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Objective: Through transcriptomic and metabolomic analyses, this study

examined the role of high-fiber diet in obesity complicated by diabetes and

neurodegenerative symptoms.

Method: The expression matrix of high-fiber-diet-related metabolites, blood

methylation profile associated with pre-symptomatic dementia in elderly

patients with type 2 diabetes mellitus (T2DM), and high-throughput single-

cell sequencing data of hippocampal samples from patients with Alzheimer’s

disease (AD) were retrieved from the Gene Expression Omnibus (GEO)

database and through a literature search. Data were analyzed using principal

component analysis (PCA) after quality control and data filtering to identify

di�erent cell clusters and candidate markers. A protein–protein interaction

network was mapped using the STRING database. To further investigate the

interaction among high-fiber-diet-related metabolites, methylation-related

DEGs related to T2DM, and single-cell marker genes related to AD, AutoDock

was used for semi-flexible molecular docking.

Result: Based on GEO database data and previous studies, 24 marker genes

associated with high-fiber diet, T2DM, and AD were identified. Top 10 core

genes include SYNE1, ANK2, SPEG, PDZD2, KALRN, PTPRM, PTPRK, BIN1,

DOCK9, and NPNT, and their functions are primarily related to autophagy.

According to molecular docking analysis, acetamidobenzoic acid, the most

substantially altered metabolic marker associated with a high-fiber diet, had

the strongest binding a�nity for SPEG.

Conclusion: By targeting the SPEG protein in the hippocampus,

acetamidobenzoic acid, a metabolite associated with high-fiber diet,

may improve diabetic and neurodegenerative diseases in obese people.
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1. Introduction

The incidence of obesity is increasing annually worldwide.

According to the recent data published in NEJM, the incidence

of obesity has been increasing at a high rate since the

1980s, with the incidence rate being 12 and 5% among

adults and children, respectively. The number of individuals

with obesity is highest in China (1, 2). Obesity and type 2

diabetes mellitus (T2DM) significantly increase the incidence

of neurodegenerative diseases such as depression, dementia,

stroke, and memory loss (3–8). Chronic systemic inflammation

throughout the body is a common feature of obesity and

diabetes and may be present in the central nervous system,

suggesting an important relationship among obesity, diabetes,

and neurodegenerative diseases (9). Therefore, examining

the regulation of energy balance in obesity and identifying

biomarkers are major research directions at present.

The central nervous system plays an important role in

regulating energy balance in the body, energy metabolism is

also linked to the health of the central nervous system (10–

14). As the main appetite control center of the hypothalamus,

the arcuate nucleus region (ARC) is one of the most studied

neural circuits for energy balance (10). As the sensors of

peripheral nutrients and hormones, AgRP and POMC neurons

in the ARC are considered key neurons involved in sensing

the global energy status of an organism and playing an

important role in diet and weight regulation (15–18). In a

state of energy surplus, POMC neurons release neuropeptides

such as α-MSH, which have appetite-suppressing effects, to

reduce the energy intake of the body, thereby maintaining body

weight (17). There are network loops in the hypothalamus
that regulate feeding and are precisely interconnected (19).

The hippocampus is part of the limbic nervous system.
In addition to its relevance to cognition and learning, it

has received increasing attention in the study of feeding

and digestion; processing visceral sensory information and

participating in the regulation of energy balance mainly

through connections with the hypothalamus, amygdala and

medulla (20, 21). This phenomenon may be attributed to

the regulation of the hypothalamus via the hippocampal–

hypothalamic neural loop. Direct neural projections from the

ventral pole of hippocampal CA1 to hypothalamic loci are

involved in the control of food intake (22). In a study,

significant alterations in feeding behavior were observed in rats

with a damaged hippocampus. The effects of nesfatin-1 on

GD-responsive neurons in the ventral medial nucleus of the

hypothalamus were significantly reduced after the hippocampal

CA1 region of rats was electrically damaged, thereby affecting

gastric motility (21). However, factors affecting hippocampal

Abbreviations: T2DM, Type 2 diabetes mellitus; AD, Alzheimer’s disease;

SPEG, Striated muscle preferentially expressed protein kinase; GO, Gene

ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

function are intricate. Previous studies have found that many

hormone receptors are related to feeding and energy regulation

in the hippocampus, such as ghrelin, nesfatin-1, and insulin

(21, 23). The hypothalamic–pituitary–adrenal (HPA) axis and

its neuroendocrine hormones can mediate stressful effects

in the hippocampus (24). In addition, various neurovascular

markers can influence hippocampal function (25). Therefore,

we hypothesized that modulation of hippocampal function can

improve the energy homeostasis function of the hypothalamus

by improving the hippocampal–hypothalamic neural circuit,

thus suppressing obesity.

An increase in dietary fiber intake is associated with a

reduced risk of obesity, and dietary fiber also plays a beneficial

role in obesity-related metabolic diseases (26, 27). High-fiber

and low-glycaemic-index diets with conventional T2DM

treatment can improve the disorder of glucolipid metabolism

and have certain hypoglycaemic effects in elderly patients with

T2DM (28, 29). Consumption of whole grains may prevent

the development of T2DM (30, 31). Consumption of almonds

increases dietary fiber intake, which is beneficial for obesity,

glycaemic control and lipid profile, probably owing to the

presence of fiber, which promotes an antidiabetic microbiome

by increasing the amount of short-chain fatty acids (32–34).

Moreover, high-fiber diet is essentially a low-calorie diet and

consuming foods rich in fiber increases satiety and hence

reduces caloric intake (35). In addition, a high fiber intake

is associated with a reduced risk of Alzheimer’s disease (AD)

(36). Metabolites associated with high-fiber diet are blood

markers that target key genes and suppress obesity. Inulin,

a type of soluble dietary fiber, promotes the production of

glucagon-like peptide-1 (GLP-1) in enteroendocrine cells

and suppresses postprandial blood glucose elevation and

appetite through short-chain fatty acids (SCFAs) produced

by the intestinal microbiota (37, 38). Kimura et al. reported

that SCFA exerts an inhibitory effect on fat accumulation via

GPR43 (39). Therefore, high-fiber diet improves metabolic

status and prevents obesity. However, its effects on the

hippocampal–hypothalamic functional axis remain unknown.

Previous studies have reported that dietary fiber plays a role in

improving insulin resistance (40). Adherence to high-fiber diet

can decrease the plasma levels of ghrelin and GLP-1 (41). Many

hormone receptors related to feeding and energy regulation

are present in the hippocampus, such as ghrelin, nesfatin-1

and insulin (21, 23). Therefore, we speculate that metabolites

from high-fiber diet might act on the hippocampus. In order

to identify new treatment targets for obesity, it is important

to investigate how high-fiber diet work in obesity and the

corresponding complications.

This study examined high-fiber diet’ ability to delay

the progression of obesity complicated by diabetes type 2

and neurodegenerative symptoms using integrated scRNA

transcriptomic and metabolomic analyses, providing new

insights into obesity management.
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2. Materials and methods

2.1. Methylation genes in the peripheral
blood of patients with T2DM–AD

Gene methylation signature matrix data associated with

pre-dementia in elderly T2DM patients were downloaded

from the GEO database. The following search strategy was

used: keywords, “Type 2 diabetes” and “Alzheimer’s disease;”

study subjects, “Homo sapiens;” study type, “Blood methylomic

signatures.” Datasets were obtained using whole-genome

RNA-expression microarrays, and human-derived whole

blood was used for experiments. After fine data screening, the

microarray dataset GSE62003 was eventually selected (Illumina

HumanMethylation 450 BeadChip; HumanMethylation

450_15017482) (42). The platform used for testing samples was

GPL13534, and the dataset contained the expression data of

methylation-related genes from 58 patients with T2DM. Firstly,

samples with >10% missing methylation sites were excluded.

Then, the R package “ChAMP” was used to perform a series of

processes: the missing values were filled in using the ChAMP

(43, 44). Data were extracted and screened for DEGs using the

R package. The probe IDs were converted to standard gene

symbols. Genes with P < 0.05 and |log2FC| > 0.1 were selected

as methylation genes in peripheral blood of T2DM–AD patients.

2.2. Acquisition of metabolomics data for
high-fiber diets

Metabolomic data of the high-fiber diet were obtained

using the GEO database and a literature search, and metabolite

expressionmatrices were created to screen and identify potential

metabolic markers of serum endogenous origin based on

differential expression multiplicity (|log2FC| > 1.00) and t-

test (P < 0.05) results. The MetaboAnalyst 5.0 (http://www.

metaboanalyst.ca/) database was further used to perform

metabolic pathway analysis of the potential metabolic markers

that were significantly back-regulated after the high-fiber diet

intervention and to obtain metabolism related differentially

expressed genes (DEGs) (45).

2.3. Downloading single-cell RNA
sequencing data of hippocampal tissue
from the AD patients

The high-throughput scRNA-seq data of the hippocampal

samples associated with AD were downloaded from the GEO

database with the following screening criteria: (i) Alzheimer’s

disease; (ii) human; (iii) hippocampus; and (iv) single cell RNA-

seq/scRNA-seq. The single-cell sequencing data of hippocampal

samples from patients with AD were extracted from the GEO

database using “Alzheimer’s disease” as the search term, and

the scRNA-seq dataset (GSE163577) was selected for further

analysis (46). The single-cell sequencing data of nine patients

with AD (AD group) and eight healthy individuals (control

group) in the dataset were selected, and cells with gene

counts of 200–10,000 and mitochondrial gene proportion of

<5% were screened using the Seurat package as previous

researches (47–52). Subsequently, the data were normalized

using the “Normalizedata” function of the Seurat package and

the global scaling normalization method “LogNormalize.” To

remove the batch effects of cells include in the analysis and

maximize the preservation of the gene expression data of

these cells, the “ScaleData” function of the Seurat package

was used to regress the variances of “nCount/nFeature_RNA”

and “percent. Mt” (Supplementary Figure 2C). Subsequently,

the “RunPCA” function of the Seurat package was used for

dimensionality reduction and t-SNE clustering. The identified

cells were subjected to top-down clustering analysis and

annotated according to the known human gastric tissue cell

marker genes.

2.4. Single cell sequencing quality control
and data removal

For quality assessment, quality control processing of

sequencing raw expression data, Limma, Seurat, Dplyr, and

Magrittr packages were used. Seurat’s R package is used to

generate objects, remove poor quality data, and calculate the

percentages of gene counts, cell counts, and mitochondrial

sequencing counts from the matrix data. For quality control,

set Seurat’s screening criteria as follows: cells with <3 genes

expressed and <50 genes were rejected. It was necessary to

remove cells with more than 5% mitochondrial genes.

2.5. Cell annotation and screening of
marker genes

In order to obtain the highest principal component in the

cell population, further principal component analysis (PCA)

was conducted after quality control of the sequencing data. The

principal components were determined by P<0.05 screening

and the t-SNE clustering algorithm was used to select the

significant components. We used the Seurat package for the t-

SNE analysis, and all the removed data was classified by setting

the clustering parameter of the FindClusters function in Seurat

to 0.5. The R package by limma was used to adjust P < 0.05,

and the expression change was greater than or equal to twice

the (|log2FC| ≥ 1.00) as the criteria to filter the marker genes.
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In addition, candidate marker genes were found in different

clusters of cells using the ggplot2 package.

2.6. GO/KEGG enrichment analysis of
marker genes

The Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) signaling pathway analysis of the marker

genes obtained in the previous step was performed in the

R language to further explore the potential mechanisms of

marker genes in specific cell clusters in Alzheimer’s disease (53).

Potential marker genes are categorized by Cellular Components

(CC), Molecular Functions (MF), and Biological Processes (BP).

Pathview is also used to map the corresponding signaling

pathways. GO enrichment and KEGG pathway analyses were

performed using the DAVID (http://david.ncifcrf.gov) and

Metascape databases, and the results were visualized using the

R software (54–58). The DAVID online database was conducted

on methylation genes associated with high-fiber diet, T2DM,

and AD for GO and KEGG enrichment analysis. Based on the

P-value of each item p < 0.05, the best biological process and

enrichment pathway were selected.

2.7. Network involving high-fiber diet,
T2DM, and AD in single cells

To illustrate the relevant target sets of the T2DM-AD-

monocyte marker gene methylation network, the Venn R

package was used to map hippocampus-associated marker

genes in AD to DEGs in high-fiber diets and differentially

methylated genes in T2DM patients, respectively. In order

to map intersecting protein interaction networks and output

protein-interaction relationship data, the STRING database

(https://string-db.org/) was applied (59–63). By analyzing the

topological structure of the protein-protein interaction network

model with Cytohubba plugin of Cytoscape 3.7.2, the top-

ranked core targets were selected, and their degree, closeness,

and betweenness values were visualized (64, 65).

2.8. Molecular docking

The study used AutoDock 4 for semi-flexible molecular

docking of ligands and receptors to investigate the interaction

of differentially metabolized compounds of a high fiber diet

with the T2DM-AD-monocyte marker methylation gene (66,

67). Small molecule ligands are flexible and changeable in

semi-flexible docking, while receptors are robust and difficult

to change. By downloading the 3D SDF file from PubChem,

modifying the structure with ChemBio3DUltra 14.0, and saving

it as mol2 format, the active ingredient was first processed. Our

next step was to download the 3D protein model of the core

target from the PDB database, dehydrate, hydrogenate, extract

the ligand, and save it as a PDB file using PyMOL. The files

were then converted to pdbqt files using Auto Dock Tools-

1.5.6. The docking results were visualized in PyMOL to map the

“protein-molecule” docking interaction patterns. In addition,

run Discovery Studio 2019 to find the docking site and calculate

the LibDockScore. Analyze the chemical bonds formed between

the docking model and the 2-dimensional image.

3. Results

3.1. Di�erential expression analysis of
metabolites associated with high-fiber
diet

Potential serum endogenous metabolic markers were

identified via differential expression analysis (|log2FC| > 1)

and a t-test (P < 0.05) using data from the GEO database

and previous studies (68, 69). A total of nine upregulated and

seven downregulated metabolites were identified. According

to the MetaboAnalyst 5.0 database, the three most relevant

pathways (P< 0.05) were related to the citrate cycle (TCA cycle);

beta-alanine metabolism and the biosynthesis of neomycin,

kanamycin, and gentamicin (Figure 1A). In addition, the

enrichment analysis of potential metabolic markers revealed

that their functions were mainly related to the Warburg

effect, glycolysis, and beta-alanine metabolism (Figure 1B).

Furthermore, the combined multifunctional analysis of high-

fiber-diet-related metabolic DEGs and differential metabolites

revealed that these metabolites were mainly involved in

the citrate cycle (TCA cycle), beta-alanine metabolism and

the biosynthesis of neomycin, kanamycin, and gentamicin,

which is consistent with the results of the previous pathway

enrichment analysis (Figure 1C). As a result of the above

analysis, we identified differential metabolites associated with

high fiber diets.

3.2. Methylation genes in the peripheral
blood of patients with T2DM–AD

The expression profiles of methylation-related genes in

the peripheral blood of patients with T2DM–AD were

obtained. And a total of 11 upregulated and 10 downregulated

methylation-related genes were identified and visualized on a

heat map (Supplementary Figure 1A). The transcriptomic data

of these DEGs were imported into the R software to construct

a volcano plot (Supplementary Figure 1B). The peripheral

blood of T2DM-AD patients was analyzed for methylation-

related genes.
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FIGURE 1

Metabolomic analysis. (A) Signaling pathways associated with di�erentially expressed metabolites associated with high-fiber diet. (B) Bubble

map of di�erentially expressed metabolites associated with high-fiber diet. (C) Bubble map of the interaction between di�erentially expressed

metabolites associated with high-fiber diet and DEGs.

3.3. Cellular distribution and
characteristics in the hippocampal tissue
of patients with AD

Hippocampal samples from patients with ADwere extracted

from the GEO database using “Alzheimer’s disease” as the search

term, and the scRNA-seq dataset (GSE163577) was selected

for further analysis. The single-cell sequencing data of nine

patients with AD and eight healthy individuals in the dataset

were selected, and cells with gene counts of 200–10,000 and

mitochondrial gene proportion of <5% were screened using the

Seurat package in R (Supplementary Figures 2A, B). To remove

the batch effects of cells include in the analysis and maximize

the preservation of the gene expression data of these cells,

the “ScaleData” function of the Seurat package was used to

regress the variances of “nCount/nFeature_RNA” and “percent.

Mt” (Supplementary Figure 2C). Subsequently, the “RunPCA”

function of the Seurat package was used for dimensionality

reduction and t-SNE clustering (Supplementary Figures 3A, B).

A total of 182,056 cells and 27,005 associated genes were

identified after quality control, integration and normalization

of data and removal of batch effects from the single-cell

sequencing data of patients with AD and healthy individuals.

The identified cells were subjected to top-down clustering

analysis and annotated according to the known human gastric

tissue cell marker genes. A total of 27 cell types were identified

(Supplementary Figure 3B), with uniform scattered distribution

and good integration of batch effects. The expression of

marker genes in each cell type was specific, indicating that

the cell annotation results were accurate (Figure 2). Thus,

hippocampal tissue of AD patients was examined with respect

to its distribution and characteristics.

3.4. Screening and enrichment analysis of
marker genes

Based on the results of cell annotation, different types of

cell subpopulations were identified using the Seurat package,

and DEGs in different cell subpopulations in the hippocampal

tissue of patients with AD and healthy individuals were screened

using the FindMarkers function. A total of 12,610 DEGs were

identified and visualized on a heat map (Figure 3A). GO analysis

revealed that the identified DEGs were mainly enriched in

cellular responses to nitric oxide, muscle cell differentiation,

and RNA polymerase II transcriptional regulation complex

(Figure 3B). KEGG analysis revealed that the genes were

mainly enriched in pathways associated with autophagy, cellular

senescence, AGE–RAGE signaling in diabetic complications and

NF–kappa B signaling (Figure 3C).

3.5. Interaction network of
high-fiber-diet-related metabolites,
methylation-related DEGs associated
with T2DM–AD, and single-cell marker
genes associated with AD

There were 24 high-fiber-diet–T2DM–AD marker genes

identified by intersecting high-fiber-diet-related metabolites

with methylation-related DEGs associated with T2DM

(Figure 4A). The STRING (version 11.0) database was used to

construct a gene interaction network for these marker genes.

The species selected was “Homo sapiens.” To identify hub genes

(Figures 4B–D), the cytoHubba plug-in in Cytoscape 3.7.2

software was used to construct a protein–protein interaction
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FIGURE 2

Annotated distribution maps of cells in tSNE map.

network based on network topology, calculate degree, closeness,

and betweenness values, and select the size of the values

for ranking. Top hub genes included SYNE1, ANK2, SPEG,

PDZD2, KALRN, PTPRM, PTPRK, BIN1, DOCK9, and NPNT.

As a result, we constructed a network of interactions between

high-fiber diet-associated metabolites, methylation-associated

DEGs associated with T2DM-AD, and single-cell marker genes

related to AD. Functional and pathway enrichment analyses

of the 24 high-fiber-diet–T2DM–AD-related marker genes

were performed using Metascape. GO enrichment analysis

revealed a total of 245 biological processes (BPs), 33 cellular

components (CCs), and 26 molecular functions (MFs). BPs

included muscle cell differentiation, muscle cell development,

cell–cell adhesion mediated by integrin, CC assembly involved

in morphogenesis, and nephron development. MFs included

transmembrane receptor protein tyrosine phosphatase activity,

transmembrane receptor protein phosphatase activity, protein

serine/threonine kinase activity, protein tyrosine phosphatase

activity, and cysteine-type endopeptidase activity. CCs included

contractile fibers, cell–cell junction, sarcomere, T-tubules,

and myofibrils (Figures 5A–D). According to KEGG pathway

enrichment analysis, the marker genes were enriched in two

pathways (Figures 5E, F), of which autophagy was the pathway

of interest in this study.

3.6. Molecular docking validation

The most significantly altered metabolic markers, including

phosphoenolpyruvate and acetamidobenzoic acid, as well as

the top three core proteins, SYNE1 (4DXR), ANK2 (5Y4E),

and SPEG (6CY6) (the corresponding structural domains of

the proteins are mentioned in parentheses) were analyzed

with the AutoDock Tools (version 1.5.6) software. Smaller

the binding energy, the stronger the binding capacity. Table 1

shows that phosphoenolpyruvate and acetamidobenzoic acid

had adequate binding affinities for the core proteins SYNE1

(4DXR), ANK2 (5Y4E), and SPEG (6CY6). Acetamidobenzoic

acid had the strongest binding affinity for the core protein SPEG

(6CY6), with an RMSD value of <2.00 (Figure 6). Docking

the active molecule with the corresponding target protein in

Discovery Studio 2019 revealed that acetamidobenzoic acid

binds via hydrogen and hydrophobic bonds to SPEG (6CY6).

Acetamidobenzoic acid forms hydrogen bonds with amino acid

residues at position 31 (ARG) and 123 (ILE) and hydrophobic

bonds with amino acid residues at position 159 (ALA) and 150

(PHE) of the structural domain of SPEG (6CY6) (Figure 6).

Acetamidobenzoic acid, a metabolite associated with high-fiber

diet, may target SPEG in the hippocampus and affect autophagy

related pathway.
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FIGURE 3

Enrichment analysis for the identification of markers genes. (A) Heat map demonstrating the distribution of marker genes. (B) Histogram of GO

enrichment analysis of marker genes. (C) Histogram of KEGG functional analysis of marker genes.

Discussion

In this study, metabolites and signaling pathways associated

with high-fiber diet were identified based on databases. The

GEO database was used to identify 10 core high-fiber-diet–

T2DM–AD-related marker genes, whose functions are mainly

related to autophagy. The results of molecular docking suggested

that high-fiber-diet-associated metabolites can stably bind to

the core high-fiber diet–T2DM–AD-associated proteins, with

the most stable binding observed between SPEG (6CY6) and

acetamidobenzoic acid. These results suggest that high-fiber

diet influences autophagic homeostasis in the hippocampus

through binding of the metabolite acetamidobenzoic acid to

the SPEG (6CY6) protein and regulation of the hippocampal–

hypothalamic endocrine axis, eventually improving the diabetic

and neurodegenerative disease states of patients with obesity.

Autophagy is involved in the regulation of lipid metabolism,

and its dysregulation in adipose tissue is associated with the
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FIGURE 4

Enrichment analysis for the identification of markers genes. (A) Venn diagram demonstrating high-fiber-diet–T2DM–AD-related marker genes.

(B) Potential core target genes identified based on degree values. (C) Potential core target genes identified based on closeness values. (D)

Potential core target genes identified based on between-ness values.

development of metabolic diseases (70, 71). Dysregulation of

autophagy alters energy metabolism in hypothalamic neurons

and white adipose tissue (WAT). Imbalance of autophagy in

hypothalamic neurons can lead to increased caloric intake and

weight gain, resulting in obesity and metabolic disorders (72).

Mitochondrial autophagy is critical for protecting neurons in

the hippocampal CA1 region from ischaemic stress injury (73).

In addition to hippocampal CA1 neuronal deletion leading

to cognitive impairment, direct neural projections from the

ventral pole of hippocampal CA1 to hypothalamic loci are

involved in the control of food intake (22, 74). Furthermore,

the autophagic pathway is closely related to the pathogenic

mechanism underlying the impairment of intestinal mucosal

barrier function (75). Impairment of intestinal barrier structure

and function is an important pathogenic process in T2DM

(76). Autophagy is also involved in the pathological process

of AD through several mechanisms, such as the removal

of misfolded proteins, and is a novel therapeutic target for

AD (77, 78). Therefore, autophagy is closely related to the

pathogenesis of obesity and the associated metabolic diseases

T2DM and neurodegenerative diseases and regulates the

hippocampal–hypothalamic neuroendocrine axis. In the present

study, KEGG pathway enrichment analysis strongly suggested

that the function of high-fiber-diet–T2DM–AD-related DEGs

was mainly related to autophagy, which is consistent with

the results of previous similar studies (79–82). Therefore,

metabolites associated with high-fiber diet may play a role in

the pathological process of T2DM and AD among patients

with obesity by affecting autophagy in the hippocampus

and hypothalamus.

Furthermore, this study demonstrated that the high-fiber-

diet-associated metabolite acetamidobenzoic acid can bind to

the SPEG (6CY6) protein in the hippocampus and affect

autophagic homeostasis in the hippocampus, thus improving

the diabetic and neurodegenerative disease states of individuals

with obesity. Acetamidobenzoic acid is a derivative of benzoic

acid. Benzoic acid derivatives are involved in promoting the

activity of the autophagy–lysosome pathway (83). Benzoic acid is

involved in the composition of the compound Mn (III) tetrakis

(4-benzoic acid) porphyrin chloride (MnTBAP), which reduces
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FIGURE 5

GO and KEGG enrichment analysis. (A) Histogram of BP functional analysis. (B) Histogram of CC functional analysis. (C) Histogram of MF

functional analysis. (D) Histogram of GO enrichment analysis. (E) Histogram of KEGG enrichment analysis. (F) Autophagy signaling pathway.

obesity by reducing adipocyte hypertrophy and adipogenesis

and regulating energy balance and improves insulin function

(84, 85). Benzoic acid derivatives present in garlic shells can

be combined with other compounds to synergistically activate

the PPAR signaling pathway or inactivate the phospholipase D
signaling pathway to exert an anti-T2DM effect (86). In addition,
the bifunctional molecule BPBA synthesized using benzoic acid

can target Aβ and inhibit neuroinflammation, which plays a role
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TABLE 1 Molecular docking and binding energy.

Protein Compound Structure DS (LibDockScore) Vina (kcal·mol−1) RMSD

SYNE1 (4DXR) Phosphoenolpyruvate 67.3832 −2.9 1.276

ANK2 (5Y4E) Phosphoenolpyruvate 44.551 −3.5 1.491

SPEG (6CY6) Phosphoenolpyruvate 57.2527 −4.5 1.011

SYNE1 (4DXR) Acetamidobenzoic acid 90.7005 −4.9 2.728

ANK2 (5Y4E) Acetamidobenzoic acid 56.6351 −4.5 1.450

SPEG (6CY6) Acetamidobenzoic acid 75.5652 −6.0 1.719

in AD (87). To the best of our knowledge, this study is the first

to identify the potential role of acetamidobenzoic acid in the

pathogenesis of obesity–T2DM–AD, thus laying a foundation

for the subsequent development of new drugs.

Striated muscle preferentially expressed protein kinase

(SPEG) is a myosin light-chain kinase containing a double

serine/threonine kinase domain and multiple immunoglobulin

(Ig)-like and proline-rich regions involved in protein–protein

interactions (88). SPEG as a single gene can be alternatively

spliced into several tissue-specific isoforms, including BPEG

(the brain) and SPEGα (skeletal muscle) and SPEGβ (cardiac

muscle) (89–91). Patients with neurodegenerative diseases had

significantly lower levels of SPEGmethylation, which is strongly

associated with obesity. The m6A demethylase FTO may

regulate adipocyte differentiation and adipogenesis by regulating

the expression of proteins such as gastric starvation hormone,

pro-adipogenic factors and peroxisome proliferator-activated

receptor, thereby affecting the development of obesity (92).

Furthermore, FTO plays a major role in the development of

T2DM, as m6A methyltransferases can inhibit adipogenesis,

delay the onset and progression of obesity by inhibiting

autophagosome formation, blocking mitotic clone expansion,

and controlling adipogenic differentiation in mesenchymal stem

cells (93). And missense mutations in SPEG are also closely

associated with the development of T2DM in GK rats (94).

Therefore, acetaminobenzoic acid may target SPEG in the

hippocampus, thereby affecting the autophagic balance of the

hippocampus and regulating the hippocampal-hypothalamic

endocrine axis, improving diabetic and neurodegenerative

disease states.

To the best of our knowledge, this study is the first to report
that the SPEG protein in the hippocampus, a peripheral blood

biomarker in patients with obesity with concomitant T2DM and

neurodegenerative diseases, can bind to acetamidobenzoic acid,
a high-fiber-diet-related metabolite, and plays an important role

in the development of T2DM and neurodegenerative diseases
in patients with obesity. In addition to acetamidobenzoic

acid and SPEG, the metabolite phosphoenolpyruvate, which

is significantly altered by high-fiber diet, was found to have
a strong binding affinity for the core proteins SYNE1 and

ANK2, suggesting that high-fiber diet can benefit individuals

with obesity through multiple targets and pathways.

However, this study has some limitations. This study was

mainly based on bioinformatic analysis of data extracted from

databases and lacks relevant experimental validation. Further

research is needed to determine exactly how acetamidobenzoic

acid binds to hippocampal SPEG proteins.

5. Conclusion

Acetamidobenzoic acid, a metabolite associated with

high-fiber diet, can target SPEG (6CY6) protein in the
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FIGURE 6

Molecular docking analysis. (A) SYNE1 phosphoenolpyruvate (macroscopic) (A1); SYNE1 phosphoenolpyruvate (microscopic) (A2); SYNE1

phosphoenolpyruvate (A3). (B) ANK2 phosphoenolpyruvate (macroscopic) (B1); ANK2 phosphoenolpyruvate (microscopic) (B2); ANK2

(Continued)
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FIGURE 6 (Continued)

phosphoenolpyruvate (B3). (C) SPEG phosphoenolpyruvate (macroscopic) (C1); SPEG phosphoenolpyruvate (microscopic) (C2); SPEG

phosphoenolpyruvate (C3). (D) SYNE1 acetamidobenzoic acid (macroscopic) (D1); SYNE1 acetamidobenzoic acid (microscopic) (D2);

SYNE1–acetamidobenzoic acid (D3). (E) ANK2–acetamidobenzoic acid (macroscopic) (E1); ANK2–acetamidobenzoic acid (microscopic) (E2);

ANK2–acetamidobenzoic acid (E3). (F) SPEG–acetamidobenzoic acid (macroscopic) (F1); SPEG–acetamidobenzoic acid (microscopic) (F2);

SPEG–acetamidobenzoic acid (F3).

hippocampus, thereby affecting autophagic homeostasis

in the hippocampus, regulating the hippocampal–

hypothalamic endocrine axis and eventually improving

the diabetic and neurodegenerative disease states of patients

with obesity.
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represents upregulated gene expression, and the green color represents

downregulated gene expression).

SUPPLEMENTARY FIGURE 2

(A) Quality control and data removal plots for the GSE163577 dataset.

(B) Distribution of the top 10 most significant genes in the GSE163577

dataset. (C) Distribution of genes before and after normalization of data

in the GSE163577 dataset.

SUPPLEMENTARY FIGURE 3

(A) Principal component analysis distribution map. (B) t-SNE principal

component distribution map.
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