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Background: White matter hyperintensities (WMHs) are a subtype of cerebral

small vessel disease and can be divided into periventricular WMHs (pvWMHs)

and deep WMHs (dWMHs). pvWMHs and dWMHs were proved to be

determined by di�erent etiologies. This study aimed to develop a 2D Cascade

U-net (Cascade U) for the segmentation and di�erentiation of pvWMHs and

dWMHs on 2D T2-FLAIR images.

Methods: A total of 253 subjects were recruited in the present study. All

subjects underwent 2D T2-FLAIR scan on a 3.0 Tesla MR scanner. Both

contours of pvWMHs and dWMHs were manually delineated by the observers

and considered as the gold standard. Fazekas scale was used to evaluate

the burdens of pvWMHs and dWMHs, respectively. Cascade U consisted of

a segmentation U-net and a di�erentiation U-net and was trained with a

combined loss function. The performance of Cascade U was compared with

two other U-net models (Pipeline U and Separate U). Dice similarity coe�cient

(DSC), Matthews correlation coe�cient (MCC), precision, and recall were used

to evaluate the performances of all models. The linear correlations between

WMHs volume (WMHV) measured by all models and the gold standard were

also conducted.

Results: Compared with other models, Cascade U exhibited a better

performance on WMHs segmentation and pvWMHs identification. Cascade

U achieved DSC values of 0.605 ± 0.135, 0.517 ± 0.263, and 0.510 ±

0.241 and MCC values of 0.617 ± 0.122, 0.526 ± 0.263, and 0.522 ± 0.243

on the segmentation of total WMHs, pvWMHs, and dWMHs, respectively.

Cascade U exhibited strong correlations with the gold standard on measuring

WMHV (R2 = 0.954, p < 0.001), pvWMHV (R2 = 0.933, p < 0.001), and

dWMHV (R2 = 0.918, p < 0.001). A significant correlation was found on

lesion volume between Cascade U and gold standard (r > 0.510, p < 0.001).
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Conclusion: Cascade U showed competitive results in segmentation and

di�erentiation of pvWMHs and dWMHs on 2D T2-FLAIR images, indicating

potential feasibility in precisely evaluating the burdens of WMHs.

KEYWORDS

periventricular white matter hyperintensities, deep white matter hyperintensities,

image segmentation, cascade U-net, 2D T2-FLAIR

Introduction

Cerebral small vessel disease (CSVD) is characterized as a

group of pathological processes with various etiologies affecting

small arteries, arterioles, venules, and capillaries of the brain

(1). White matter hyperintensities (WMHs) are commonly

observed MRI-based biomarkers for CSVD. Some studies have

validated that WMHs are closely related to an increased risk

of stroke (2, 3), and higher WMHs load is observed in

patients with depression (4), Alzheimer’s disease (AD) (5),

and migraine (6). WMHs, in view of the location, can be

further divided into periventricular WMHs (pvWMHs) which

extend from the ventricular wall and deep WMHs (dWMHs) in

deep white matter area. pvWMHs and dWMHs show distinct

risk factors and clinical implications. pvWMHs are associated

with a decline in cerebral blood flow and cognitive function,

and dWMHs are of hypoxic/ischemic origin and linked with

a higher incidence of migraine and mood disorder (7, 8).

pvWMHs-dWMHs dichotomization plays an important role

in potential therapeutic intervention. The changes on fluidity

and water content of interstitial tissue fluid in patient with

WMHs may be reversible if intervention is conducted at early

stage (9).

Magnetic resonance imaging T2-weighted fluid-attenuated

inversion recovery (T2-FLAIR) has been widely used to

evaluate WMHs. On T2-FLAIR images, WMHs appear as

hyperintense objects scattered throughout the white matter

and cerebrospinal fluid is nullified for enhanced discrimination

of ischemic pathology (10). Traditionally, qualitative and

quantitative evaluations of WHMs relied on the radiologists’

subjective scale or manual delineations, which were time-

consuming and laborious (11). Convolutional neural network

(CNN) has been validated as an efficient tool for the

automatic segmentation of WMHs (12–18). A fine-tuned fully

convolutional network (FCN) which combined linearly fine

to coarse feature maps of a pretrained Visual Geometry

Group was designed for the automatic segmentation of

WMHs (12). Wang et al. developed an FCN structure that

consisted of three U-shaped networks to segment WMHs

using different shapes of patch (13). Wu et al. segmented

WMHs on skull-stripped images using a skip connection

U-net which could capture more features and speed the

optimization convergence (14). Li et al. proposed an ensemble

architecture that generated the segmentation of WMHs from

multiple U-net models and the average of which was taken

as the prediction result (15). In addition, two-dimensional

(2D) U-net had the potential to distinguish WMHs from

acute ischemic lesions (16). Recently, precise segmentations of

pvWMHs and dWMHs attracted investigators’ attention. An

ensemble network architecture (TrUE-Net) of three parallel U-

net using coronal, sagittal, and horizontal planes as independent

input was proposed to segment and differentiate pvWMHs

and dWMHs (17). Mojiri et al. presented a U-shaped three-

dimensional (3D) Bayesian network to segment WMHs and

a secondary 3D U-net to differentiate pvWMHs and dWMHs

(18). However, these networks were designed for 3D thin-

section scan. 2D T2-FLAIR was recommended in CSVD

studies and acquired with high efficiency in community study

(19, 20). Previous studies validated that 3D networks were

more susceptible to limited axial slices compared with 2D

networks (21).

TABLE 1 Clinical characteristics of the study population.

All subjects Train set Test set P

(n = 253) (n = 176) (n = 77)

Age (year) 57.5± 12.7 56.5± 12.4 59.8± 13.2 0.067

Sex (male) 111 (43.9%) 80 (45.5%) 31 (40.3%) 0.444

BMI (kg/m2) 24.3± 3.1 24.4± 3.0 24.1± 3.4 0.415

Hypertension 80 (31.5%) 59 (33.5%) 21 (27.3%) 0.325

Hyperlipidemia 98 (38.7%) 66 (37.5%) 32 (41.6%) 0.542

Diabetes 30 (11.9%) 22 (12.5%) 8 (10.4%) 0.886

Smoking a 31 (17.6%) 23 (18.5%) 8 (15.4%) 0.615

Volume (ml)

WMHV 1.53 (0.58–3.60) 1.42 (0.57–3.37) 1.90 (0.71–4.00) 0.328

pvWMHV 0.82 (0.31–1.87) 0.82 (0.32–1.75) 0.86 (0.29–2.19) 0.946

dWMHV 0.44 (0.11–1.75) 0.41 (0.10–1.57) 0.73 (0.20–2.05) 0.094

Values are provided as mean ± standard deviation, median (interquartile range),

or numbers (%) for each variable. BMI, body mass index; WMHV, white matter

hyperintensity; pvWMHV, periventricular white matter hyperintensity volume; dWMHs,

deep white matter hyperintensity.
a Subjects with unknown smoking status (52 in train set and 25 in test set) were excluded.
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Previous studies exhibited potential of cascaded CNN in

WMHs segmentation on 3D T2-FLAIR images. However, the

segmentation of small WMHs lesions on 2D FLAIR images was

still a challenge, and further research was needed for accurate

segmentation and differentiation of pvWMHs and dWMHs (13,

16). In this study, a cascade CNN (Cascade U) with a combined

loss function was developed to segment and differentiate small

pvWMHs and dWMHs on 2D T2-FLAIR images.

Materials

Dataset

In the present study, all subjects were recruited from a

community study of Cardio- and cerebrovascular Accident

Monitoring, Epidemiology, and caRe quAlity system

(CAMERA) (22). A total of 253 subjects (30–80 years old,

111 male patients) were included from January 2017 to August

2020. The breakdown of subjects in our study is presented in

Table 1. Each subject underwent 2D T2-FLAIR scan (TR/TE

= 7000 ms/140ms, flip angle = 90◦, FOV = 230×230×133

mm3, voxel size = 0.9×0.9×5.5 mm3, matrix size = 256×256)

on a 3.0 Tesla MR scanner (Achieva TX, Philips Healthcare,

Best, The Netherlands) with a 32-channel phase array head coil.

Repeat scan was conducted if the image quality was poor by

visual assessment with the following criteria: (I) contrast-based:

unclear or invisible contrast in gray matter and white matter;

and (II) artifact-based: severe head motion, signal drop, or

geometric distortion.

Gold standard

All T2-FLAIR images were reviewed by two radiologists with

> 3 years’ experience in neuroradiology with consensus. The

contour delineated by the observer was considered as the gold

standard. Each slice was interpolated from 256×256 to 512×512

for lesion delineation. In addition, Fazekas scales (ranging from

0 to 3 for pvWMHs and dWMHs, respectively) were used for

describing the degree ofWMHs (23). The distribution of Fazekas

scales is shown in Figure 1. Ninety % of the subjects (223/253)

were with a total Fazekas score lower than 3 (range 0 to 6).

Methods

Network architecture

In the present study, 2D CNNs were applied due to a voxel

size of 5.5mm along the vertical axis and small lesions. The

cascade U-net architecture (Cascade U) was constructed based

on a U-net architecture proposed by Ronneberger et al. in 2015

(24). Two other models (Pipeline U-net and Separate U-net)

were trained as comparison.

a) Cascade U-net: Cascade U was integrated by

segmentation stage and differentiation stage, and trained

with a combined loss function (CLoss). The architecture is

exhibited in Figure 2. In the first stage, the input was each

T2-FLAIR slice, and the result was the WMHs segmentation

result. In the second stage, pvWMHs and dWMHs were

differentiated using the original slice and possibility map of

FIGURE 1

Distribution of pvWMHs and dWMHs Fazekas scores. pv represented Fazekas scores of pvWMHs, and d represented the Fazekas scores

of dWMHs.
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FIGURE 2

Architecture of Cascade U model. C represented the channel number of Cascade U model in the first layer and was selected as 64 in the present

study.

WMHs segmentation from the first stage. The CLoss was

defined by a Dice similarity (DSC) loss from the segmentation

stage and cross-entropy (CE) loss from the differentiation stage.

The loss functions were defined as follows:

CLoss = DSC Loss+CE Loss

DSC Loss = 1−
2
∑N

n=1 pngn+ε
∑N

n=1

(

pn+gn
)

+ε

CE Loss = −
1

N

N
∑

n=1

Class
∑

i=1

ynilogŷni

where N represented the number of pixels of the input data

in both CE loss and DSC loss. In DSC loss, pn represented the

softmax output probability of WMHs at the nth pixel, gn = 0 or

1 represented the ground truth of the nth pixel. The ε term was

10−4 to prevent the denominator being zero. In CE loss, Class

represented the number of classes, ŷni represented the softmax

output probability of class i at the nth pixel, and yni represented

the given one-hot encoded label for class i of the nth pixel.

b) Pipeline U-net: Pipeline U-net (Pipeline U) consisted

of two U-net models. The first model was trained to segment

WMHs with the addition of DSC loss and CE loss, while

the second model was trained to differentiate pvWMHs and

dWMHs with CE loss. Two models were trained independently.

c) Separate U-net: Separate U-net (Separate U) was two U-

net models. Two models were trained to segment pvWMHs and

dWMHs with the addition of DSC loss and CE loss, respectively.

The segmentation stages in Cascade U and Pipeline U

were same, while the differentiation stages in three networks

were same. All three models are publicly available at https://

github.com/GGTTGTGT-2020/Cascade-U-Net-white-matter-

hyperintensities-.

Model training

A total of 176 subjects were randomly selected as training

set (18 subjects for validation), and 77 subjects were testing set.
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Considering CNN’s ability to segment brain MR images without

preprocessing (25), we only conducted a Z-score normalization.

Data augmentation is an effective method to improve the

robustness of models and the precision of prediction results.

Five transformations were applied on training set for each slice

in every epoch: 1) rotating: [−30◦, 30◦], 2) shifting: [−26

pixels, 26 pixels], 3) scaling: [0.9, 1.1], 4) horizontal flipping,

and 5) changing the intensity of each pixel according to the

following formula:

(
x−min(x)

max (x)−min(x)
)
γ

× (max (x)−min (x))+min(x)

where γ was randomly selected from [0.5, 1]. The

segmentation stage in Cascade U was pretrained for 200

TABLE 2 Performance of three models on total WMHs, pvWMHs, and

dWMHs segmentations.

Total WMHs pvWMHs dWMHs

Cascade U

DSC 0.605± 0.135 0.517± 0.263 0.510± 0.241

MCC 0.617± 0.122 0.526± 0.263 0.522± 0.243

Precision 0.641± 0.184 0.551± 0.282 0.588± 0.293

Recall 0.621± 0.131 0.679± 0.223 0.626± 0.214

Pipeline U

DSC 0.593± 0.135 0.389± 0.254 0.405± 0.218

MCC 0.607± 0.120 0.403± 0.254 0.421± 0.215

Precision 0.593± 0.181 0.476± 0.284 0.398± 0.242

Recall 0.655± 0.137 0.531± 0.298 0.629± 0.222

Separate U

DSC 0.540± 0.171 0.451± 0.247 0.513± 0.240

MCC 0.563± 0.147 0.469± 0.245 0.523± 0.239

Precision 0.501± 0.219 0.401± 0.247 0.515± 0.261

Recall 0.687± 0.132 0.736± 0.192 0.698± 0.193

DSC, dice similarity coefficient; MCC, Matthews correlation coefficient.

epochs with WMHs gold standard on training set to accelerate

convergence speed.

Each model was convergent after being trained for 500

epochs, and the model with the minimal loss on validation set

was taken as the prediction model. Batch size was set to 6.

Adamoptimizer was usedwith an initial learning rate of 2×10−3

(26). The models were trained on an RTX 3090 graphics card

with 24G of memory, and all models were constructed based on

PyTorch 1.11.0 (27).

Evaluation metrics

DSC, Matthews correlation coefficient (MCC), recall,

precision, and the correlation coefficient of lesion volume were

used to evaluate the performance of the models.

The DSC is defined as follows:

DSC = 2×
|G ∩ P|

|G| + |P|

where P represented a binary mask, and G represented the

gold standard.

The MCC is an index to measure the quality of a binary

classification system when the size of samples in the two classes

varies substantially (28). The MCC is defined as follows:

MCC =
TP × TN − FP × FN

√

(TP+FP)× (TP+FN)× (TN+FP)×(TN+FN)

where TP, TN, FP, and FN represented true positive, true

negative, false positive, and false negative, respectively. The

range of MCC is [−1, 1]. A value of 1 means that the prediction

is completely consistent with actual result, 0 means not as

good as random prediction result, and −1 means completely

inconsistent with actual result.

The recall for lesions is defined as follows:

FIGURE 3

Statistical evaluation of WMHs, pvWMHs, and dWMHs segmentations using DSC. Not significant: ns, p < 0.05: *; p < 0.001: ***; p < 0.0001: ****.
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TABLE 3 Performance of three models on subjects’ pvWMHs with di�erent Fazekas scores.

Fazekas scores pvWMHs

0 (n = 12) 1 (n = 45) 2 (n = 18) 3 (n = 2)

Cascade U

DSC 0.083± 0.276 0.562± 0.174 0.672± 0.099 0.729± 0.067

MCC 0.083± 0.276 0.575± 0.169 0.677± 0.091 0.740± 0.058

Precision 0.083± 0.276 0.624± 0.194 0.644± 0.116 0.865± 0.017

Recall 1.000± 0.000 0.578± 0.207 0.720± 0.094 0.640± 0.111

Pipeline U

DSC 0.083± 0.276 0.397± 0.212 0.556± 0.127 0.516± 0.185

MCC 0.083± 0.276 0.415± 0.210 0.564± 0.125 0.578± 0.153

Precision 0.083± 0.276 0.539± 0.239 0.550± 0.151 0.773± 0.004

Recall 1.000± 0.000 0.383± 0.242 0.594± 0.151 0.466± 0.230

Separate U

DSC 0.000± 0.000 0.487± 0.168 0.635± 0.006 0.677± 0.094

MCC 0.000± 0.000 0.515± 0.154 0.643± 0.005 0.696± 0.075

Precision 0.000± 0.000 0.420± 0.188 0.573± 0.006 0.849± 0.045

Recall 1.000± 0.000 0.674± 0.184 0.730± 0.006 0.587± 0.154

DSC, dice similarity coefficient; MCC, Matthews correlation coefficient.

TABLE 4 Performance of three models on subjects’ dWMHs with di�erent Fazekas scores.

Fazekas scores dWMHs

0 (n = 12) 1 (n = 44) 2 (n = 19) 3 (n = 2)

Cascade U

DSC 0.000± 0.000 0.567± 0.142 0.661± 0.070 0.583± 0.113

MCC 0.000± 0.000 0.583± 0.136 0.674± 0.063 0.584± 0.112

Precision 0.000± 0.000 0.646± 0.194 0.792± 0.077 0.584± 0.151

Recall 1.000± 0.000 0.555± 0.178 0.584± 0.122 0.587± 0.073

Pipeline U

DSC 0.000± 0.000 0.440± 0.158 0.563± 0.098 0.343± 0.140

MCC 0.000± 0.000 0.464± 0.142 0.572± 0.093 0.352± 0.144

Precision 0.000± 0.000 0.392± 0.177 0.635± 0.107 0.452± 0.186

Recall 1.000± 0.000 0.597± 0.175 0.527± 0.140 0.276± 0.112

Separate U

DSC 0.000± 0.000 0.570± 0.138 0.663± 0.069 0.629± 0.058

MCC 0.000± 0.000 0.585± 0.126 0.669± 0.068 0.628± 0.057

Precision 0.000± 0.000 0.550± 0.171 0.718± 0.089 0.646± 0.044

Recall 1.000± 0.000 0.656± 0.176 0.633± 0.121 0.613± 0.070

DSC, dice similarity coefficient; MCC, Matthews correlation coefficient.

Recall =
TP

TP+FN

The precision for lesions is defined as follows:

Precision=
TP

TP+FP

Linear correlation analysis between WMH volumes

(WMHVs) measured by three models and the gold standard

was also employed to evaluate the performance of all models.

The non-parametric Mann–Whitney U-test was conducted to

assess the performance between Cascade U and other models.

To test the association between clinical characteristics and the

segmentation performance of Cascade U, the Mann–Whitney

U-test and Spearman’s correlation analysis were conducted
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TABLE 5 Association between demographic, clinical factors, and the segmentation results of Cascade U on testing set.

Total WMHs pvWMHs dWMHs

BV DSC P DSC P DSC P

Hypertension (yes= 1) 0.601± 0.134 0.575 0.557± 0.232 0.211 0.473± 0.255 0.010

0.617± 0.146 0.410± 0.103 0.608± 0.179

Hyperlipidemia (yes= 1) 0.600± 0.130 0.397 0.488± 0.263 0.125 0.539± 0.226 0.222

0.612± 0.146 0.559± 0.267 0.468± 0.263

Diabetes (yes= 1) 0.600± 0.141 0.473 0.501± 0.275 0.160 0.510± 0.247 0.536

0.648± 0.082 0.655± 0.078 0.505± 0.220

Smoking a (yes= 1) 0.596± 0.151 0.389 0.535± 0.236 0.576 0.469± 0.266 0.909

0.564± 0.131 0.429± 0.153 0.490± 0.229

Sex(male) 0.610± 0.149 0.355 0.512± 0.257 0.399 0.512± 0.243 0.763

0.598± 0.116 0.481± 0.277 0.507± 0.247

CV

BMI r=−0.032 0.783 r=−0.075 0.525 r= 0.032 0.787

Age r=−0.109 0.346 r=−0.079 0.492 r= 0.150 0.194

Lesion volume r= 0.689 < 0.001 r= 0.557 < 0.001 r= 0.510 < 0.001

Values are provided as mean± standard deviation. BV, binary variables; CV, continuous variables; DSC, dice similarity coefficient; BMI, body mass index.
a Subjects with unknown smoking status (25 in testing set) were excluded.

on binary and continuous variables, respectively. A p <

0.05 was considered statistically significant, and all statistical

analyses were conducted on SPSS v25.0 (International Business

Machines, Inc., New York, USA). Continuous variables were

presented as mean± standard deviation (SD).

Results

The mean values of DSC, MCC, precision, and recall for

Cascade U, Pipeline U, and Separate U are summarized in

Table 2. Cascade U had the highest DSC and MCC on WMHs

segmentation and pvWMHs among the three models. On

dWMHs segmentation, DSC and MCC of Cascade U were

similar with those of Separate U. Compared with other two

models, Cascade U exhibited the highest precision. However,

Separate U produced the highest recall. Figure 3 shows the

comparison between Cascade U and other models on DSC of

WMHs, pvWMHs, and dWMHs segmentation.

The performance of all models on different levels of

Fazekas scores is summarized in Tables 3 and 4. On pvWMHs

segmentation (Table 3), Cascade U achieved the highest DSC,

MCC, and precision on subjects in all levels, but lower recall

in subjects with Fazekas scores of 1 and 2 than Separate U. On

dWMHs segmentation (Table 4), Separate U showed a similar

performance with Cascade U on the cases with a Fazekas score

< 3, but the highest DSC,MCC, precision, and recall on the cases

with a Fazekas score of 3. The association between demographic,

clinical factors, and the segmentation results of Cascade U is

summarized in Table 5. A significant difference was found on

dWMHs segmentation results between the hypertensive and

non-hypertensive groups. In addition, there was a significant

correlation between segmentation results and lesion volume.

The correlations between WMHV measured by radiologists

and by three models are summarized in Figure 4. Cascade U

model had the highest R2 in WMHV (R2 = 0.954, p < 0.001),

pvWMHV (R2 = 0.933, p < 0.001), and dWMHV (R2 = 0.918,

p < 0.001) among the three models.

Discussion

In the present study, a 2D Cascade U model using a

combined loss function was proposed to segment and identify

pvWMHs and dWMHs simultaneously on T2-FLAIR images.

Compared with Pipeline U and Separate U, Cascade U exhibited

better performance on WMHs segmentation and pvWMHs

identification. In addition, the lesion volume measured by

Cascade U had the strongest correlation with the gold standard.

The cascade model exhibited advantages on many tasks,

including segmentation of the pancreas (29, 30), brain tumor

(31), and bladder cancer (32). Liu et al. developed two sub-

models for the segmentation of WMHs and differentiation

between focal cerebral ischemia and lacunar infarction (33).

The results showed the superiority of the cascade model in

the segmentation and differentiation of small brain lesions. In

the present study, Cascade U outperformed Pipeline U and

Separate U on the segmentation and identification of pvWMHs

and dWMHs. Combined loss function made the learning

process guided by the segmentation loss function (DSC) and

classification loss function (CE) at the same time and improved

model’s performance.
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FIGURE 4

Correlations between the lesion volumes measured by three models and the gold standard. Solid line represented fitting result, and dashed line

represented 95% confidence interval.

Figure 5 shows the comparisons between the gold standard

and three models on the segmentation and differentiation

of pvWMHs and dWHMs from a subject with a Fazekas

score of 3 (pvWMHs: 2 and dWMHs: 1). Pipeline U

underestimated and confused pvWMHs and dWMHs in some

cases. In Pipeline U, the identification of pvWMHs and

dWMHs relied on the prediction results of segmentation

model, leading to the propagation of error. Cascade U

overcame this problem via training segmentation network

together with a differentiation network using a combined loss

function. Compared with Cascade U, Separate U exhibited

inferior performance on pvWMHs segmentation and similar

performance on dWMHs segmentation. However, overlaps of

pvWMHs and dWMHs were found in some cases (blue regions

in Figure 6), exhibiting a region identified as pvWMHs and

dWMHs simultaneously by two U-net models in Separate

U. The example implied that independent training had some

limitation in segmentation and differentiation of pvWMHs and

dWMHs.

In this study, all subjects were recruited from community-

based population aiming to investigate the risk factors

of cerebrovascular disease risk. Early characterization of

WMHs before cognitive symptoms occur may prevent

further deterioration to dementia (34, 35). In the present
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FIGURE 5

Illustration of segmentation results from a subject with Fazekas score of 3. From left to right were T2-FLAIR images, the gold standard, Cascade

U prediction results, Pipeline U prediction results, and Separate U prediction results. Orange represented pvWMHs, and yellow represented

dWMHs. GS, gold standard.

FIGURE 6

Illustration of segmentation results of dWMHs. Orange represented pvWMHs, yellow represented dWMHs, and blue represented the overlaps of

the model prediction. GS, gold standard.

study, 90% (223/253) of subjects recruited were at an early

stage, with a total Fazekas score lower than 3 (range 0 to

6). The median of pvWMHV and dWMHV on each subject

was 0.82ml and 0.44ml, respectively. Previous studies had

validated that accurate segmentation of small WMHs was more

challenging compared with large WMHs (13, 16, 33). Although

exhibited potential in WMHs segmentation, CNN-based

network was more likely to cause false negative prediction

on the images with smaller lesions and thus led to a lower

DSC (36). As exhibited in Table 3, the performance of each

model on the segmentation and identification of pvWMHs

and dWMHs increased significantly with the burden of

WMHs. Our result also exhibited that the segmentation

performance was correlated with lesion volume. In the present

study, the subjects with hypertension exhibited a severer

dWMHs burden compared with those without hypertension
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FIGURE 7

Illustration of segmentation results of Cascade U with pvWMHs Fazekas score of 0. Orange represented pvWMHs, and yellow represented

dWMHs. GS, gold standard.

(1.71ml vs. 0.60ml), favoring the better segmentation

performance on the hypertensive group than that on the

non-hypertensive group.

In addition, manual annotation was considered the gold

standard, but it may not always reflect the real situation (17).

It was more difficult to accurately delineate the contour of small

lesions for radiologists due to low contrast between lesion and

adjacent tissue or noise inherent in imaging protocol. Since DSC

was a metric sensitivity to the size of object, the correlations

between WMHs volume measured by three models and the

gold standard were also compared in the present study. The

strongest correlation between volume measured by Cascade

U and the gold standard also demonstrated the advantage of

Cascade U on the segmentation and differentiation of pvWMHs

and dWMHs. Figure 7 exhibits some lesions detected by Cascade

U on a subject with a pvWMHs score of 0, but missed in manual

delineation by radiologists.

There were several limitations in the present study: 1)

T1-weighted MRI can provide additional information to the

segmentation ofWMHs (37). Some subjects did not undergo T1-

weighted MR scan, and only 2D T2-FLAIR images were used

in the present study. In future, we will attempt to use multi-

modality images, such as T1-weighted and diffusion-weighted

imaging, as input of the model. 2) Cascade U was designed on a

2D U-net due to a layer thickness of 5.5mm with 2D T2-FLAIR

scan. 3D U-net can provide competitive results via leveraging

spatial and anatomical information in volumetric organs (31).

CNN with a 3D architecture would be investigated on the

segmentation and differentiation of pvWMHs and dWMHs on

3D T2-FLAIR data. 3) Finally, our model was trained and tested
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on a single-center dataset. The models should be tested on

multi-center datasets or on the crowds with different population

characteristics in future.

Conclusion

In this study, a cascade 2D U-net (Cascade U) was proposed

for the segmentation and differentiation of pvWMHs and

dWMHs. Cascade U was composed by a segmentation stage and

a differentiation stage and trained with a combined loss function.

Cascade U achieved better segmentation and differentiation of

pvWMHs and dWMHs on 2D T2-FLAIR images and showed

potential feasibility in precisely evaluating the burden ofWMHs.
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