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Type I interferons (IFNs) are major mediators of innate immunity, with

well-known antiviral, antiproliferative, and immunomodulatory properties. A

growing body of evidence suggests the involvement of type I IFNs in the

pathogenesis of central nervous system (CNS) manifestations in the setting

of chronic autoimmune and autoinflammatory disorders, while IFN-β has

been for years, a well-established therapeutic modality for multiple sclerosis

(MS). In the present review, we summarize the current evidence on the

mechanisms of type I IFN production by CNS cellular populations as well as

its local e�ects on the CNS. Additionally, the beneficial e�ects of IFN-β in

the pathophysiology of MS are discussed, along with the contributory role of

type I IFNs in the pathogenesis of neuropsychiatric lupus erythematosus and

type I interferonopathies.
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Introduction

Interferons (IFNs) are a group of functionally related cytokines of innate immunity

with antiviral, antimicrobial, and immunomodulatory activities (1). Three major types of

IFNs are recognized: type I, type II, and type III (2). Type I IFNs were first recognized by

Isaacs and Lindenmann in 1957 (3) and since then, a growing body of evidence supports

a central role for type I IFNs in antiviral immune responses and in the pathogenesis

of various autoimmune diseases (4). Type I IFNs are partitioned into several subclasses

(IFN-α, β, δ, ω, ε, τ , ζ, λ, and κ) with the subgroup of IFN-α being further divided

into 13 subtypes which are encoded by 13 homologous genes, located on chromosome 9

(9p22-9p21) (5). Upon viral infection, almost all cells secrete type I IFNs (typically IFN-α

and IFN-β) with IFN-α being secreted primarily by plasmacytoid dendritic cells (pDCs),

whereas epithelial cells, phagocytes, DCs, and fibroblasts can secrete IFN-β (1).

Physiologically, membrane-bound or cytoplasmic pattern-recognition receptors

(PRRs) are responsible for detectingmicrobial products such as lipopolysaccharide (LPS)

and endogenous or exogenous nucleic acids (6). In pDCs, upon stimulation of the
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endosomal PRRs such as the toll-like receptors (TLR)-7/8/9

the myeloid differentiation factor 88 (MyD88) is activated,

forming a complex with interleukin-1 (IL-1) receptor-associated

kinase 1 (IRAK1) and IRAK4 which in turn phosphorylates

the interferon regulatory factor 5 (IRF5) and IRF7 acting as

transcription factors for IFN-α production (7–9). In other cell

populations such as fibroblasts, macrophages, and epithelial

cells, cytosolic PRRs such as RIG1-like receptors (retinoic

acid-inducible gene 1) and MDA5 (melanoma differentiation

association protein 5) sense RNA, while cGAS (cyclic GMP–

AMP synthase) is able to detect DNA, leading to the activation

of stimulator of interferon genes (STING) and type I IFN-β

production (4, 10).

Upon their secretion, type I IFNs bind to the IFN-α/β

receptor (IFN-AR), a cell surface receptor consisting of two

subunits, IFNAR and IFNAR1 leading to the intracellular

autophosphorylation and activation of the Janus kinase 1

(JAK1) and tyrosine kinase 2 (TYK2) and the subsequent

phosphorylation of signal transducer and activator of

transcription 1 (STAT1) and STAT2. Ultimately, STAT1

and STAT2 form a heterodimer that binds to IRF9 leading

to the formation of IFN-stimulated gene factor 3 (ISGF3),

which in turn translocates to the nucleus and stimulates the

upregulation of a plethora of interferon-stimulated genes

(ISGs) (8). ISGs products are involved in controlling pathogens,

while they are also found to be upregulated in many systemic

autoimmune diseases (11). Given the magnitude of type I IFNs

implication in health and disease, we sought to examine in

this review, the complex relationship of type I IFNs and the

central nervous system (CNS) under physiological conditions

and in selected autoimmune and autoinflammatory diseases

with CNS involvement such as multiple sclerosis (MS),

neuropsychiatric systemic lupus erythematosus (NPSLE), and

type I interferonopathies.

Type I IFN in CNS: An overview

It is of utmost importance that the CNS, similarly to any

tissue, is protected against exogenous or endogenous threats

such as pathogens and tumors by a well-functioning immune

system. Importantly, infection of the CNS is a major challenge

since neurons constitute an irreplaceable cell population that

should bemaintained despite potential insults (12). Tominimize

neuronal damage as a result of an infection, the communication

between peripheral blood and CNS is restricted by the blood–

brain barrier (BBB) and the blood–cerebrospinal fluid barrier

(BCSFB) to prevent the entry of noxious stimuli in the brain

(13, 14).

Type I IFNs have been implicated in various processes

within the CNS, including the prevention of viral invasion.

Endogenously produced type I IFN has been shown to confer

neuroprotection by preventing viral entry in the CNS through

IFNAR-mediated regulation of BBB permeability (15, 16).

Indeed, mice deficient for IFNAR were more susceptible to

CNS infections when exposed to neurotropic viruses, compared

to wild-type mice (17). Nevertheless, when CNS infections do

occur, they are followed by type I IFN production, as these

cytokines are involved in the first-line defense against infection

in the periphery but also the CNS (18). These findings stress the

highly protective and antiviral role type I IFNs have in the CNS.

Beyond their antiviral properties, the type I IFN/IFNAR axis

seems to play a key role CNS homeostasis and normal brain

function suggested by the fact that mice deficient in IFNAR

present defects in neuronal autophagy, cognitive function, and

synaptic plasticity (19–22). In contrast, other reports suggested

that induction of type I IFN signaling in the CNS hinders

the vascular repair process following traumatic brain injury or

cerebrovascular injury which is further associated with BBB

leakage and failure to restore cognitive–motor function (23).

Moreover, the overexpression of IFN-β in the CNS of adult wild-

type mice transforms the microglial transcriptional signature to

induce a process similar to aging leading to impaired cognitive

performance (24). Along the same lines, neuronal type I IFN

expression was shown to be modulated by alpha-synuclein, a

protein expressed predominantly in neurons, in association with

neurodegenerative diseases such as Parkinson’s disease (25).

Taken together, these findings highlight the complex role of type

I IFN in CNS pathophysiology.

CNS cellular populations involved in type
I IFN production

Plasmacytoid dendritic cells are the professional type I IFN-

producing cells in the periphery, as they produce large amounts

of IFN-α upon their activation by dedicating 60% of new

transcriptional activity to make type I IFNs (26). However, it is

reported that under physiological conditions, pDCs are absent

from the brain, due to the CNS being an immune-privileged

site (27). Even though the CNS lacks access to professional

producers of type I IFN, these cytokines are still detected in the

CNS, suggesting the ability of CNS cell populations to locally

produce and respond to type I IFNs. In the following sections,

we summarize the potential of CNS cells to locally produce

type I IFNs under physiological conditions or upon stimulation

(summarized in Figure 1).

Microglia

Microglia are the resident immune cells of the brain that

undergo rapid change states in response to their environment

(34) and are one of the main type I IFN-producing cells in

the CNS. In response to nucleic acid accumulation, either
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FIGURE 1

Triggers leading to type I interferon production by cells of the central nervous system. Microglia, The main type I IFN producer cells in the CNS.

Trex1 homozygous deletion selectively in murine microglial cells induced type I IFN production. Intrathecal poly I:C induces IFN-β production in

EAE with subsequent therapeutic e�ects (28). Microglial cells are the main producers of cGAS–STING-dependent type I IFN in animal models of

HSV-1 encephalitis (29). Astrocytes, Murine-derived astrocytes can be experimentally triggered by viral and microbial infection analogs to

produce type I IFN. IFN-β mainly produced by astrocytes in di�erent CNS viral infections in mouse models (30). Neurons, In vitro murine and

human neurons produce IFN-β upon stimulation with viruses or their analogs (31). Viral encephalitis also causes neuronal type I IFN production

but only by 3% of the infected murine neurons in vivo. Some neurons adjacent to GBM cells express the IFN-β dependent PD-L1 which improves

survival (32). IFN-β -/- neurons have a worse prognosis. Specific cortical neurons in patients with Gaucher disease a�ecting the CNS show

elevated IFN-β production (33). Oligodendrocytes, MHV infection in vitro (mouse-derived cells) induces type I IFN production. MHV infection

(JHM strain) in live mice did not lead to IFN-I production (18). IFN, interferon; CNS, central nervous system; Trex1, three prime repair exonuclease

1; EAE, experimental autoimmune encephalomyelitis; HSV, herpes simplex virus; cGAS, cyclic GMP–AMP synthase; STING, stimulator of type I

IFN genes; TLR, toll-like receptor; AGS, Aicardi Goutières syndrome; LPS, lipopolysaccharides; TMEV, Theiler’s murine encephalomyelitis virus;

MHV, mouse hepatitis virus; GBM, glioblastoma multiforme; PD-L, program death-ligand; GBA1, glucosylceramidase β 1.

due to a 3’ prime exonuclease 1 (Trex1) gene deletion—

which physiologically degrades dsDNA, ssDNA, and ssRNA

(28)—or due to infection with the neurotropic herpes simplex

virus 1 (HSV-1) in microglial cells (29), the cGAS-STING

pathway is activated, resulting in type I IFN production.

Kocur et al. studying the role of microglia in experimental

autoimmune encephalomyelitis (EAE), themurinemodel ofMS,

demonstrated that a subpopulation of activated microglial cells

produces the largest amount of IFN-β in EAE (35). Another

experimental proof for the role of microglial cells as type I IFN-

producing cells came by Khorooshi et al., they demonstrated

that intrathecal injection of polyinosinic–polycytidylic acid

(poly I:C) (a double-stranded RNA analog and TLR3 agonist and

therefore a potent inducer of IFN-β), in mice with EAE, led to

increased IFN-β expression by parenchymal microglial cells and

also had a disease remission effect (36) (Figure 1—Microglia).
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Astrocytes

Astrocytes are specialized glial cells that have a regulatory

role within the brain and are implicated in processes such

as neurogenesis and synaptogenesis, while they are also

responsible for maintaining BBB permeability and controlling

extracellular homeostasis (37). They express TLR3 and are

also important producers of type I IFN in the CNS (18,

30). Murine astrocytes produce type I IFN upon stimulation

with polyribonucleotide, cycloheximide, actinomycin D, and

poly I:C (38, 39). Studying different neurotropic viruses in

mice including rabies virus, Theiler’s murine encephalomyelitis

virus, and vesicular stomatitis virus, Pfefferkorn and colleagues

showed that although these viruses mainly infect and reproduce

in neurons, astrocytes are the main producers of IFN-β in

response to these infections. They also suggested that transiently

infected astrocytes produce the majority of IFN-β and that this

production is mediated by the TLR and RIG-I-like receptors

(RLR) signaling cascade (40). In mice infected with La Cross

virus, astrocytes were also the major IFN-β producing cells (41)

(Figure 1—Astrocytes).

Oligodendrocytes

Oligodendrocytes are primarily responsible for the

maintenance and generation of the myelin sheath that

surrounds axons. The precursors of oligodendrocytes have to

undergo a well-orchestrated process of proliferation, migration,

and differentiation to produce the myelin sheath of axons (42).

They reportedly express TLR2 and TLR3, while their ability to

produce type I IFN is rather conflicting (18, 43). Li et al. showed

that MHV-infected oligodendrocytes express IFN-α/β via RIG-I

activation in vitro (44). On the contrary, overexpression of

MDA5, RIG-1, and TLR3 following MHV infection in the JHM

strain in vivo did not result in type I IFN production, while poly

I:C stimulation was not able to induce type I IFN production

(43) (Figure 1—Oligodendrocytes).

Neurons

Neurons, the fundamental units of the nervous system, have

also been implicated in the production of type I IFN upon

stimulation with various triggers, while they express TLR3,

similarly to microglial cells and oligodendrocytes (18, 30). In

vitro studies demonstrated that murine and human neurons

stimulated with poly I:C or viruses (Sendai, rabies viruses),

produced IFN-β, (45, 46). In experimental mice, CNS infection

with several viruses (Theiler’s virus, La Crosse virus encephalitis)

led to type I IFN production (31), while rabies virus, although

capable of diminishing the type I IFN response by inhibiting

the IRF3 pathway, still triggers the small amount of type I IFN

production by infected neurons (47). Although IFN-β is shown

to downregulate both IFNγ-producing Th1 cells and IL-17-

producing Th17 cells, a paradoxical disease exacerbation was

witnessed after IFN-β administration in a Th17-induced EAE

murine model (48, 49).

Of interest, a study in patients with glioblastoma multiform

(GBM) showed that in some cases neurons adjacent to the

tumor express the IFN-β induced programmed death-ligand

(PD-L)-1, which in turn induces caspase-dependent apoptosis

of malignant cells in association with better survival. In

accordance with these findings, the deletion of IFN-β in

neurons of mice with experimental glioblastoma also led to

worst outcomes (32). Finally, in a mouse model of Gaucher

disease, a genetic lysosomal storage disease caused by acid-β-

glucosidase (glucocerebrosidase) deficiency, it was shown that

specific cortical neurons (along with microglia) demonstrated

increased IFN-β production (33) (Figure 1—Neurons).

Type I IFN in the CNS: Association
with clinical phenotypes

Multiple sclerosis

Multiple sclerosis is the prototype CNS autoimmune

demyelinating disease. Its pathophysiology has been extensively

studied but many pathways remain to be elucidated. Although

traditionally considered a predominantly T-cell-mediated

inflammation, recent advances, including the high effectiveness

of B-cell depletion therapies, have unraveled the importance of

humoral immunity as well (50). Innate immunity has recently

attracted research interest, especially in progressive forms of

the disease with potential therapies expected in the future

(51, 52). Regarding type I IFN, it has long been implicated in

the pathophysiology of MS mainly because of its protective

role, with IFN-β being the oldest approved treatment for

relapsing-remitting MS (RRMS) (53). There are currently four

IFN-β approved drugs for the treatment of relapsing forms

of MS, three of which are administered subcutaneously (SC),

IFNβ-1b, IFN-β-1a, and most recently peginterferon β-1a,

one intramuscularly: IFN-β-1a (54). Treatment with IFN-β

confers a decrease of approximately 30% in the annualized

relapse rate (ARR) (55). On the contrary, administration of

IFN-γ to patients with MS exacerbates the disease and results

in increased numbers of relapses (56). Major advancements

in the understanding of MS, and the efficacy of IFN-β as a

treatment for the disease, came from studying the EAE model

(57). Importantly, EAE has greatly facilitated the understanding

of the role that type I IFN plays in the CNS under the MS

setting. Although the exact mechanisms through which IFN-β

exerts its beneficial role have not been fully elucidated, there are

some experimental data pointing to this direction.
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For example, it was shown that IFN-β production within

the CNS coincides with the peak of EAE (36) and seems to

positively affect the clinical course of the disease, as also implied

by the detrimental clinical effects of IFNAR gene ablation in EAE

(58, 59). The beneficial IFN-β effect on the CNS was further

highlighted as IFN-β producing microglia mediate the clearance

of myelin debris via phagocytosis (36). This IFN-β-mediated

elimination of damaged myelin sheath residues leads to a

late-stage suppression of proinflammatory mediators, possibly

contributing to favorable results in terms of neuroinflammation

control (60) (Figure 2).

Furthermore, with respect to neurons, IFN-β potently

induces nerve growth factor (NGF) production in IFN-β-treated

astrocyte cultures (72), and in endothelial cells interacting with

IFN-β-treated lymphocytes in vivo and in vitro (61). IFN-β

further induces brain-derived neurotrophic factor (BDNF)

production in PBMCs from patients with RRMS after 6 months

of IFN-β treatment, who show clinical remission for at least

1 year of follow-up (62). However, in these settings, whether

these factors act directly on neuronal cells to promote repair or

proliferation, remains to be elucidated (61). Moreover, IFN-β

was shown to directly promote human neural progenitor cells

(NPCs) proliferation and differentiation in vitro, in a dose-

dependent manner (73) (Figure 2).

IFN-β treatment in patients with MS also induces B-cell

activation factor (BAFF) and drives B cells toward a regulatory

phenotype (63). BAFF blockade with atacicept, in the setting

of RRMS led to disease exacerbation, which further proves the

unexpected protective effect of IFN-β-induced BAFF induction

(74). Surprisingly, the previously identified risk allele for both

MS and SLE of TNFSF13B (GCTGT>A) is linked to increased

numbers of circulating B cells and drastically increased levels

of soluble BAFF, as well as increased antibody production

(75). Furthermore, IFN-β has been shown to inhibit T-cell

proliferation (64), while it induces immune cell apoptosis (76).

Recombinant IFN-β administered to patients with RRMS is

associated with increased proliferation of CD56 bright natural

killer (NK) cells, Foxp3+ regulatory T cells (Treg), as well as

FoxA1+ Treg cells, favoring Th2 over Th1 responses (60, 61, 72)

(Figure 2).

In addition, IFN-β treatment in patients with MS leads to

increased levels of soluble vascular cell adhesion molecule-1

(VCAM-1), which subsequently leads to a significant decrease

in VLA-4 expression on lymphocytes, interfering with their

capacity to bind endothelial cells thereby preventing their

diapedeses through the BBB (68). Finally, IFN-β further prevents

the erosion of the BBB by reducing matrix metalloproteinase

9 (MMP-9) levels (69) or by increasing counter-acting tissue

inhibitor of matrix metalloproteinase (TIMP-1) levels (63, 74)

(Figure 2).

While the aforementioned evidence supports the therapeutic

role of type I IFN in the context of neuroinflammation,

conflicting data have also emerged to shine the light on

some less favorable aspects of this cytokine effect on CNS.

For instance, pDCs, the professional type I IFN-producers

in the periphery, promote the priming of encephalitogenic T

cells during the induction phase of EAE, partially implicating

IFN-α/β (77). Despite MS/EAE being traditionally perceived

as mainly IFNγ-mediated, deletion of a negative regulator

of IFN-α /β, c, in myeloid cells of EAE mice, resulted in

uncontrolled type I IFN signaling and white matter microglia

activation due to prolonged STAT1 phosphorylation, leading to

disease exacerbation (78). Importantly, IFN-I-induced STAT1

is key for priming cellular responses to type II IFN signals

(79). Communication between type I and II IFN pathways is

constant and their disequilibrium in terms of excessiveness

or timing could be rendered as a key contributor to CNS

autoimmunity in the context of EAE/MS (80). Interestingly,

our group investigated the interferon signature in patients

originally presented with MS-like CNS manifestation. A subset

of these patients was shown to meet classification criteria for a

systemic autoimmune disease (e.g., Sjogren’s syndrome, SLE).

These patients displayed higher expression of type I IFN-

stimulated genes in peripheral blood, compared to the patients

who received a final diagnosis of MS or cerebral small vessel

disease and so this distinct groupmay be of potential therapeutic

benefit from type I IFN blockade (81).

Neuropsychiatric lupus erythematosus

SLE is a heterogeneous autoimmune disease with

multisystemic presentations and a wide range of clinical

and serological manifestations (82). NPSLE is a term used

to collectively describe the symptoms of neurological and

psychiatric nature present in 80% of patients with SLE (83).

These symptoms affect the CNS and peripheral nervous

system (PNS) and can range from localized or isolated to

diffuse manifestations, while they can also vary in severity.

The diagnosis of NPSLE can be challenging due to the

lack of disease-specific clinical and laboratory criteria (84).

Moreover, the pathogenesis of NPSLE has not been well

characterized so far, mainly due to the heterogenicity in the

clinical characteristics of patients with NPSLE. However, it is

believed that BBB disruption may play a key role here, similarly

to MS, whereby immune cells and autoantibodies eventually

enter the CNS, possibly promoting neuroinflammation (85).

On a genetic basis, a single-nucleotide polymorphism (rs11797)

on the TREX1 gene has been associated with NPSLE as it

discriminates patients with NPSLE from patients with SLE

without CNS involvement (86).

It is reported that 50–75% of adult patients with SLE have

elevated production of type I IFN, giving rise to an increased

IFN signature (87), while patients with active SLE benefit from

the treatment with anifrolumab, a human monoclonal antibody

against type I IFN receptor subunit 1, blocking the activation of
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FIGURE 2

Summary of protective mechanisms of action of endogenously produced or exogenously administered IFN-β during the e�ector phase of

EAE/MS. IFN-β treatment induces NGF in astrocyte cultures (51), and in endothelial cells interacting with IFN-β-treated lymphocytes in vivo and

in vitro (61) IFN-β further induces BDNF production (62). Microglial cells in close proximity to myelin debris produce IFN-β in EAE mice and in

vitro (35). IFN-β treatment in MS patients induces BAFF and drives B cells toward a regulatory phenotype (63). IFN-β inhibits T-cell proliferation

(64), and recombinant IFN-β administered to RRMS patients is associated with increased proliferation of Foxp3+ Tregs as well as FoxA1+ Treg

cells (65–67). IFN-β favors Th2 over Th1 responses (66). IFN-β treatment in MS patients leads to increased levels of soluble VCAM1 in their serum

leading to a decrease in VLA-4 expression on lymphocytes, interfering with their capacity to bind endothelial cells thereby preventing their

diapedeses through the BBB (68). IFN-β further prevents the erosion of the BBB by reducing MMP-9 or by increasing levels (69–71). IFN,

interferon; CNS, central nervous system; NGF, nerve growth factor; BDNF, brain-derived neurotrophic factor; BAFF, B-cell activation factor; Treg,

regulatory T cells; VCAM-1, vascular cell adhesion molecule-1; VLA-4, very late antigen 4; MMP-9, matrix metalloprotease 9; TIMP-1, TIMP

metalloprotease inhibitor 1.

type I IFNs (88). However, NPSLE was an exclusion criterion for

the clinical trials of anifrolumab (89), possibly due to the lack of

evidence that associates NPSLE and the IFN signature. However,

there are several studies and animal models of NPSLE that relate

the IFN signature to NPSLE.

Among the first groups to hypothesize that type I IFN plays

a role in NPSLE pathology was that of Shiozawa in 1992 who

demonstrated that IFN-α in CSF of patients with NPSLE was

higher compared to those with SLE alone. Moreover, IFN-α

levels in the CSF from patients with NPSLE were found to

be higher compared to serum IFN-α, suggesting that type

I IFN synthesized in the brain may be implicated in the

neuropsychiatric manifestations of SLE. Moreover, upon brain

autopsy in one of the patients with NPSLE, neuron localization

of IFN-α protein and mRNA was detected (90). In addition,

Santer et al. used a bioassay using pDCs to demonstrate that

NPSLE CSF induced significantly higher IFN-α compared with

CSF from patients with MS or other autoimmune disease

controls (91). Recently, IFN-α was shown to have a moderate

correlation (ρ = 0.33; p = 0.05) with NPSLE at the onset

of neuropsychiatric manifestations (92). However, the exact

implication of type I IFN in NPSLE pathophysiology remains to

be elucidated.

Numerous animal models have been developed in

an effort to study NPSLE and characterize its pathology;

however, none is a true depiction of the disease due to

its heterogeneous nature [reviewed in (93)]. The Pristane-

induced lupus (PIL) model more closely resembles the human

NPSLE manifestations. Upon pristane injection, mice develop

lipogranulomas containing mononuclear cells and DCs
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allowing the initiation of the inflammatory response. The

model is characterized by a strong IFN signature, autoantibody

production, glomerulonephritis, arthritis, and anemia. Among

the neuropsychiatric manifestations in this model are learning

and memory deficits as well as decreased locomotion (80, 81).

The spontaneous NZB/NZW F1 mouse NPSLE model is

characterized by splenomegaly, glomerulonephritis, haemolytic

anemia, and lymphadenopathy, while learning and memory

deficits are among its neuropsychiatric manifestations. Similarly

to other models, NZB/NZW F1 mice are characterized by

elevated production of IL-6, IFN-γ, and TNF-α, as well as

antinuclear antibodies and anti-dsDNA, while their IFN

signature is weak (94). Finally, the spontaneous MRL/lpr

model shares some similarities with the aforementioned models

with the neuropsychiatric manifestations such as depression,

anhedonia, apathy, and anxiety being more pronounced here

(94). Of interest, the intraperitoneal injection of captopril, an

angiotensin-converting enzyme (ACE) inhibitor, in MRL/lpr

mice reduced the ISGs expression in the brain and the periphery

as well as IFN-α levels in the plasma. Of interest, microglial

activation in the brain was also dampened. After short-term oral

captopril treatment, there was a decrease in the depressive-like

behavior responses in MRL/lpr mice, highlighting the potential

therapeutic benefits of ACE inhibitors in treating NPSLE (95).

Type I interferonopathies with CNS
involvement

Autoinflammatory diseases result from immune system

dysfunction and mainly affect the innate immune system.

This differentiates them from autoimmune diseases such

as MS and NPSLE, which are traditionally attributed to

a malfunctioning adaptive immune system. Clinically,

most autoinflammatory diseases are characterized by

symptoms of systemic inflammation. Most significantly,

type I interferonopathies that fall under the umbrella of

autoinflammatory diseases are characterized by the significant

involvement of the CNS, in relation to type I IFN as it will be

discussed later.

A strong link between autoinflammatory diseases and the

CNS can be seen in type I interferonopathies. The prototypic

mendelian disease that demonstrated the potential harm of

interferon in humans was firstly described by J. Aicardi and

F. Goutières in 1984. They reported a progressive familial

encephalopathy in infancy (96), characterized by dysregulated

type I IFN pathway and accompanied by IFN-α-producing

astrocytes that have neurotoxic effects in the CNS, as

subsequently highlighted by the Campbell group (97). Type I

interferonopathies are triggered by host nucleic acids, due to

the failure of the innate immune system to distinguish self

from non-self. Technological advancements have enabled the

understanding of type I interferonopathies at least on a genetic

basis, and it is now suggested that 38 Mendelian genotypes

can be classified as type I interferonopathies (98). The genetic

background of interferonopathies with neuroinflammatory

manifestations has been greatly investigated. However, the

way in which type I interferonopathies present neurological

manifestations and whether type I IFNs are directly implicated

in this process is greatly understudied. Apart from AGS, for the

interferonopathies that were most recently described, there is

very little evidence around the origin of type I IFN induction.

Collectively, the dysregulation of type I IFN that eventually

leads to interferonopathies may be a consequence of variable

mechanisms that are summarized here and are mainly

found in the periphery. As seen in AGS, monogenic SLE,

trichohepatoenteric syndrome, and X-linked reticulate

pigmentary disorder, the accumulation of endogenous nucleic

acids in the cytosol that trigger aberrant type I IFN production,

result from loss-of-function mutations in genes encoding for

enzymes targeting nucleic acid degradation. Furthermore,

AGS and monogenic SLE are characterized by alterations in

the intracytosolic nucleic acid sensor, which in turn leads

to a lowered threshold for IFN production, a mechanism

also observed in Singleton–Merten syndrome. Other

interferonopathies such as STING-associated vasculopathy

with onset in infancy are triggered by a gain of function

mutation of positive IFN signaling regulators, leading to

continuous activation of the IFN pathway (99).

Diagnostic testing for type I interferonopathies is a novel

concept that has not yet reached standard clinical practice.

However, the assessment of type I IFN signature has been

shown to define a spectrum of inflammatory diseases, related to

aberrant type I IFN signaling (100). In addition, IFN-α can be

measured through digital enzyme-linked immunosorbent assay

technology (98).

Generally, type I IFN is involved in microglial function by

regulating the balance between physiological clearance of debris

and aberrant phagocytosis. A dysregulation of this balance can

lead to neurodegeneration (101). Fetal nervous tissues appear to

be more prone to IFN insult, particularly during developmental

processes such as neurogenesis and myelination (102). As a

consequence, neurological involvement, such as psychomotor

retardation and intracerebral calcifications, seen in some

interferonopathies such as AGS are reported early on during

the disease onset (100). Interestingly, a group of organisms

causing congenital fetal infections (toxoplasma, rubella, CMV,

and HSV), collectively termed TORCH, also cause intracranial

calcifications in neonatal periods, reminiscent of the ones found

in interferonopathies (103). We will discuss here the genetic

background and immunopathology of interferonopathies with

neurological involvement (summarized in Table 1).
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TABLE 1 Genetic background and immunopathology of interferonopathies with neuroinflammatory manifestations.

Interferonopathy Associated genes Immunopathology Clinical manifestations

Aicardi–Goutières

syndrome

TREX1 RNASEH2B RNASEH2C

RNASEH2A SAMHD1 ADAR

IFIH1 LSM11 RNU7-1 USP18

STAT2

Dysregulated nucleic acid sensing resulting in

immune activation and aberrant type I IFN

production.

Encephalopathy, intracranial calcifications,

cerebral atrophy (104).

ISG15 deficiency ISG15 Deficiency in ISG15 leads to upregulated type

I IFN and downregulated type II IFN

signaling.

Cerebral calcifications, susceptibility to

mycobacterial infection (105).

DNase II deficiency DNASE2 Lack of DNase endonuclease activity results

in aberrant sensing of self-DNA resulting in

aberrant type I IFN induction.

Anemia, glomerulonephritis, liver fibrosis,

cerebral calcifications, white matter (106).

Spondyloenchondrodysplasia

(SPENCD)

ACP5 Deficiency in ACP5 results in upregulated

type I IFN response

Bone lesions, autoimmune

thrombocytopenia, SLE, vasculitis, cerebral

calcifications, developmental delay (107)

Chronic atypical

neutrophilic dermatosis

with lipodystrophy and

elevated temperature

(CANDLE).

PSMB8 Immuno-proteosomal dysfunction possibly

leads to the accumulation of misfolded or

damaged proteins resulting in type I IFN

induction.

Recurrent fever, rashes, arthralgia,

progressive lipodystrophy, cerebral

calcifications (108)

Aicardi–goutières syndrome

AGS is characterized by basal ganglia calcifications, CSF

lymphocytosis, as well as increased levels of type I IFN in the

CSF (109). There are seven AGS genetic subgroups (AGS1-7),

based on the mutations found in the following genes: 3
′

-5
′

DNA

exonuclease-TREX1, RNASEH2B, RNASEH2C, and RNASEH2A,

SAM andHD domain-containing deoxynucleoside triphosphate

triphosphohydrolase 1-SAMHD1, and adenosine deaminase

acting on RNA 1-ADAR1, as well as on the RNA sensor

IFN-induced helicase C domain-containing protein 1-IFIH1

(101, 110). Mutations in TREX1 and the genes encoding the

RNASEH2 complex led to the hypothesis that these proteins are

involved in nucleic acid ‘debris’ clearance and their dysfunction

could result in the failure of such clearance thereby leading to an

innate immune response that would physiologically be induced

by viral nucleic acids (93, 111). Deficiency in TREX1 results

in the accumulation of intracellular ssDNA. As demonstrated

by Stetson and colleagues, Trex1-null mice experience the

activation of the TLR-independent cytosolic pathway by ssDNA,

resulting in type I IFN production (112). However, the question

still remains regarding the source of IFN in the CNS.

As mentioned, astrocytes and microglia are key producers

of IFN-α within the CNS when responding to viral infection or

synthetic poly I:C treatment. Post-mortem studies of patients

with AGS revealed co-localization of the GFAP astrocyte marker

and IFN-α along with the cytokine CXCL10 (113). What

are more, investigations led by Campbell’s group utilizing

a transgenic mouse model expressing IFN-α in astrocytes

specifically (GFAP-IFN), resulted in mice developing a clinical

phenotype that overlapped with AGS individuals but lacked

the genetic basis of AGS. Importantly, these transgenic mice

developed encephalopathy, seizures, and calcium deposits in the

basal ganglia, clinical characteristicsmatching AGS (97). In favor

of this theory is the in vitro model of astrocytes exposed to

poly I:C that exhibits an innate immune response with elevated

cytokines such as IFN-α (114). Specifically, when treated with

IFN-α for 3 weeks, these astrocytes showed reduced proliferation

along with downregulation of genes and proteins crucial for

white matter maintenance. In addition, withdrawal from IFN-α

for 7 days did not rescue or revert the aforementioned effect

(114). This evidence can collectively support the idea of IFN-α-

producing astrocytes as a probable mediator in the pathogenesis

of AGS.

In terms of clinical characteristics and in the context of

early-onset AGS, delay in psychomotor development and liver

anomalies are present since birth whereas in the context of

later-onset AGS, after a small window of normal development,

cognitive and developmental delay become evident (115).

Neuroimaging greatly facilitates the diagnosis of AGS, in which

brain atrophy, white matter hyperintensities (WMH), and

intracranial calcifications are present (116). Extra-neurological

symptoms are also prominent in patients with AGS with

the skin being most commonly (35%) involved in the form

of chilblain-like lesions localized in fingers and toes. In

addition, thrombocytopenia, hepatosplenomegaly, psoriasis,

and interstitial lung disease (ILD) can also manifest in the

context of AGS (101). Taking into account that patients with
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AGS have increased IFN-α in CSF and peripheral blood, Rice

and colleagues proposed in 2013 that the interferon signature

could facilitate the diagnosis of AGS, as a possible biomarker.

Indeed, the upregulation in expressions of IFI27, IFI44, IFIT1,

ISG15, RSAD2, and SIGLEC1 was confirmed in the peripheral

blood of patients with AGS (98, 99).

ISG15 deficiency

ISG15 deficiency is a moderately severe interferonopathy.

ISG15 is an intracellular IFN-α/β inducible ubiquitin-like

modifier which covalently binds other proteins, a process

called ISGylation. Through a loss-of-function mutation, ISG

deficiency in humans leads to increased type I IFN signaling

and decreased type II IFN signaling. Zhang and colleagues

demonstrated that patients with ISG15-deficient displayed

clinical signs of enhanced IFN-α/β immunity as seen in AGS

and spondyloenchondrodysplasia (SPENCD) such as cerebral

calcifications (nearly 100% of patients with ISG15) and sporadic

reports of seizures. It was further shown by the same group that

the absence of intracellular ISG15 prevents the accumulation of

USP18 thereby sustaining the effect of IFN-α/β inflammation

(105, 117). ISG15 also acts as an extracellular inducer of type

II IFN and, therefore, its deficiency is subsequently associated

with increased susceptibility to mycobacterial disease (117). It

was later shown that myeloid cells (monocytes and DCs) were

the primary responders to IFN-I-mediated inflammation in

the peripheral blood of patients with ISG15 deficiency (118).

However, the role of CNS cells in mediating the type I IFN

inflammation in the context of ISG deficiency remains to

be elucidated.

DNase II deficiency

Deoxyribonuclease (DNase) II is a lysosomal endonuclease

that facilitates the degradation of extracellular DNA debris

generated by homeostatic erythropoiesis and apoptosis (119).

DNase II deficient mice accumulate a lethal amount of

undigested DNA in the lysosomes of macrophages which

chronically induces type I IFN production resulting in lethal

perinatal anemia (106). DNase II deficiency is a distinct

clinical entity of autoinflammation and elevated type I IFN

signaling. Neurological manifestations include once more

cerebral calcifications and WMH (117).

Spondyloenchondrodysplasia

Spondyloenchondrodysplasia (SPENCD) is a rare autosomal

recessive skeletal dysplasia that manifests itself through vertebral

dysplasia and enchondroma-like radiolucent metaphyseal

lesions of the long bones, while affected individuals are

presented with short-trunked short stature (107). Among

other clinical manifestations, neurological involvement such as

intracranial calcification and immune dysregulationmanifesting

through autoimmune diseases or immunodeficiency are also

present (120). Loss-of-function mutations in the ACP5 gene

(117) which encodes tartrate-resistant acid phosphatase

(TRAP) was identified as the genetic cause of SPENCD. As

a consequence, the deficit in TRAP leads to elevated levels

of phosphorylated osteopontin, which in turn results in

dysregulated endochondral ossification but also increased type I

IFN signature (120). However, very little is known regarding the

induction of type I IFN signature in SPENCD and specifically

the way it affects the CNS.

Chronic atypical neutrophilic dermatosis with
lipodystrophy and elevated temperature

Chronic atypical neutrophilic dermatosis with

lipodystrophy and elevated temperature (CANDLE) syndrome

is an autoinflammatory disorder characterized by recurrent

fevers, purpuric annular plaques, acral pernio-like lesions,

periorbital violaceous oedema, lipodystrophy, arthralgias,

anemia, and elevated inflammatory markers (121). Similarly

to other interferonopathies, cerebral calcifications and rarely

aseptic meningitis have also been reported. In addition, the

elevated type I IFN signature found in patients with CANDLE

may be a key mediator of the inflammatory response and serve

as a therapeutic target (108). CANDLE is now classified under

the subcategory of interferonopathies called proteasome-related

autoinflammation (PRAAS1) and is called PRAAS1 (117).

The ubiquitin-proteasome system (UPS) is involved in various

cellular functions such as misfolded protein clearance, MHC

class I antigen processing, and others (122). Particularly,

the loss-of-function mutation in proteasome 20S subunit

beta 8 (PSMB8) (117), associated with PRAAS1, results in

autoinflammation dominated by a prominent type I IFN gene

signature due to impaired proteasome activity and perturbing

protein homeostasis. However, the exact mechanism is not fully

understood (108).

Discussion

Since their discovery in 1957, interferons have been

implicated in numerous pathophysiological conditions while

they have also paved the way formany therapeutic interventions.

Here, we summarized the implication of type I IFN in

autoimmune and autoinflammatory diseases affecting the

CNS. In the past decade, substantial evidence has aided our

understanding of the way type I IFN signaling may protect the

CNS against viral infection. More importantly, great progress

has beenmade in elucidating how dysregulations in this pathway

can lead to neurological diseases. A plethora of observations

supports the protective effect of type I IFN in the context of
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MS and its murine disease analog EAE. On the other hand,

NPSLE and type I interferonopathies highlight the detrimental

effects of type I IFN on several organ systems, including the

CNS, for patients affected by these diseases. Taking everything

into account, we conclude that a disproportionate enhancement

in type I IFN signaling can lead to autoinflammatory CNS

manifestations, whereas peripherally administered type I IFN-β

can be beneficial at least for a subset of patients with MS.
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