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Background: Clinical markers of cognitive decline in Parkinson’s disease

(PD) encompass several mental non-motor symptoms such as hallucinations,

apathy, anxiety, and depression. Furthermore, freezing of gait (FOG) and

specific gait alterations have been associated with cognitive dysfunction in PD.

Finally, although low cerebrospinal fluid levels of amyloid-β42 have been found

to predict cognitive decline in PD, hitherto PET imaging of amyloid-β (Aβ) failed

to consistently demonstrate the association between Aβ plaques deposition

and mild cognitive impairment in PD (PD-MCI).

Aim: Finding significant features associated with PD-MCI through a machine

learning approach.

Patients and methods: Patients were assessed with an extensive clinical and

neuropsychological examination. Clinical evaluation included the assessment

of mental non-motor symptoms and FOG using the specific items of the

MDS-UPDRS I and II. Based on the neuropsychological examination, patients

were classified as subjects without and with MCI (noPD-MCI, PD-MCI). All

patients were evaluated using a motion analysis system. A subgroup of PD

patients also underwent amyloid PET imaging. PD-MCI and noPD-MCI subjects

were compared with a univariate statistical analysis on demographic data,

clinical features, gait analysis variables, and amyloid PET data. Then, machine

learning analysis was performed two times: Model 1 was implemented with

age, clinical variables (hallucinations/psychosis, depression, anxiety, apathy,

sleep problems, FOG), and gait features, while Model 2, including only the

subgroup performing PET, was implementedwith PET variables combinedwith

the top five features of the former model.

Results: Seventy-five PD patients were enrolled (33 PD-MCI and

42 noPD-MCI). PD-MCI vs. noPD-MCI resulted in older and showed

worse gait patterns, mainly characterized by increased dynamic

instability and reduced step length; when comparing amyloid

PET data, the two groups did not di�er. Regarding the machine
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learning analyses, evaluationmetrics were satisfactory for Model 1 overcoming

80% for accuracy and specificity, whereas they were disappointing for Model 2.

Conclusions: This study demonstrates that machine learning implemented

with specific clinical features and gait variables exhibits high accuracy in

predicting PD-MCI, whereas amyloid PET imaging is not able to increase

prediction. Additionally, our results prompt that a data mining approach

on certain gait parameters might represent a reliable surrogate biomarker

of PD-MCI.

KEYWORDS

mild cognitive impairment, machine learning, gait analysis, amyloid PET imaging,

Parkinson’s disease

Introduction

Over the past few years, research has focused on the

pre-dementia stage of cognitive impairment in Parkinson’s

Disease (PD), namely mild cognitive impairment (PD-MCI).

PD-MCI has a pooled prevalence of 40% (1) and is a risk factor

for the development of dementia associated with PD (PDD)

(2, 3). Several mechanisms are likely to contribute to cognitive

decline in PD (4).

Clinical markers of cognitive dysfunction in PD

encompass several mental non-motor symptoms such as

visual hallucinations, apathy, anxiety, and depression (1, 5, 6).

Besides mental symptoms, a growing body of evidence indicates

the association between cognitive decline and several gait

and balance dysfunction, including the postural instability

gait difficulty (PIGD) phenotype (7, 8), freezing of gait

(FOG) (9–11), and specific walking alterations, especially

in dual-task conditions, on quantitative gait evaluations

(12–16). In addition, although the evidence consistently

suggests that low cerebrospinal fluid levels of amyloid-

β42, a marker of Alzheimer’s disease (AD), may predict

future cognitive decline and PDD (5), to date, amyloid-

β (Aβ) Positron Emission Tomography (PET) imaging

studies have reported conflicting results (17–21), thus failing

to consistently demonstrate an association between Aβ

plaques deposition and cognitive dysfunction in PD. Of

note, many cross-sectional studies showed a relationship

between Aβ pathology and the PIGD subtype in PD (22–

25). These findings may suggest that both cognition and

gait dysfunction in PD might share common underlying

pathological mechanisms which, at least in part, could be related

to Aβ pathology.

Since PDD is associated with greater disability, caregiver

burden, and risk for institutionalization with an increase in

health-related costs (26), the identification of factors and

biomarkers associated with MCI might allow the early detection

of a PD subpopulation at a higher risk of worse disease

progression (27). Form a research prospective, detecting such

patients and their course will foster the development of effective

strategies to prevent or delay progression to dementia.

In the recent past, the application of machine learning to

medical datasets has increased. Machine learning techniques

are computer-based statistical approaches, which can be trained

to find common patterns and hidden correlations from big

amounts of data. Indeed, machine learning methods can help

clinicians in classifying at once patients according to several

variables (28).

The main aim of the present study was 2-fold: (1)

identifying the top features associated with PD-MCI among

those commonly reported in previous research; and (2) detecting

a machine learning algorithm able to distinguish PD patients

with MCI from those without. To this objective, five machine

learning algorithms, namely Random Forest (RF), Support

Vector Machine (SVM), k-Nearest Neighbor (KNN), Decision

Tree (J48), and AdaBoost (ADA-B), were implemented using a

multiparametric approach including clinical features generally

associated with cognitive decline in PD, gait parameters under

dual-task condition obtained through gait analysis, and amyloid

PET imaging data.

Materials and methods

Study design and population

The study population consisted of 75 PD patients,

consecutively enrolled between February 2018 and November

2021. Participants were selected from patients referred to the

Movement Disorders Unit of the Institute for Diagnosis

and Care Hermitage-Capodimonte of Naples and the

Center for Neurodegenerative Diseases of the University

of Salerno. All patients fulfilled the Movement Disorder

Society (MDS) clinical diagnostic criteria for PD (29). The

inclusion criteria were as follows: age 45 years or older; Hoehn

& Yahr (H&Y) score ≤3; disease duration <10 years; and

anti-parkinsonian treatment at a stable dosage during the
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previous 4 weeks. The exclusion criteria were as follows: gait

requiring assistance; dementia according to the DSM-V criteria;

clinically significant comorbidities, including other neurologic

disorders, orthopedic diseases, or cardiovascular/respiratory

diseases; anticholinergic or neuroleptic treatment; and

brain surgery.

This study was performed in accordance with

the 1964 Declaration of Helsinki and was approved

by the IRCCS G. Pascale Foundation, the reference

ethics committee of the IRCCS SDN SYNLAB,

Naples. Written informed consent was obtained from

all subjects.

Clinical and cognitive evaluations

Patients were assessed using an extensive clinical

and neuropsychological examination. Clinical evaluation

included the use of the Movement Disorder Society-

Unified Parkinson’s Disease Rating Scale (MDS-UPDRS)

which was developed to evaluate various aspects of

Parkinson’s disease including non-motor and motor

experiences of daily living and motor complications. The

presence and severity of hallucinations/psychosis, apathy,

sleep disorders, anxiety, depression (range 0–4), and the

presence of FOG were rated using the specific items of the

MDS-UPDRS I and II.

The cognitive assessment included an extensive

neuropsychological battery comprising at least two tests

for each of the five cognitive domains commonly affected in

PD, namely memory, attention, executive function, visuospatial

skills, and language. The test scores were corrected for

current normative values. All neuropsychological tests were

administered to the patients during the pharmacological on-

state. Based on the neuropsychological examination, patients

were classified as patients without (no PD-MCI, n = 42) and

with MCI (PD-MCI, n = 33), according to level II criteria for

PD-MCI (30).

Gait analysis

All patients performed gait analysis through the optical

motion capture system of BTS Bioengineering SMART DX,

fitted out with six infrared cameras, two video cameras, two

force plates, a set of passive markers, and an elaborator. A

specific procedure was required for calibrating the volume of

acquisition. Then, the Davis-Heel Protocol was applied for

each acquisition (31), consisting of four sequential phases:

anthropometric measures (height, weight, leg length, etc.);

positioning of 22 reflective silver-covered markers on specific

points on the body; standing phase, that is, acquiring the patient

standing up on the force plate; and walking phase on a 10-m

path. Patients were evaluated on the straight pathway during

a dual task, namely walking while serial subtracting 7s starting

from 100 (COG task), performed four times. Before starting the

trial, no instruction to prioritize walking or calculating was given

to all participants, who were trained to walk at a normal pace

and at their usual speed. Through this gait analysis procedure, a

final report was obtained with spatial and temporal parameters,

all reported in Table 2.

All participants were assessed in the self-defined best “on-

state” while receiving their typical dopaminergic drugs, based on

previous findings showing that gait during the on-state rather

than the off-state exhibits a closer connection with cognitive

dysfunction (10, 12–14).

Amyloid PET imaging

A subgroup of PD patients also underwent amyloid

PET imaging. PET scans were acquired 90+5min after

[18F]flutemetamol i.v. administration (range 180–190 MBq) for

20min in all subjects using a commercial scanner (Discovery

PET/CT 710, GE Healthcare, Milwaukee, WI, USA) in 3D

scanning mode that examined 47 slices of 3.3-mm thickness

spanning the entire brain. Images were reconstructed using a

3D iterative ordered-subset expectation maximization (OSEM)

and Time of Flight (TOF) technologies (GE VUE Point FX

with SharpIR, GE Healthcare). The OSEM algorithm was

applied to ratio sinograms using attenuation-weighted iterative

reconstruction (7 iterations, 36 subsets) and all reconstructions

always included a “weak” z-axis filter. Pet scans were interpreted

using the approved image training instructions provided by the

manufacturer (32). For quantitative analysis, the patient’s brain

was divided into 67 regions using the Automated Anatomical

Labeling-Merged atlas with the software PMOD (PMOD

Technologies, Zurich, Switzerland). Averaged Standardized

Uptake Values (SUVs), defined as the decay corrected brain

radioactivity concentration, normalized for injected dose and

body weight, were calculated for all regions and used to

evaluate tracer retention in each of the following areas: (1)

bilateral temporal lobe (temporal superior, middle, inferior,

amygdala, hippocampus and parahippocampus, fusiform gyrus,

and Heschl gyrus); (2) posterior fossa (vermis, bilateral

cerebellum crus, and bilateral cerebellum); (3) bilateral insula;

(4) cingulate gyri (anterior cingulate gyrus, middle cingulate

gyrus, and posterior cingulate gyrus); (5) bilateral frontal lobe

(precentral gyrus, Rolandic operculum, supplementary motor

area, olfactory cortex, superior frontal gyrus, middle frontal

gyrus, inferior frontal gyrus, gyrus rectus, and paracentral

lobule); (6) bilateral occipital lobe (calcarine fissure and

surrounding cortex, cuneus, lingual gyrus, and lateral remainder

of occipital lobe); (7) bilateral parietal lobe (postcentral

gyrus, supramarginal gyrus, angular gyrus, precuneus, parietal,
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TABLE 1 Comparison of demographic and clinical features between PD-MCI and noPD-MCI.

Features PD-MCI

(N = 33)

noPD-MCI

(N = 42)

p-value

Most affected side (R/L) 20/13 23/19 0.611

Body Mass Index 28.32± 3.94 27.00± 3.21 0.217

Age 65.88± 9.06 61.40± 8.26 0.029

Disease Duration (y) 5.18± 2.49 4.56± 2.64 0.223

Hoehn & Yahr 1.92± 0.31 1.77± 0.40 0.081

LEDD (mg) 549.65± 382.69 570.49± 443.51 0.749

MDS-UPDRS: Part I 9.51± 7.50 7.29± 4.58 0.332

MDS-UPDRS: Part II 8.00± 5.78 8.24± 6.07 0.979

MDS-UPDRS: Part III 24.88± 8.52 21.67± 8.03 0.098

MDS-UPDRS: Part IV 1.52± 2.85 2.05± 3.09 0.250

MDS-UPDRS Freezing Item (Y/N) 6/27 8/34 0.924

MDS-UPDRS Hallucinations and Psychosis Item 0.14± 0.44 0.19± 0.37 0.472

MDS-UPDRS Depressed mood Item 0.94± 1.20 0.43± 0.59 0.085

MDS-UPDRS Anxiety Item 1.03± 1.21 0.62± 0.80 0.176

MDS-UPDRS Apathy Item 0.64± 1.14 0.36± 0.79 0.398

MDS-UPDRS Sleep problems Item 0.94± 1.09 1.17± 1.08 0.311

Statistically significant differences are reported in bold.

MCI, mild cognitive impairment; R/L, right/left; LEDD, levodopa equivalent daily dose; MDS-UPDRS, movement disorders society-unified Parkinson’s disease rating scale.

superior, and inferior); (8) bilateral striata (caudate nucleus,

putamen, and pallidum); and (9) thalamus.

Statistical analysis

IBM SPSS was used to compare demographic, clinical,

gait, and PET features of PD patients with and without

MCI through univariate statistical analysis. First, the normality

distribution of the data was assessed with the Shapiro–Wilk

and Kolmogorov–Smirnov tests depending on the sample group

size (the former for n<50, the latter for n>50). Then, Levene’s

test was performed for normally distributed data to assess the

homoscedasticity of the variances between the groups and, if

the statement was verified, a t-test for independent samples was

employed; otherwise, a Mann–Whitney test was employed.

Machine learning workflow

The implementation of machine learning algorithms was
performed through the KNIME analytics platform (v. 4.2.1),

which has been used in other biomedical studies with good

results (33). In this study, binary supervised classification
learning was applied with tree-based and instance-based

algorithms. Two models with different subsets of features as

input were implemented:

1. Model 1 included age, clinical characteristics

(hallucinations/psychosis, depressed mood, anxiety, apathy,

sleep problems, FOG), and gait features;

2. Model 2 included quantitative PET features and the top

five features of Model 1. Specifically, Model 2A included

averaged SUVs of the nine brain areas reported in section

2.4 and the top five features of Model 1, whereas Model

2B included only averaged SUVs of cortical regions and the

same top five features of Model 1. Feature importance was

computed with RF to identify the most relevant features

in classification based on Information Gain (IG). IG is an

entropy-based feature evaluation method, which considers

how much information a feature can provide and how much

this feature can be used in the classification process. In RF,

feature importance is estimated by looking at how much

prediction error increases when data for a certain variable

is permuted while the others are left unchanged. Then, the

IG of all the features was normalized and transformed into

percentages to express and compare the contribution of each

feature to the prediction.

A 10-fold cross-validation was used for the first model,

while a leave-one-out technique was used for the second model,

considering the sample size. J48, RF, and ADA-B were trained

as tree-based algorithms. J48 is an implementation of Quinlan’s

C4.5 decision tree (34) that uses tree representation to split the

information into subsets in which the leaf node corresponds

to a class label while the attributes are represented by the
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TABLE 2 Comparison of spatial and temporal gait parameters during the COG task between PD-MCI and noPD-MCI patients.

Features Measurement PD-MCI

(N = 33)

noPD-MCI

(N = 42)

p-value

Cycle duration s 1.18± 0.15 1.15± 0.13 0.317

Stance duration s 0.74± 0.10 0.70± 0.09 0.131

Swing duration s 0.44± 0.06 0.44±0.05 0.769

Swing duration variability s 0.05± 0.05 0.03± 0.02 0.015

Stance phase % 62.64± 2.14 61.40± 2.11 0.010

Swing phase % 38.55± 5.19 38.54± 2.12 0.132

Single support phase % 37.75± 2.16 38.25± 2.84 0.401

Double support phase % 13.88± 4.04 11.77± 1.89 0.006

Mean velocity m/s 0.81± 0.18 0.94± 0.17 0.002

Mean velocity %height/s 49.40± 11.03 56.24± 10.23 0.005

Cadence steps/min 103.85± 13.40 106.24± 12.42 0.426

Cycle length m 0.94± 0.18 1.06± 0.15 0.003

Cycle length %height 57.48± 12.78 63.37± 8.30 0.018

Step length m 0.42± 0.11 0.51± 0.10 <0.001

Step length variability m 0.33± 0.48 0.11± 0.24 0.002

Step width m 0.11± 0.07 0.12± 0.11 0.797

Statistically significant differences are reported in bold.

COG task, cognitive dual task; MCI, mild cognitive impairment.

branches of the tree. RF is an ensemble learning algorithm that

combines the predictions of a high number of decision trees

according to the bagging technique, performing randomization

(35). ADA-B is another ensemble learning algorithm based

on the boosting technique that assigns a group of weights

to a set of weak learners and updates it for each iteration

to achieve the best performances (36). KNN and SVM were

implemented as instance-based algorithms. The former is one

of the simplest but most effective classification methods that,

starting from a training set with accurate classification labels,

define groups of k similar samples to a query point in the

features space, where similarity can be measured by the distance

in the neighborhood (37). The latter is based on finding

the optimal separation hyperplane in combination with the

maximization of the separating margin (38). Each algorithm

has been implemented by tuning the hyperparameters after

employing the Optimization Parameter Loop to find the best

combinations in terms of score. Particularly, for the SVM

algorithm, no weighted matrix of costs was used and a linear

kernel type was employed, for the RF algorithm, the number

of trees was set to 100 and the split criterion was based on

Information Gain Ratio, while for KNN algorithm, k was set to

3 and neighbors were weighted by 1-distance, where Euclidean

distance was considered.

Finally, algorithms performances were evaluated in terms

of accuracy, sensitivity, specificity, and Area Under the Curve

Receiver Operating Characteristics (AUCROC).

Results

Comparison of demographic, clinical,
gait, and amyloid PET features

The comparison of demographic and clinical features

between PD-MCI and noPD-MCI patients is provided in

Table 1. The two groups did not significantly differ on

demographic and anthropometric variables except for age.

When comparing clinical variables, the two groups showed

a trend toward significance on the Hoehn and Yahr stage

and the MDS-UPDRS Depressed Mood item. The comparison

of demographic and clinical features between PD-MCI and

noPD-MCI of the subgroup of patients undergoing amyloid

PET imaging showed similar results (Supplementary Table 1),

confirming the homogeneity between the subgroup and the

whole group.

The comparison of gait spatial and temporal parameters

during the COG task between PD-MCI and noPD-MCI is

reported in Table 2. PD-MCI as compared to noPD-MCI

patients showed worse gait parameters. In detail, PD-MCI

exhibited increased values of swing duration variability, stance

phase, double support phase, and step length variability.

Furthermore, PD-MCI patients exhibited reducedmean velocity

(both in meters per second and in the percentage of height per

second), step length, and cycle length (both in meters and in the

percentage of height).
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TABLE 3 Comparison of averaged SUVs evaluating amyloid PET tracer retention in brain areas in PD-MCI and noPD-MCI patients.

Side Brain area PD-MCI

(N = 19)

noPD-MCI

(N = 17)

p-value

Right Frontal 1.04± 0.42 0.91± 0.25 0.379

Parietal 1.05± 0.46 0.90± 0.24 0.379

Temporal 0.99± 0.42 0.91± 0.24 0.661

Occipital 1.05± 0.45 0.93± 0.23 0.552

Insula 0.92± 0.49 0.94± 0.39 0.950

Striatum 1.06± 0.43 0.99± 0.28 0.778

Cingulum 1.13± 0.53 1.05± 0.28 0.975

Thalamus 1.11± 0.49 1.04± 0.30 0.925

Posterior fossa 0.82± 0.27 0.77± 0.22 0.594

Left Frontal 1.03± 0.40 0.92± 0.23 0.433

Parietal 1.05± 0.47 0.94± 0.25 0.531

Temporal 0.99± 0.40 0.89± 0.24 0.531

Occipital 1.00± 0.46 0.93± 0.22 0.827

Insula 1.06± 0.47 0.89± 0.29 0.433

Striatum 1.07± 0.36 0.97± 0.32 0.552

Cingulum 1.06± 0.44 1.01± 0.35 0.925

Thalamus 1.20± 0.43 1.07± 0.38 0.300

Posterior fossa 0.87± 0.38 0.79± 0.22 0.707

SUV, standardized uptake values; PET, positron emission tomography; MCI, mild cognitive impairment.

A subgroup of PD patients, namely 36 subjects, including 19

PD-MCI and 17 noPD-MCI, underwent amyloid PET imaging.

As reported in Table 3, when comparing PD-MCI vs. noPD-

MCI, the two groups did not significantly differ on amyloid PET

tracer retention for all brain areas under examination.

Machine learning analysis

The evaluation metrics per each model and each algorithm

are summarized in Table 4.

Regarding Model 1, employing clinical and both spatial and

temporal gait variables during the COG task, SVM obtained

the best results in terms of accuracy (80.0%), sensitivity

(72.7%), specificity (85.7%), and ACUROC (79.2%), followed

by RF in terms of accuracy (73.3%), specificity (78.6%), and

AUCROC (72.2%).

Otherwise, regarding Model 2A, including Averaged SUVs

evaluating amyloid PET tracer retention of all brain areas

reported in section 2.4 and the top five features of Model 1

(step length, cycle length-%height, step length variability, mean

velocity, and stance phase), all the algorithms got worse results

than Model 1. Indeed, again the highest results were obtained

by SVM (accuracy = 72.2%, sensitivity = 73.7%, specificity =

70.6%, AUCROC = 72.1%). J48 also obtained good results in

terms of accuracy (72.2%), sensitivity (73.7%), and specificity

(70.6%), while KNN got the worst results in terms of sensitivity

(52.6%) and AUCROC (56.7%). When including in the model

only cortical amyloid PET tracer retention and the top five

features of Model 1 (Model 2B), evaluation metrics were quite

similar to Model 2A, as shown in Table 4.

Below, there is the feature importance of the top five features

chosen fromModel 1:

• Step length (m), 9.15%:

• Cycle length (%height), 7.54%;

• Step length variability (m), 7.38%;

• Mean velocity (m/s), 7.28%;

• Stance phase, 7.14%.

Figure 1 shows the Receiver Operating Characteristic

(ROC) curve of the SVM algorithm of Model 1, indicating

that the model is capable of distinguishing and correctly

classifying the two groups better than random guessing with a

probability p= 0.792.

Finally, Figure 2 shows the level of agreement among

classifiers’ scores and allows us to compare the best results for

each model of the analysis. It highlights that SVM is capable of

correctly classifying the two groups for all three models.

Discussion

To our knowledge, this is the first study exploring the

respective burden of different features commonly associated
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TABLE 4 Evaluation metrics per each algorithm and per each model, where Model 1 included clinical and gait features during the COG task, Model 2

included PET features (Model 2A included cortical and subcortical regions, Model 2B included only cortical regions), and the top five features of

Model 1.

Features Algorithms Accuracy Sensitivity Specificity AUCROC

Model 1 (n= 75) SVM 80.0 72.7 85.7 0.792

KNN 70.7 66.7 73.8 0.696

J48 73.3 66.7 78.6 0.639

ADA-B 70.7 57.6 81.0 0.685

RF 73.3 66.7 78.6 0.722

Model 2A (n= 36) SVM 72.2 73.7 70.6 0.721

KNN 66.7 52.6 82.4 0.567

J48 72.2 73.7 70.6 0.621

ADA-B 66.7 73.7 58.8 0.625

RF 63.9 73.7 52.9 0.573

Model 2B (n= 36) SVM 75.0 73.7 76.5 0.751

KNN 63.9 57.9 70.6 0.639

J48 69.4 68.4 70.6 0.636

ADA-B 63.9 57.9 70.6 0.693

RF 61.1 63.2 58.8 0.577

SVM, Support vector machine; KNN, k-nearest neighbor; J48, decision tree; ADA-B, adaBoost; RF, random forest.

with PD-MCI by using machine learning approaches with

the main aim of identifying the strongest indicators of PD-

MCI and, as a consequence, detecting a machine learning

algorithm able to distinguish PD patients with MCI from

those without. For this purpose, clinical features, gait variables

under dual-task conditions, and brain β-amyloid load were

first compared between noPD-MCI and PD-MCI patients using

univariate statistical analysis and then employed to implement

two multiparametric machine learning models.

When comparing demographic and clinical features

between noPD-MCI and PD-MCI patients, the latter showed

significantly older age and a trend on both more advanced stage

and increased depressive symptoms than the first, consistently

with previous findings (1, 39).

Following previous studies (12–15, 40), during the dual task,

PD-MCI, as compared to noPD-MCI patients, showed reduced

velocity, a raw measure underlain by multiple gait adaptations,

and exhibited dysfunctions on spatial gait variables, namely

reduced step length and, likely as a consequence, cycle length.

In addition, PD-MCI showed a longer stance phase, mostly

in double support, and increased measures of gait variability,

that is, swing duration variability and step length variability,

which are markers of dynamic unbalance (41). These findings

further corroborate the notion that dual-task conditions exert

detrimental effects on dynamic stability, especially in patients

with cognitive decline (16, 42, 43) with consequent increased

risk of falling. Importantly, since all patients were onmedication

during gait analysis, the increased gait dysfunctions observed in

PD-MCI vs. noPD-MCI might reflect their levodopa-resistant

nature, thus supporting widespread neurotransmitters deficits

beyond dopamine in PD patients with cognitive decline [for a

recent review, see (6)].

While comparing β-amyloid load in the subgroup of PD-

MCI vs. noPD-MCI, we failed to find any significant difference

in all examined cortical and subcortical areas. Indeed, our

findings are consistent with recent research that equally did not

support an association between increased Aβ deposition and

cognitive decline in PD (17, 18, 44). It is worth noting that

we compared the two groups on averaged SUVs evaluating β-

amyloid load as continuous variables, being the main aim of

the present study to use amyloid PET measures as continuous

features implementing machine learning models.

Previous recent studies focused on MCI in PD patients

throughmachine learning approaches. Abós et al. (45) employed

fMRI images to implement machine learning algorithms to

predict and classify PD patients with and without MCI,

achieving an accuracy of 82.6%.

Meanwhile, Tsiouris et al. (46) employed many

heterogeneous baseline variables (clinical features,

MRI/DatScan-SPECT imaging, laboratory results, and

genetic analysis) from newly diagnosed patients of the

Parkinson’s Progression Markers Initiative cohort to identify

risk factors for early cognitive impairment using machine

learning techniques. They found that older age, cognitive

dysfunction, sleep problems, daytime sleepiness, smell

dysfunction, mood impairment, and anxiety represent
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FIGURE 1

Receiver Operating Characteristic (ROC) curve of SVM algorithm (blue line); ROC = 0.5, threshold for considering the model better than random

guessing (black line). P(MCI 1/0 = 1) (orange line) is the probability of the model correctly classifying group 1, which corresponds to

PD-MCI patients.

strong determinants of the development of early MCI

or dementia in the first 5 years of PD with an accuracy

of 80.38%.

Differently, Chen et al. (47) implemented machine learning

models, using gait analysis parameters obtained from a portable

system, to distinguish PD-MCI patients from subjects with MCI

without PD, reaching really good results in terms of accuracy

(91.67%) and AUCROC (97.14%). The excellent accuracy of

these models may be mirrored by walking differences between

subjects with and without PD rather than gait differences

specifically related to the type of MCI.

Finally, in previous research, we used quantitative gait

features in both single and dual task to train algorithms with

a previous data-augmentation technique, due to small sample

size, and obtained good results in terms of accuracy (86.8%),

sensitivity (88.2%), and AUCROC (90.0%) in differentiating PD

patients with and without MCI (16).

In comparison with these previous researches, in the present

study, we implemented machine learning techniques with

multiparametric features that are commonly associated with

cognitive decline in PD but stemming from different sources,

namely selected clinical features, gait parameters under dual-

task condition, and β-amyloid load in cortical and subcortical

regions, to identify possible hidden patterns underpinning MCI.

When implementing the first model including age, clinical

features, and gait variables under dual task, we found that it

was able to distinguish PD-MCI from noPD-MCI with good

accuracy (80.0%), sensitivity (72.7%), specificity (85.7%), and

AUCROC (79.2%). Interestingly, the top five features chosen

fromModel 1 included only gait parameters, namely step length,

cycle length, step length variability, velocity, and stance phase,

thus corroborating that quantitative gait measures, especially

under dual-task conditions, may represent a reliable surrogate

biomarker of cognitive decline in PD (13, 14, 48). It is worth

noting that the gait parameters selected by Model 1 could

also be obtained by using a quick assessment like wearable

sensors, thus making it easy to apply our outcomes. Meanwhile,

Model 2A, which included cortical and subcortical amyloid PET

tracer retention values and the top five features of Model 1,

achieved worse evaluationmetrics (accuracy= 72.2%, sensitivity

= 73.7%, specificity = 70.6%, AUCROC = 72.1%), thereby

excluding that amyloid deposition might predict the presence
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FIGURE 2

Level of agreement among classifiers’ scores for each model of the analysis.

of MCI in PD, even when ruling out subcortical amyloid

PET tracer retention (Model 2B). Of note, we included in our

model the β-amyloid uptake ratio, indeed exploring whether

even low β-amyloid deposition, so below AD-range thresholds,

may play a role in the presence of an ongoing multisystem

neurodegenerative process like PD. Taken together, on the one

hand, our findings further demonstrate the close relationship

between specific gait parameters and MCI in PD, and on the

other, they do not support that β-amyloid deposition might have

a prominent role in the pathogenesis of MCI in PD.

From a speculative perspective, our results suggest that

peculiar gait alterations and cognitive decline are may be

underpinned by dysfunctions on common neural networks

including non-motor cortical and subcortical areas and non-

dopaminergic networks (49–52). It is worth noting that

discrete cognitive components, notably step length, step length

variability, and stance phase during medication and under dual

task, show specific association with MCI as demonstrated by

univariate statistical analysis and further confirmed by machine

learning implementation. Given that gait dysfunctions may

antedate cognitive decline in PD (13, 53), it is conceivable that

these gait measures might serve as early markers of future

cognitive decline. Conversely, clinical features and amyloid

deposition do not seem to represent reliable markers of early

cognitive dysfunction. The lack of association in our study

between clinical features, such as hallucinations/psychosis,

apathy, sleep disorders, anxiety, depression and FOG, and MCI

may be due to several reasons: (1) the reduced reliability of

MDS-UPDRS on measuring such symptoms; (2) the prominent

association of these features with more advanced cognitive

decline, that is, PDD (6); (3) the combination of both previous

explanations. Finally, our machine learning findings indicate

that the expression of walking abnormalities associated with

early cognitive decline is likely not mediated by β-amyloid

pathology, given that Model 2 (both A and B) as compared

with Model 1 exhibits even worse evaluation metrics in

MCI prediction.

The present study has some limitations. First, the small

sample size of amyloid PET data could have influenced

algorithms predictions of Model 2, thus assuming that the

present findings should be confirmed with larger samples.

Second, we did not include an age-matched control group in

our analysis, nonetheless, a direct comparison with a control

group was beyond the purpose of the present study. Third,

the selection criteria of our study could have contributed

to excluding a subpopulation of PD patients with worse

progression, namely early dementia and/or disabling gait

dysfunction, not allowing generalizing our conclusions to

PD patients with the malignant course. Finally, we rated

clinical non-motor features and FOG with the respective

MDS-UPDRS items, thereby using a five-point scale for

each symptom that could have affected the reliability of
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the feature quantification. In addition, though MDS-UPDRS

items may represent strength for screening mental non-motor

symptoms and building an easy algorithm, their accuracy

in capturing the presence and severity of such symptoms

is limited.

In conclusion, despite these limitations, here, we

demonstrate that a data mining approach using specific

clinical and quantitative gait variables exhibits high accuracy,

specificity, and sensitivity in predicting the presence of MCI

in PD, whereas gray matter amyloid PET tracer retention does

not appear to increase prediction. In addition, our results

provide a proof of concept that machine learning techniques

implemented with certain gait parameters might represent

a reliable surrogate biomarker of cognitive impairment

in PD.
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