantly higher values of connectivity

than those in the CG for most of the DMN nodes in the

delta and theta band frequencies, except for the bilateral

dMPFC and the left PCC/Rsp. Similarly, the RG displayed

higher connectivity strength in the beta1 band for all

the nodes, except for the medial prefrontal cortices. In

contrast, the RG showed significantly lower values of

connectivity strength in the bilateral HF+ and PCC/Rsp

in the alpha2 band.

The results of the directionality of functional connectivity

for each group, as well as cortical maps representing the

direction of the connections that differed between the groups,

are shown in Figures 4, 5. Most of the differences consisted in

opposite directions of the information flow between pairs of

nodes of the DMN. The results are briefly described for each

frequency band below:

Delta band. Intrahemispheric connectivity differences

appear to be more pronounced within the right hemisphere.

Moreover, the left hemisphere appears to be a driver of right

nodes in the RG, whereas the opposite is true for the CG

(Figure 4).

Theta band. Interestingly, prefrontal nodes of the DMN

appear to be drivers of posterior nodes in the RG, with higher

connectivity strengths within the right hemisphere (Figure 4).

Alpha1 band. The prefrontal nodes are driven by posterior

nodes in the RG. This is more evident within the right

hemisphere (Figure 4).

Alpha2 band. The results of the alpha2 connectivity do not

have as obvious a pattern as the slower frequency bands. Notably,

the left LTC is driven by four other nodes of both hemispheres in

the RG, in contrast to the CG, where the left LTC is the driver of

three out of the four. It is noteworthy that two connections are

stronger within the RG, i.e., the inflow to the left LTC from the

left dMPFC and from the right HF+ (Figure 5).

Beta1 band. Like the delta band, the left hemisphere drives

the right hemisphere in the beta1 band. However, in this band,

the intrahemispheric connections are more pronounced within

the left hemisphere for the RG (Figure 5).

Beta2 band. Interestingly, the connections that differed

between the RG and the CG involved the four nodes of the

bilateral MPFC. Both dMPFCs are drivers of the vMPFCs, and

the left hemisphere seemed to drive the right hemisphere in the

RG (Figure 5).

Beta3 band. As with other frequency bands,

interhemispheric connections involve the left hemisphere

driving the right hemisphere in the RG. Additionally, the

differences in intrahemispheric connectivity exclusively

involved the right hemisphere in the RG (Figure 5).

Discussion

The results of the present study add to the very little

literature available regarding healthy elderly at risk of cognitive

decline. The experimental group in the present study consisted

of a sample of healthy elderly individuals with an excess

of theta activity. We considered an excess of theta activity

as an electroencephalographic marker of risk of cognitive

decline (8, 75). An increase in slow-wave activity (i.e., delta

and theta) is characteristic of MCI and AD (13, 75–79),

and has been associated with cholinergic dysfunction (80).

Furthermore, Fernández et al. (81, 82) compared patients

with cognitive decline to healthy elderly individuals using

MEG and found a negative association between slow-wave

activity in posterior areas and both their cognitive status and

hippocampal volume. Additionally, theta activity has been

associated with hypoperfusion (83, 84) and hypometabolism

(85) using neuroimaging tools. In AD patients, a relationship

between biomarkers of neurodegeneration in CSF, such as a

decrease in β-amyloid1−42 and an increase in p- and t-tau, has

been linked to decreased alpha and beta activities (86).

Considering this, we sought to characterize the functioning

of the DMN in a group of healthy elderly at risk of cognitive

decline by means of its comparison to a group of healthy elderly

with normal EEG. To interpret our findings, we assumed that

the normal connectivity patterns were those observed in the

CG, since they exhibited normal values in their quantitative

EEG measures of absolute and relative power and resting-state

EEGs provide information about the integrity of an individual’s

brain functioning (87). Therefore, any difference in connectivity

patterns between the CG and the RG could indicate the presence

of important and, possibly, pathological conditions.

We observed an increase in connectivity strength in slow

frequencies (corresponding to the delta and theta bands) in

the RG compared to the CG. The increase in delta and theta

connectivity strengths has been previously described when

comparing groups of older adults to young adults, and it has

been suggested that this might reflect a loss of efficiency among

brain regions as a result of progressive disconnection. This was
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FIGURE 2

Average power maps per group and probability maps of the di�erences in the surface level EEG. The first column corresponds to the CG, and

the middle column corresponds to the RG. The last column corresponds to the significance values from the comparison between the groups.

Warm colors indicate that the risk group AP values are higher than those of the control group. Cool colors represent lower AP values in the risk

group than in the control group. Only the areas that exceeded the probability threshold (p = 0.05) are colored. The rows represent each

frequency band.
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FIGURE 3

Di�erences between groups in functional connectivity strengths for each node of the DMN. Warm colors indicate higher values in the RG than

in the CG. Cool colors indicate higher values in the CG than in the RG. The contour indicates the comparisons that exceeded the probability

threshold (p = 0.05).

FIGURE 4

Functional connectivity between the nodes of the DMN for each group for delta, theta and alpha1. The first two columns correspond to the

functional connectivity matrices of the CG and the RG, respectively. Warm colors indicate the driving nodes, and cool colors indicate the driven

nodes. The connections that exceeded the probability threshold (p = 0.05) are indicated with a star and are shown in the cortical maps of the

last two columns. Direction is represented by the cones, with the vertices indicating the driven nodes and the bases indicating the driver nodes.

The color scale illustrates the connectivity strength. The rows represent each frequency band.
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FIGURE 5

Functional connectivity between the nodes of the DMN for each group for alpha2, beta1, beta2, and beta3. The first two columns correspond to

the functional connectivity matrices of the CG and the RG, respectively. Warm colors indicate the driving nodes, and cool colors indicate the

driven nodes. The connections that exceeded the probability threshold (p = 0.05) are indicated with a star and are shown in the cortical maps of

the last two columns. Direction is represented by the cones, with the vertices indicating the driven nodes and the bases indicating the driver

nodes. The color scale illustrates the connectivity strength. The rows represent each frequency band.

supported by the fact that patients with AD show an increase

in delta (88, 89) and theta (88–90) connectivity when compared

to cognitively normal controls. Furthermore, we observed a

decrease in upper alpha connectivity in the RG, which has also

been described as a natural consequence of the aging process

when comparing young and older adults. Previous studies have

also shown a negative relationship between delta connectivity

and cognitive performance (91). Theta connectivity, on the

other hand, does not seem to have a clear relationship with

cognitive performance. While some studies report a negative

relationship between these variables [e.g., (91)], others have

shown a positive relationship (92, 93). The decrease in upper

alpha connectivity is accentuated in patients with AD (90) and

MCI (94) when compared to normal controls. This decrease

in alpha connectivity has also been related to worse cognitive

performance (91, 95). Moreover, Teipel et al. (96) showed

a positive relationship between alpha connectivity and the

integrity of white matter tracts within the brain.

Regarding the aforementioned results, Gorges et al. (97)

proposed a hypothetical model of functional connectivity

changes in relation to behavioral performance during the

course of a pathological process. According to this model,

the first stage of abnormal brain function involves an initial

increase in connectivity strength. This increase in connectivity

has been explained in two ways: [1] as a consequence of

the loss of inhibitory neural influence on the cortex, product

of the aforementioned pathological process (98) or [2] as a

compensatory mechanism of neural reorganization that recruits
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more neurons as the neural reserve of the individual depletes,

thereby mitigating the adverse effects of the pathological process

(in preclinical or in early stages) in that individual and leads

to a behavioral performance within expected normal ranges.

This latter explanation might be the case for our RG, where the

increase in connectivity strength could reflect a compensatory

and adaptive response.

A meta-analysis that considered the results of 126 MRI

studies found patterns of increased connectivity in traumatic

brain injury and multiple sclerosis, as well as hyperconnectivity

patterns in Parkinson’s disease. In contrast, studies that

compared patients with MCI and AD against cognitively normal

subjects showed a decrease in connectivity that worsened as

the disease progressed (99). This supports the second stage

of abnormal brain function of Gorges’s model (70). Global

neuronal atrophy and loss of tissue in regions of the medial

temporal and parietal cortex have long been reported in AD,

which imply a reduction in cerebral volume (100). When the

loss of neural resources reaches a critical threshold, the increased

connectivity is no longer effective for meeting task demands

(97). The availability of neural resources plays a pivotal role

in the network’s response when there is significant neural

atrophy (as in AD) since the flow of information through

critical hubs might be interrupted and result in overall network

malfunction (101, 102). The critical threshold is determined by

a combination of factors associated with the cognitive reserve

(103) and the location of the network interruption (i.e., the

affected hub). Once the critical threshold is reached, the pattern

of connectivity deficits will become evident and will progress

along with the disease. The increased connectivity strength

for the slow bands in the RG may be interpreted as a loss

of communicative efficiency among the nodes of the DMN

in the RG, which may impact the flow of information within

the network.

When we examined the direction of the flow of information

among the nodes of the DMN, i.e., their causal interaction,

we observed interesting differences between the RG and the

CG. There is surprisingly little information about the direction

of connectivity among nodes of the DMN during aging, and

most studies have used fMRI, which, as previously mentioned,

lacks the temporal resolution of EEG and is an indirect

measure of brain activity. Luo et al. (104) explored effective

connectivity (EC) differences between two groups of healthy

older participants, one of which was consisted of carriers of the

APOE ε4 allele, a genetic marker of AD. They found significant

increases in EC connectivity from the IPC to the PFC in the ε4

group. They also found that connectivity strength was positively

related to memory performance but only in the control group.

Regarding the results of our present study, an interesting finding

was a shift in the direction of these connections in both

hemispheres in the RG. Specifically, while the IPCs were drivers

of their ipsilateral dMPFC in the CG, the opposite was true for

the RG (left hemisphere: theta and beta1; right hemisphere: delta

and beta3). This could be the result of a compensatory role of

the dMPFC over the IPCs, which would be in line with several

models of cognitive aging which emphasize the importance of

the prefrontal cortex as the main source of functional scaffolds

during aging (105).

Most of the studies that have explored how AD and MCI

affect EC within the DMN have found changes in connectivity

patterns that involve the PCC/Rsp (106, 107). Zhong et al. (108)

described the PCC as an important convergence node of the

DMN and found decreased connectivity in this area in AD

patients. When we examined group differences involving the

PCC/Rsp, we observed that this area was differentially driven

by other nodes of the network in most bands in the CG,

except for theta frequencies, where PCC/Rsp drives right medial

prefrontal areas, and the alpha2 band, where it drives the left

dmPFC. The opposite was true in the RG, as the PCC/Rsp

drove other nodes and was driven by prefrontal areas. In the

RG, prefrontal nodes were drivers of posterior nodes (left IPL

and both PCC/Rsp), in contrast to the CG. The PCC/Rsp

area is considered to be one of the most interconnected areas

of the brain (109, 110). Moreover, the PCC/Rsp and the IPL

cortices are major hubs of the DMN, as indicated by patterns of

bidirectional interactions (111). Additionally, when considering

unidirectional connections, Deshpande et al. (111) described

that the prefrontal cortex and the hippocampus receive major

inputs from other areas of the DMN, whichmay reflect processes

of cognitive integration. This is in line with what we observed

in theta connectivity in the CG, whereas the PFC served as

a driver in the RG and, as mentioned above, may reflect a

compensatory role of the PFC over the rest of the nodes of

the DMN.

A potential limitation of the present study is the use of a

limited number of channels, i.e., 19 channels, for the solution

of the inverse problem using BC-VARETA. This issue was

addressed in the methods section. Furthermore, it is important

to emphasize that the average clinician will only have access to a

19-channel device. Several studies have looked into the accuracy

of source localization with different numbers of channels and it
appears that, when the signal-to-noise ratio is adequate, a 19-

channel recording is fairly accurate (112–114), which of course

has positive implications in clinical settings. Future research

could be aimed at exploring cognitive differences between these

two groups using more demanding tests, perhaps with an

emphasis on frontal lobe functioning.

The findings of the present study contribute to the

existing knowledge by proposing that a similar ongoing

pathological process may be underway in healthy elderly

individuals with excess theta activity in their EEGs.

Moreover, BC-VARETA appears to be a feasible tool

and can be used in clinical settings since it involves

significantly lower costs than other neuroimaging tools

and can be employed using standard 19-leads EEG to assess

brain connectivity.
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