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Based on the etiology, stroke can be classified into ischemic or hemorrhagic

subtypes, which ranks second among the leading causes of death. Stroke is

caused not only by arterial thrombosis but also by cerebral venous thrombosis.

Arterial stroke is currently the main subtype of stroke, and research on this

type has gradually improved. Venous thrombosis, the particular type, accounts

for 0.5–1% of all strokes. Due to the lack of a full understanding of venous

thrombosis, as well as its diverse clinical manifestations and neuroimaging

features, there are often delays in admission for it, and it is easy tomisdiagnose.

The purpose of this study was to review the pathophysiology mechanisms

and clinical features of arterial and venous thrombosis and to provide

guidance for further research on the pathophysiological mechanism, clinical

diagnosis, and treatment of venous thrombosis. This review summarizes the

pathophysiological mechanisms, etiology, epidemiology, symptomatology,

diagnosis, and treatment heterogeneity of venous thrombosis and compares

it with arterial stroke. The aim is to provide a reference for a comprehensive

understanding of venous thrombosis and a scientific understanding of various

pathophysiological mechanisms and clinical features related to venous

thrombosis, which will contribute to understanding the pathogenesis

of intravenous stroke and provide insight into diagnosis, treatment,

and prevention.

KEYWORDS

cerebrovascular disease, arterial stroke, cerebral venous thrombosis, dural sinus

thrombosis, venous stroke

Introduction

Stroke is a major cause of disability and mortality worldwide and the second leading

cause of death in the United States (1, 2). The ischemic stroke accounts for the 87%

of all cases, which results from the cerebral arteries occlusion due to thrombosis,

atherosclerosis and platelets plug (3). Thrombosis also form in cerebral venous, which

is termed as cerebral venous thrombosis(CVT), a particular type of cerebrovascular

disease, characterized by intracerebral hemorrhage and infarction, associated with

increased intracranial pressure due to cerebrospinal fluid absorption and cerebral venous
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drainage, accounting for 0.5–1% of strokes (4). To date, there

are more extensive and comprehensive studies on arterial

thrombosis, with few clinical and basic studies on venous

thrombosis, which greatly limits our understanding of venous

thrombosis and the development of related drugs. In this review,

we summarize the etiology, pathogenesis, symptomatology,

diagnosis, and treatment heterogeneity of venous thrombosis

based on current studies.

Molecular pathological hallmarks of
ischemic stroke

Hypoxia-an essential aspect of arterial
stroke and cerebral venous thrombosis

Hypoxia and ischemia of the brain are key

pathophysiological mechanisms of ischemic stroke (5, 6).

Hypoxia caused by impaired blood circulation can be referred

to as circulatory hypoxia, which are classified as ischemic

hypoxia and congestive hypoxia. Ischemic hypoxia is caused

by an impaired arterial blood supply, whereas congestive

hypoxia results from an impaired venous return. Hypoxia is

caused by the sudden decrease in cerebral blood flow due to

ischemic stroke (5), resulting in hypoxia-inducible factor-1

(HIF-1) production (7), oxidative and nitrative stress (8, 9),

excitotoxicity (10, 11), metabolic abnormalities (12, 13),

inflammation (14, 15), Ca2+ overload (16), cerebral edema and

blood–brain barrier (BBB) disruption (17) (Figure 1).

FIGURE 1

The molecular pathological hallmarks of arterial stroke and cerebral venous thrombosis.

HIF-1

HIF-1, including HIF-1α and HIF-1β, is an important

regulator of hypoxia in stroke and participates in the

pathological process of stroke by regulating glucose metabolism,

angiogenesis, erythropoiesis and cell survival (18–20). Li

et al. found that HIF-1α attenuates neuronal apoptosis by

upregulating erythropoietin in rats with cerebral ischemia

(21). Moreover, under hypoxic conditions, HIF-1 dynamically

regulates reactive oxygen species (ROS) production via the

glycolytic pathway and tricarboxylic acid cycles (22). Using a

model of permanent middle cerebral artery occlusion (MCAO),

Marti et al. demonstrated that hypoxia-induced upregulation of

HIF-1 and HIF-2 increases expression of vascular endothelial

growth factor (VEGF), thereby promoting neoangiogenesis (23).

However, bidirectional roles of HIF-1 in different cells. After

stroke, HIF-1 induces production and secretion of cytokines

and chemokines, which in turn exacerbate inflammatory injury

(19, 24). Moreover, Koh et al. verified that hypoxia-triggered

neutrophil migration is decreased in HIF-1α-deficient mice,

which is an important factor in regulating brain injury (25).

Wang et al. found that inhibition of HIF-1 expression reduces

BBB damage (26). In general, the beneficial or detrimental effects

of HIF-1 on stroke depend on the duration and severity of

hypoxia in arterial stroke and CVT.

Oxidative and nitrative stress

Brain ischemia and hypoxia can produce oxygen free

radicals (ORFs), lipid radicals, and reactive nitrogen species
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(RNS). When these free radicals exceed the endogenous

scavenging capacity, cells undergo oxidative stress and nitrative

stress, resulting in apoptosis, autophagy and necrosis (27). ORFs,

such as ROS and nitric oxide synthase (NOS), are affected

by nicotinamide adenine dinucleotide phosphate (NADPH)

oxidase (28), mitochondrial depolarization (29), nitric oxide

synthase (30) and xanthine oxidase (31), thus triggering a ROS

surge. ROS not only mediate cellular structural damage but

also alter vascular permeability, dilate diastolic blood vessels,

disrupt the BBB and lead to focal brain damage (32). It

was demonstrated that accumulation of lipid ROS leads to

intracellular oxidative stress and iron death after stroke, which is

a pathway of nonapoptotic cell death mediated by iron (33, 34).

Nitric oxide (NO) is a type of RNS generated by NOS (35).

Serrano-Ponz et al. recorded and collected the data and clinical

history of patients (n = 76) with acute ischemic stroke and

monitored certain parameters. They found that an increase in

nitric oxide metabolite (NOx) levels from Day 1 to Day 2 was

beneficial (odds ratio (OR) = 0.91) but that a sharp increase in

NOx levels from Day 2 to Day 7 was detrimental, and levels of

NOx were associated with an increase in infarct volume (36).

However, studies on stress responses to intravenous stroke are

lacking overall.

Excitotoxicity

Excitotoxicity occurs when oxygen is insufficient to support

aerobic respiration of mitochondria after cerebral ischemia

(5). Disorders of energy metabolism inhibit the activity of

sodium-potassium adenosine triphosphate (ATP)ase, resulting

in decreased ATP synthesis and an imbalance of ionic gradients

inside and outside nerve cells (37). According to Pietrogrande

et al., low oxygen post-conditioning limits excitotoxicity-

induced neuronal death and promote neuronal survival after

secondary injury (38). In addition, ischemic stroke is associated

with release of glutamate in the brain (39). During ischemia,

excessive release of glutamate results in cell death. Using an

animal model of MCAO, Campos et al. showed that activation

of glutamate oxaloacetate transaminase inhibits the increase

in glutamate after cerebral ischemia (40). Infarct size, edema

volume, and sensorimotor deficits are significantly reduced as a

result of the activation of glutamate oxaloacetate transaminase

(40, 41). Fang et al. examined the effects of histamine on

expression of glutamate transporter-1 (GLT-1) in an adult

rat model of MCAO and found that inhibition of GLT-1

expression reduces excitatory toxicity (42). Notably, the role of

excitotoxicity in CVT has not been proven and needs to be

further investigated.

Metabolic abnormalities

Mitochondria are important organelles involved in energy

metabolism (43). ATP produced by mitochondria cannot

maintain the energy balance of neurocytes during ischemia and

hypoxia after stroke, resulting in cell death (44). Moreover,

mitochondrial homeostasis depends on mitophagy and the

balance between mitochondrial fission and fusion (45). Grohm

et al., reported that mitochondrial fission cause neuronal death

after ischemic stroke and that inhibition of Drp1, a regulator

of mitochondrial fission, protects neurons from glutamate

excitotoxicity and reduces the infarct volume in a mouse model

of transient focal ischemia (46). Importantly, on the basis of an

MCAO rat model, peroxynitrite aggravates cerebral injury by

recruiting Drp1 to damagedmitochondria to activate mitophagy

(47). Therefore, mitochondria are potential therapeutic targets

for treatment of ischemic stroke. For example, pramipexole

restores neurological function though mitochondrial pathways

in ischemia/reperfusion injury, such as reducing mitochondrial

ROS and Ca2+ levels and improving mitochondrial oxidative

phosphorylation (48). However, the tentative nature of impaired

mitochondrial metabolism in CVT remains unknown and

requires experimental confirmation. In general, there is still a

lack of research on metabolic abnormalities in CVT.

Inflammation

Inflammation may be triggered by various factors after

cerebral ischemia, including vascular obstruction, necrotic

cells, and tissue injury (49–51). Different types of cells,

cytokines and receptors are all involved in inflammatory

processes (27). Neutrophils are among early infiltrators into the

ischemic stroke brain, increasing within hours of onset and

peaking after 1–3 days (52). Activated microglia can induce

an inflammatory response. Hyperactivated microglia produce

many toxic substances, such as tumor necrosis factor α (TNF-α),

interleukin-1β (IL-1β), interferon-γ, IL-6 and ROS, promoting

neuronal death (53). Microglia are targets for IGF-1, and the

neuroprotective effects of IGF-1 may be mediated by the down-

regulation of inflammatory mediators (54). In addition, studies

have shown that expression of proinflammatory cytokines

and chemokines is increased after stroke. IL-1 (15), TNF-

α (55) and IL-6 (56) play important roles in stroke. It has

been shown that Toll-like receptors (TLRs) play a role in

the inflammatory response by initiating different downstream

inflammatory cascades that cause tissue damage. Therefore,

these receptors might mediate brain damage following ischemia

(57, 58).

TLR2 and TLR4 overexpression is associated with poor

outcome and inflammatory response in acute ischemic stroke,

and TLR4 is also associated with infarct volume. Importantly, as

TLR2- and/or TLR4-neutralizing antibodies impair the induced

increase in expression of inflammatory markers in cultured

serum cells, TLRs can be regarded as therapeutic targets for

ischemic stroke (59). Similar results have been obtained in

animal experiments (60).
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Additionally, several inflammatory factors play an important

role in the development of CVT. As demonstrated by van Aken

et al., IL-8 concentrations in plasma above the 90th percentile

lead to a 1.9-fold increased risk of venous thrombosis (61).

Akbari et al. found that the plasma level of IL-6 in patients

with cerebral venous sinus thrombosis was significantly higher

than that in patients without thrombosis (62). In addition,

proinflammatory cytokines such as IL-6 and IL-8 were found to

be elevated in patients with idiopathic venous thrombosis (63).

However, the role of inflammation in brain injury after CVT

requires further research.

Ca2+ overload

Ca2+ overload has been proven to be involved in the

neurotoxic effects of excitotoxicity (64) and oxidative stress (65).

Zheng et al. have demonstrated that platelet-derived growth

factors counteract the neuroprotective effects of oxidative

stress by inhibiting Ca2+ overload (66). Moreover, hypoxia

can alter intracellular Ca2+ channels, such as the Na+/Ca2+

exchanger, L-type voltage-dependent Ca2+ channel, and inositol

triphosphate receptor (IP3R) (16). Compensation with miR-

132 attenuates the hypoxia-induced increase in Na+-Ca2+

exchanger 1 (NCX1) expression and decreases apoptosis in

cardiomyocytes by preventing Ca2+ overload (67). Li et al.

reported the beneficial effects of IP3R deletion in neuronal

protection and reduction of cerebral dysfunction after stroke

through disruption of Ca2+ signaling in astrocytes (68). The

mechanism of Ca2+ overload in CVT remains elusive.

Cerebral edema and BBB disruption

Both arterial stroke and CVT are associated with disruption

of the BBB and edema of the brain (69–71). Brain edema can be

divided into three types based on severity: cytotoxic edema, ionic

edema, and vasogenic edema (72, 73). Following ischemic injury,

cytotoxic edema caused by adenosine triphosphate depletion

disrupts Na+/Ca+ and/or Na+/K+ channels, resulting in

intracellular cation accumulation to equalize ion concentrations

without disrupting the BBB (72, 74, 75). Ionic edema, also

known as iatrogenic cerebral edema, occurs before the BBB

is damaged, and the main sources of edema in the peri-

infarct region are the blood and cerebrospinal fluid (72,

76, 77). Furthermore, vascular-derived brain edema occurs

at the end of the ischemic cascade. Neuronal death and/or

damage caused by cerebral ischemia results in the production

of reactive oxygen species, activation of immune cells and

release of inflammatory factors, thereby breaking the BBB.

After peripheral immune cells invade the brain parenchyma

through the BBB, secretion of proinflammatory factors and

permeability of the BBB increase, resulting in vasogenic edema

(78, 79).

Molecular pathological hallmarks of
hemorrhagic stroke

Hemorrhagic stroke (HS) presents more abruptly and

induces more severe complications than ischemic stroke (1).

The following discusses critical pathophysiology mechanisms in

intracerebral hemorrhage after an arterial hemorrhagic stroke,

such as oxidative stress (OS), inflammation, iron toxicity, and

thrombin formation (80). Based on this, we speculate on the

pathophysiology of venous hemorrhagic stroke.

Oxidative stress

Oxidative stress has been increasingly acknowledged as

having an essential role in secondary brain injury following

hemorrhagic strokes (80). Blood cell decomposition products,

for instance, iron ions, heme, and thrombin can cause

brain damage by producing free radicals (34, 81). Secondly,

inflammatory cells, such as neutrophils and microglia, can

produce free radicals after hemorrhagic strokes (82). During

the inflammatory response triggered by hemorrhagic strokes,

neutrophils become stimulated and activated, activating the

respiratory chain, and releasing profound ROS, nitric oxide, and

so on (83).

Inflammation

Physiologically, microglia and macrophages regulate the

surrounding microenvironment and promote the stability

of BBB, neurons, and matrix. When cerebral hemorrhage

strokes, excessive microglia and macrophages release numerous

inflammatory factors and trigger inflammatory cascades,

resulting in pathological changes like BBB injury, edema, and

cell death (80). Venous hemorrhagic stroke is not excluded.

Following CVT, activated microglia release cytokines, resulting

in brain injury, including disruption of the BBB, cerebral venous

infarction, and brain edema (84). Immune cells are intensely

activated, particularly microglia; macrophage activity increases

are proven by Rashad et al. (71). Inflammation plays an essential

role in venous hemorrhagic stroke injury, but further research

is required.

Cytotoxicity of erythrocyte lysates

Within 24 hours of a cerebral hemorrhage, large amounts

of hemoglobin-containing red blood cells leak into the brain’s

parenchyma, where they are broken down, which causes

hemoglobin to disintegrate into heme and iron is a significant
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contributor to brain injury affected by hemorrhagic stroke

(81, 85). Inflammation, oxidation, nitric oxide scavenging, and

edema are the primary mechanisms for brain injury caused

by erythrocyte lysates (80). Firstly, HO-1, the critical enzyme

for heme degradation, is expressed primarily in microglia

after intracerebral hemorrhage and may further exacerbate

brain damage by activating microglia and accumulating iron

(85). Secondly, free radicals generated by iron may also cause

tissue damage. Yeatts et al. confirmed that the iron chelator

deferoxamine mesylate has multiple neuroprotective effects,

including the reduction of perihematomal edema and neuronal

damage, and enhances functional recovery after experimental

intracerebral hemorrhage (86). Thirdly, hemoglobin

depletes nitric oxide rapidly, triggering microthrombosis

in subarachnoid hemorrhage and leading to brain damage

(87). Finally, Wang et al. used the intracranial hemorrhage

rat model to evidence that hemoglobin and its decomposition

products are leading causes of edema (88). All in all, reducing

iron accumulation and erythrocyte lysate toxicity is valuable

in treating arterial hemorrhagic stroke; however, the same

mechanism should be applicable for venous hemorrhagic stroke,

but more research is needed to confirm it.

Thrombin formation

Earlier animal studies demonstrated that intracerebral

injection of whole blood rendered brain damage, whereas

injection of an inert substance did not produce this effect

(89). Furthermore, whole blood injections induce brain injury

within 24 hours, as opposed to concentrated blood cells,

serum, or unclotted blood plasma (90). Similarly, intracerebral

infusions of unheparinized blood results in perihematomal

edema formation, while heparinized blood injections do not

(91). These findings support the hypothesis that coagulation

cascade and clotting may induce brain injury following HS.

Thrombin, a prominent part of the coagulation cascade,

produces immediately after ICH induction in the brain (92).

Thrombin’s poisonous or protective effects differ depending on

its concentration; infusion of large amounts of thrombin directly

into the brain produces inflammation, increased mesenchymal

cells, brain edema, scar tissue, and seizures (93, 94). Brain

impairments such as cerebral edema and BBB destruction may

also occur in venous hemorrhagic strokes. We speculate that

thrombin formation may also participate in CVT.

The clinical heterogeneity of
cerebral venous thrombosis

CVT is a specific subtype of stroke with heterogeneous

clinical manifestations. In the following sections, we describe

the epidemiology, etiology, risk factors, pathological damage,

clinical manifestations, diagnosis, treatment, and prognosis

of CVT.

Epidemiological characteristics of CVT

Stroke is a significant cause of disability and vascular death

worldwide (95), and∼85% of strokes in adults are ischemic (96).

According to a report from the American Heart Association

published in 2021, the prevalence of stroke in adults in the

United States is 3.4%; the global average lifetime stroke risk rose

to 24.9% in 2016 and continues to rise (97). The incidences

of CVT and ischemic stroke reported in several studies vary.

CVT is an uncommon cerebrovascular event that accounts

for 0.5–1% of all strokes in adults (98). At present, there

are few epidemiological studies on CVT worldwide, and its

true incidence is unknown. According to recent studies in the

Netherlands and Australia, the incidence ranges from 13.2 to

15.7/1,000,000 annually (4, 99, 100).

Special etiology and risk factors for CVT

Risk factors for stroke can be classified as modifiable or

nonmodifiable. In general, risk factors for CVT and ischemic

stroke have different characteristics (101, 102). Numerous

case–control and cohort studies have shown that age, sex,

race/ethnicity, and genetics are unmodifiable risk factors for

stroke. Thus, there are significant differences in the distribution

of the affected population (103–105). Based on a retrospective

cohort study of 162 patients, we conclude that CVT primarily

affects young adults and children, with a mean age of onset of

42 (±17) years; 70% of patients were younger than 50 years,

and 72% were female (106). American Heart Association data

indicate that the incidence of ischemic stroke increases with age,

and women have a greater lifetime stroke risk than men (107).

Sex differences exist because women have specific risk factors,

such as oral contraceptive use, pregnancy or puerperium, and

hormone replacement therapy (108). A retrospective cohort

study by Otite et al. indicated that the incidence of CVT differs

by race (Blacks: 18.6–27.2; Whites: 14.3–18.5; Asians: 5.1–13.8)

(105). In addition, among 3,298 Northern Manhattan Study

participants, Blacks had the highest incidence of stroke, followed

by Hispanics and Whites. Thus, stroke is more common in

Blacks (hazard ratio (HR) = 1.51, 95% confidence interval (CI),

1.13–2.02) (109).Studies of genetic etiology provides important

new insights into the pathophysiology of CVT (110). A genome-

wide association study based on 882 patients with CVT, and

1,205 ethnicity-matched controls identified an association with

37 single nucleotide polymorphisms within the 9q34.2 region,

this region more than doubled the likelihood of CVT, a greater

risk than any previously identified genetic risk marker for

thrombosis (111).
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Different subtypes of stroke are influenced by different

risk factors. Regarding risk factors for CVT, in a 12-year

retrospective analysis of 83 patients with CVT, 24.1% had

infection-associated CVT, with cavernous sinus thrombosis

being the most common cause (112). As demonstrated in a

case–control study involving 6278 controls and 594 patients

with CVT, the risk of CVT in cancer patients was higher than

that in those without cancer (odds ratio (OR) = 4.86; 95%

CI = 3.46-6.81) (113). Additionally, patients with hematologic

cancer have a significantly higher risk (114). The International

Study of CVT (ISCVT) also identified lumbar puncture as a risk

factor (115); head trauma and surgery are significant factors that

should not be ignored (116). Bechchet’s disease (9.4%), systemic

lupus erythematosus (1.4%), antiphospholipid syndrome (0.6%),

iron deficiency anemia (3.2%), ulcerative colitis (n = 2) and

dehydration (n = 3) were risk factors for CVT in a multicenter

study of 1,144 patients with cerebral venous thrombosis (117).

A meta-analysis conducted by Dentali et al., reported odds

ratios for Factor V Leiden mutation of 3.38 (95% CI, 2.27

to 5.05), mutation G20210A of 9.27 (95% CI, 5.85 to 14.67)

and hyperhomocysteinemia of 4.07 (95% CI, 2.54 to 6.52)

(118). Protein C deficiency increases the risk of CVT by 10.7-

fold (3.1–37.7), protein S deficiency by 5.7-fold (1.4–22.4) and

antithrombin deficiency by 3.8-fold (1.0–13.8) (119) (Figure 2).

Studies of risk factors associated with ischemic stroke are

shown below. According to a worldwide meta-analysis that

included 17,663 patients from 32 cohorts in 29 countries, the

most important risk factor for stroke is hypertension (Blacks is

52.1%, Asian is 46.1%) (120). In the Northern Manhattan Study,

the risk of ischemic stroke was associated with the duration

of diabetes (adjusted HR = 1.03 per year with diabetes; 95%

CI, 1.02–1.04), and patients with diabetes for more than 10

years had three times the risk compared with those without

diabetes (121). The Oxford Vascular Study showed that the

incidence of atrial fibrillation associated with ischemic stroke

increased with age (122). In a prospective study conducted on

individuals without a history of stroke, transient ischemic attack,

or coronary heart disease, the researchers found that low-density

lipoprotein cholesterol (LDL-C) was positively associated with

ischemic stroke. Furthermore, lowering LDL-C to 1 mmol/L

with statins may reduce the risk of ischemic stroke (123). The

relative stroke risk for one cigarette a day is 1.25 (1.13–1.38) for

men and 1.31 (1.13–1.52) for women (124).

Intracranial hypertension caused by
venous thrombotic obstruction is
characteristic pathological damage in
CVT

Venous return obstruction may result from thrombosis

of the cortical cerebral veins, deep cerebral veins, or dural

venous sinuses. In contrast to isolated cerebral venous

cortical thrombosis, most cortical venous thrombosis occurs in

combination with dural venous sinus thrombosis (125). Deep

cerebral vein thrombosis generally involves the intracerebral

veins and the Galen veins. Approximately 60% of cerebral

venous sinus thrombosis (CVST) patients have multiple dural

venous sinuses (4). A multicenter clinical study of CVST in 624

patients found the superior sagittal sinus (62%), transverse sinus

(41.2–44.7%), straight sinus (18%), and cavernous sinus (1.3%)

to be the most commonly affected sites (126). The consequence

of venous cerebral infarction is that venous pressure increases,

capillary perfusion pressure decreases, cerebral blood volume

increases, and intracranial pressure increases (127). Headache is

a common symptom in the acute stage of cranial hypertension

after cerebral vein occlusion. This is typically a sharp or pulsing

pain through the head, both the forehead and top of the

head. The headache can be aggravated by coughing, bending,

the Valsalva maneuver and elevated cranial hypertension after

exertion or even lying down (70). In addition to headaches,

visual impairment can manifest, including visual field defects

and optic papilledema (128). Symptoms of visual impairment

may include swelling, elevation, and blurring of the optic disk,

followed by bruising, hemorrhage and even retina infarction,

which are due to increased pressure of cerebrospinal fluid in

the optic nerve sheath and stagnation of the axoplasmic flow of

nerve fibers (129).

It is also worth noting that infarction and hemorrhage

are the most significant determinants of neuronal damage and

patient prognosis (130). Compared with arterial thrombosis,

venous thrombosis is associated with a tendency toward

more frequent bleeding due to increased venous and capillary

pressure after venous obstruction. Approximately 10–50%

of patients with venous occlusion have combined infarction

and hemorrhage, mostly at the gray–white matter-cortical

junction (131). There is a direct relationship between arterial

cerebral occlusion and thrombosis. Arterial cerebral occlusion

causes irreversible damage, and imaging typically reveals a

small penumbra, whereas venous cerebral occlusion involves

unbalanced thrombosis and thrombolysis, yet most regions of

the brain are only functionally or metabolically affected and not

permanently damaged (132).

Vascular malformation as cause of venous hypertension

(133). Dural arteriovenous fistula (DAVF) is a kind of

vascularmalformation characterized by an abnormal connection

between an artery and vein within the dura (134). A reopening

of preexisting physiological arteriovenous channels or hypoxia-

induced stimulation of neoangiogenesis by venous hypertension

has been proposed as pathogeneses of DAVF resulting from

CVT (133, 135, 136). Lindgren et al. demonstrated that DAVF

occurred in ∼2% of CVT patients and was correlated with

chronic CVT onset, aging, andmale gender according to the data

from the international cerebral venous thrombosis consortium

(137). Arteriovenous malformations (AVM)’ pathogenesis
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FIGURE 2

Clinical diagnosis and treatment of CVT.

resembles that of DAVF, the relationship of CVT with AVM

scarcely has been reported (138).

Intracerebral hemorrhage and infarction
of CVT

Cerebral edema and increased intracranial pressure

may develop; thus, hemorrhagic, and ischemic lesions

cannot be avoided (139). Venous hemorrhagic stroke-related

intracranial hemorrhage appears inhomogeneous surrounded

by irregular margins and occurs frequently in the parietal

and parietooccipital brain regions adjacent to the cortical

and subcortical layers (140). In the VENOST study, of 1,193

patients with CVT, 198 patients had hemorrhagic infarction, 43

patients had intracerebral hemorrhages, acute mode of onset

was prominent, neurological symptoms included epileptic

seizures (46.9%), altered consciousness (36.5%), nausea and

vomiting (36.5%), and focal neurological deficits (33.6%) (p

≤ 0.001) (141). In approximately one-third of CVT patients,

intracerebral hemorrhages are associated with poor prognoses

and severe presentation (141, 142).

Clinical manifestations of CVT

There are also differences in the clinical manifestations

of arterial stroke and CVT (143, 144), with the clinical

manifestation of ischemic stroke depending on the site of

thrombosis. For example, lesions in the anterior cerebral artery

involve symptoms of urinary incontinence, apraxia of gait

and motor mutism; lesions in the middle cerebral artery may

include hemianopia, impaired movement of arms and legs,

aphasia and inattention; lesions in the vertebrobasilar artery

are associated with hemianopia, brainstem cranial nerve palsy,

ataxia, nystagmus and hemiplegia; and lesions in the small blood

vessels are related to lacunar stroke syndrome (145).

In addition to the clinical manifestations of stroke similar to

those of arterial stroke, CVT involves high cranial pressure and

specific clinical manifestations (117). The most common clinical
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manifestation of CVT is cranial hypertension, as represented by

headache and visual impairment (146). Headache is associated

with CVT in at least 85% of patients (147). It usually presents

as acute or pulsating pain in the holocranial, forehead, or

vertex, which may be isolated or accompanied by other signs

or symptoms (148). Visual impairment, including visual acuity

impairment, visual field defects and optic papillary edema (129).

Acute optic papillary edema was present in 28% of patients

during the ISCVST study (126). In the VENOPORT study,

13% of patients had visual impairment, and 2% had significant

vision loss (149). Epilepsy (150), psychological and cognitive

impairment (151), and dural arteriovenous fistula (152) are also

specific clinical manifestations of CVT.

Challenges in the diagnosis of CVT

The clinical and radiological characteristics of CVT are

nonspecific, which delays diagnosis and subsequent treatment

(153). Therefore, cases of CVT have a high rate of under- and

misdiagnosis, and the median time from onset to diagnosis

is ∼7 days (144, 154). On the contrary, as ischemic stroke

is a condition with a narrow treatment window, rapid

diagnosis and prioritization are necessary. Computerized

tomography (CT)/computerized tomography venography

(CTV) and magnetic resonance imaging (MRI)/magnetic

resonance venous imaging (MRV) can be used as the preferred

examination methods for arterial and CVT. Digital subtraction

angiography (DSA) is the gold standard for both diagnosis

(4, 155) (Figure 2). Aside from imaging studies, the necessary

hematology, coagulation, and biochemical tests should be

performed (4) (Figure 2). In a prospective study of 34 patients

with acute CVT, other auxiliary tests, such as D-dimer levels,

had a sensitivity of 94.1% and specificity of 97.5% for the

diagnosis of stroke (156).

Cranial computed tomography/computed
tomography venography

The direct signs of CVT on noncontrast CT are often

referred to as the “dense clot sign” or “cord or string sign,”

that is, the high-density shadow of thrombi in the cerebral

sinus and veins (157). Within two weeks, the density of the

thrombus gradually declines to the average level (158). Contrast-

enhanced CT help assess the venous sinuses and cortical veins

filling defects, changes in collateral venous drainage, and the vein

(sinus) walls (159, 160). The specific sign on contrast-enhanced

CT is called the “empty delta sign,” indicating superior sagittal

sinus thrombosis (161). Hemorrhagic infarction, brain edema

and mass effect are common indirect CT signs, which are more

common than direct signs (162). A meta-analysis indicated a

sensitivity of 0.79 and specificity of 0.90 for CT (163). CTV

can diagnose cerebral sinus thrombosis accurately, but its use

in the diagnosis of cortical vein thrombosis is limited (164).

The preferred diagnostic modalities for ischemia are CT and

MRI, CT with sensitivities of 57–71% in the first 24 h compare

to MRI (165). In addition to assessing acute ischemic stroke,

noncontrast CT can be used to evaluate acute infarct size. The

method for quantifying the size of the infarct is the Alberta

Stroke Programme Early CT Score (166, 167). CT angiography is

the first choice to detect intracranial large vessel occlusion, with

a sensitivity approaching 100% (168).

Cranial magnetic resonance imaging /magnetic
resonance venous imaging

MRI and CT can show the same direct and indirect signs,

but MRI has advantages in comparison to CT in detecting

parenchymal lesions and cerebral edema (169). Thrombus

appearances on different MRI sequences are dependent on the

time of evolution (170). On T1-weighted images, it appears

isointense within 5 days; on T2-weighted images, it seems

hypointense. The thrombus becomes hyperintense on both T1

and T2 sequences within 6–15 days. After 15 days, they turn

isointense on T1 and iso- or hyperintense on T2 sequences.

Upon examination of T1 and T2 sequences four months

later, no abnormalities were detected (170). Diffusion-weighted

imaging can distinguish between vasogenic and cytotoxic

oedemas (152). A study of 23 patients with cerebral venous

thrombosis confirmed by the novel magnetic resonance black-

blood thrombus imaging (MRBTI) method showed that MRBTI

can be successfully used as first-line diagnostic imaging (171,

172). Time-of-flight MRV (TOF-MRV) and contrast-enhanced

MRV(CE-MRV) are two of the most frequently used MRV

techniques. CE-MRV provides better visualization of cerebral

venous anatomy without being dependent on blood flow signals,

therefore, more sensitive than TOF-MRV, but less sensitive to

isolated cortical venous thrombosis (161, 173). Compared with

CT,MRI has a sensitivity of 73–92%within 3 h and close to 100%

within 6 h (168). Based on a prospective study of 267 patients,

MRI was more sensitive than CT in diagnosing acute ischemic

stroke with large vessel occlusion (174).

Digital subtraction angiography

Ultimately, DSA is the gold standard for diagnosis (175).

Nevertheless, with the development and widespread application

of imaging technology, invasive DSA is rarely required to

diagnose CVT. DSA is recommended if the non-invasive

imaging examination is uncertain, endovascular treatment is

considered, or DAVF is suspected (4).
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Treatment of CVT

General treatment

The first step in the treatment of CVT is to actively treat

the primary disease. If anticoagulation is not contraindicated in

patients with CVT, it should be performed as soon as possible,

and low molecular weight heparin should be used in the acute

phase (4) (Figure 2). This view has been confirmed by a meta-

analysis involving 79 patients (176). The oral anticoagulant

warfarin should be taken after the acute phase. Direct oral

anticoagulants (DOACs) like dabigatran are most likely to

provide benefits in treating CVT (177). Among 845 CVT

patients in a multicenter international retrospective study,

33.0% received DOACs alone, 51.8% received warfarin alone,

and 15.1% received both treatments simultaneously (178).

Compared with warfarin treatment, DOACs were linked with

an analogous risk of recurrent venous thrombosis (aHR, 0.94;

P = 0.84) but a lower risk of significant hemorrhage (aHR,

0.35; P= 0.02) (178). Another international retrospective cohort

study of 766 patients with CVT, showed an overall incidence

of 35.1 recurrences per 1,000 patient-years (95% CI, 27.7–40.4)

after discontinuation of anticoagulant therapy, indicating that

oral anticoagulants are effective at reducing the recurrence and

mortality of CVT (179). Nevertheless, the efficacy of new oral

anticoagulants remains to be further observed.

Endovascular therapy

Endovascular therapy has therapeutic value for both venous

and arterial stroke (180, 181). Anticoagulation is not always

effective in patients with CVT, so endovascular treatment

(EVT) may be beneficial for these patients (182) (Figure 2).

In a systematic review of 26 patients, local thrombolysis was

found to be beneficial but associated with a certain risk of

bleeding (183). Thrombolysis or Anticoagulation for Cerebral

Venous Thrombosis (TO-ACT) studied the use of neuro

intervention vs. conventional treatment in patients with severe

CVT (characterized by deep venous involvement, intracranial

hemorrhage, Glasgow coma score (GCS) < 9), 67 participants

were randomized, the trial was terminated early for futility

due to no difference in the modified Rankin Score(mRS) at 12

months (67 vs. 68%; RR 0.99, 95% CI 0.71–1.38) (184). EVT

has not yet been proven effective in patients with CVT based

on the available evidence, the data of EVT in CVT are derived

from some small retrospective studies, patients weren’t assigned

randomly, and the study was probably influenced by disease

severity, thus prone to bias (184–186).

Prognosis of CVT

The overall prognosis of CVT is favorable. The VENOST

study of 1,144 patients with CVST showed that 78.4% had a

modified ranking scale (mRS) of 0–1, 11.7% had an mRS of

2, and 10.0% had an mRS of 3–5 (117). The ISCVST study

followed CVST patients for 6 months after discharge and

found that 78.1% recovered completely, with an mRS of 0–

1, 8.0% had a partial recovery, with an mRS of 2, and 14.0%

had functional disability or died, with an mRS of 3–6 (187).

Ischemic stroke is incurable, has a poor prognosis and is often

accompanied by complications. A total of 76.9% of patients

had at least one complication, and 20% experienced three or

more (188). A cohort study of 1,075 patients who underwent

rehabilitation after stroke in Poland confirmed that the most

common complication of ischemic stroke is urinary tract

infection (23.2%), followed by depression (18.9%), falls (17.9%),

unstable hypertension (17.6%) and shoulder pain (14.9%) (188).

Conclusion

As a particular type of stroke, CVT is usually considered a

disease with favorable outcomes, mostly occurring in young and

middle-aged patients; however, at least 13% of all patients die

or are severely handicapped. The traditional pathophysiological

mechanisms of strokes have focused on the results due to artery

thrombosis and fail to deeply explore the process and results

of cerebral venous thrombosis. Compared with arterial stroke,

cerebral venous thrombosis characterized by intracerebral

hemorrhage with infarction, which might be termed as venous

stroke needs to be further studied.
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