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Introduction: Huntington’s disease (HD) is a rare neurodegenerative disease

characterized by cognitive, behavioral and motor symptoms that progressively

worsen with time. Cognitive and behavioral signs of HD are generally present

in the years prior to a diagnosis; however, manifest HD is typically assessed by

genetic confirmation and/or the presence of unequivocal motor symptoms.

Nevertheless, there is a large variation in symptom severity and rate of

progression among individuals with HD.

Methods: In this retrospective study, longitudinal natural history of disease

progression was modeled in individuals with manifest HD from the

global, observational Enroll-HD study (NCT01574053). Unsupervised machine

learning (k-means; km3d) was used to jointly model clinical and functional

disease measures simultaneously over time, based on one-dimensional

clustering concordance such that individuals with manifest HD (N = 4,961)

were grouped into three clusters: rapid (Cluster A; 25.3%), moderate (Cluster B;

45.5%) and slow (Cluster C; 29.2%) progressors. Features that were considered

predictive of disease trajectorywere then identified using a supervisedmachine

learning method (XGBoost).

Results: The cytosine adenine guanine-age product score (a product of age

and polyglutamine repeat length) at enrollment was the top predicting feature

for cluster assignment, followed by years since symptomonset,medical history

of apathy, body mass index at enrollment and age at enrollment.

Conclusions: These results are useful for understanding factors that a�ect the

global rate of decline in HD. Further work is needed to develop prognostic

models of HD progression as these could help clinicians with individualized

clinical care planning and disease management.
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Introduction

Huntington’s disease (HD) is an autosomal dominant

neurodegenerative disease caused by a cytosine adenine

guanine (CAG) trinucleotide repeat expansion in the

huntingtin gene, resulting in the production of the toxic

mutant huntingtin protein (1, 2). It is characterized by

a triad of cognitive, behavioral and motor symptoms

leading to functional decline and progressive loss

of independence.

ACAG repeat length of 36–39 shows incomplete penetrance,

whereas a CAG repeat length of>39 shows complete penetrance

(1–3), which means that individuals will inevitably experience

progressive motor, cognitive and functional decline. The

time to onset of motor symptoms is inversely correlated

to CAG expansion, but this usually occurs in adult life,

with a mean age of motor onset between 30 and 50 years

(4). Motor symptoms in the early stages of HD include

chorea (5).

The average illness course post-motor onset is

approximately 15 years (6, 7), with pneumonia, heart

failure or other complications frequently cited as the

immediate cause of death (8–10). In the later stages of

the disease, impairment of voluntary movements is seen,

which manifests as symptoms including incoordination,

speech difficulties, swallowing difficulties, bradykinesia and

rigidity (5).

Individuals with HD can be categorized as having

either premanifest disease (genetic confirmation prior to

symptom onset) or manifest disease (a clinical diagnosis

based on the presence of unequivocal motor signs) (4).

There is variability in individuals with HD on how symptom

severity and the rate of symptomatic change occur over

the course of the disease (11). Expanded CAG size is

highly predictive of rate of clinical decline (12), and other

important biological and environmental factors such as

body mass index (BMI), age, psychiatric comorbidities,

concomitant medication and other genetic modifiers have

also been found to be correlated with the rate of clinical

deterioration (13–15).

The Enroll-HD registry (NCT01574053) is a large, global,

longitudinal patient registry which has been widely used to

model the natural history of HD (16–18). Data from Enroll-

HD represent the natural history of HD based upon the current

standard of care in each of the countries it is established

in (including from Europe, North America, Latin America,

Australia and New Zealand). Over 20,000 participants have

enrolled to date, making Enroll-HD the largest ongoing HD

registry worldwide (https://www.enroll-hd.org/).

Previous studies, such as that conducted by Ghazaleh

et al., used random forest methods to rank the predictive

power of key features on single Unified Huntington’s Disease

Rating Scale (UHDRS) endpoints over a 2-year period

(14). The composite UHDRS (cUHDRS) (19) is made up

of four UHDRS scales (Total Motor Score [TMS], Total

Functional Capacity [TFC], Symbol Digit Modalities Test

[SDMT] and Stroop Word Reading [SWR] (19)), and is

thought to capture global clinical decline more sensitively than

a single measure; however, the cUHDRS does not include

a measure of mood, nor does it consider how performance

on motor, cognitive and mood domains may vary between

individuals and at different times over the disease course. To

expand on this, the current study considers the evolution of

multiple endpoints jointly and predicts progression of scores

for each domain at any given time. The advantage of this

multidimensional approach is that it takes into consideration

the holistic nature of HD, by capturing the evolution of not

just the multiple motor, cognitive and behavioral domains.

Compared with studies that pool all patients together in a

single progression model, the present study acknowledges the

substantial heterogeneity in the progression trajectories of

individuals with HD by using a data-driven approach to identify

subgroups or clusters of patients that progress at different rates

over time.

In the current study, we clustered patients with manifest HD

according to their disease trajectories using data from Enroll-

HD, to quantitatively describe HD progression trajectories for

symptoms associated across multiple clinical domains. After

clustering patients into separate trajectory profiles, we identified

which features best predicted trajectory assignment using a

cross-sectional set of features captured via enrollment data at the

patient’s first Enroll-HD visit.

Methods

Study population

The following eligibility criteria were established for

this study:

• manifest HD (defined as carriers with clinical features

that are regarded in the opinion of the raters as

diagnostic of HD at enrollment visit [variable name

hdcat_l = 3] which incorporated diagnostic confidence

level= 4)

• at least two annual visits including enrollment visit

(variable name visitnum= 1)

• age at symptom onset ≥20 (to limit chances of including

those with pediatric-onset HD [variable name sxrater≥20])

• rater can estimate participant’s time of symptom onset with

high confidence

• subjects with TMS, SDMT and Apathy scores at baseline.

Overall, a cohort of 4,961 subjects was included in the

k-means clustering model (Figure 1).
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FIGURE 1

Study population. HD, Huntington’s disease; SDMT, Symbol Digit

Modalities Test; TMS, Total Motor Score.

Study design

This was a retrospective study that involved a secondary

analysis on data collected from the longitudinal, global

observational study (Enroll-HD data PDS5; October 2020). A

patient cohort was defined based on their eligibility criteria at

their first Enroll-HD study visit (enrollment) and index was

defined as the date of first motor symptom onset, as estimated

by the study investigator based on all available information. This

study focused only on patients aged 0–19 years since symptom

onset, based on the number of patients available. Longitudinal

trajectories were therefore estimated across a continuous time

window, including a period before (symptom onset until

enrollment, during which patients were not under observation

in the Enroll-HD database) and after enrollment into the study

(enrollment until last study visit, where patients were under

observation in the Enroll-HD database). The advantage of using

symptom onset as the index date is the clinical relevance

of this milestone compared with study enrollment, and it

allows for a longer follow-up period from which to extrapolate

longitudinal progression.

Data source

Data used in this study were generously provided by the

participants in the Enroll-HD study and made available by

CHDI Foundation, Inc. Enroll-HD is a global, multicenter,

longitudinal, observational study made available via a clinical

research platform designed to facilitate clinical research in HD

(17). Core datasets including HD-specific scales such as the

UHDRS assessments, CAG expansion length and demographic

and medical history are collected annually from all research

participants. Data are monitored for quality and accuracy using

a risk-based monitoring approach. All sites are required to

obtain and maintain local ethical approval. All assessments

were performed by trained clinical personnel. A variety of

training methods including practice videos and test assessments

were used to train and certify raters. Additionally, manuals

were provided to participating sites with instructions for

implementing, administering and scoring study instruments.

To the extent possible, each site was asked to use the same

individual rater to administer study instruments to a particular

participant for the duration of the study to maximize internal

consistency (https://www.enroll-hd.org/).

Clustering of disease trajectories

We used a k-means approach to cluster the longitudinal

trajectories of participants, based on a statistical index of

similarity. The k-means approach is an unsupervised machine

learning approach and is used to reduce heterogenous

longitudinal data into distinct, homogeneous clusters (20). An

optimal number of clusters was identified by non-parametric

computations using the Calinski-Harabasz (21) index based on

between-cluster and within-cluster variances.

Analysis was carried out first for each individual clinical or

social outcome measure, including TFC, TMS, SWR, SDMT,

and Problem Behaviors Assessment Short Form (PBA-s) Apathy

score. These outcomes were selected due to their clinical

relevance in HD with regard to the motor, cognitive and

behavioral phenotypes.

Concordance of clustering allocation by individual

score was checked against one symptom measurement from

each triad of HD symptom domains: cognitive, motor and

behavioral domains.

A k-means method for joint trajectories (R package KML

3d) (20) was used for jointly modeling clinical and functional
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or social outcome measures based on the one-dimensional

clustering concordance to modeling motor, cognitive and

behavioral trajectories. The 3D clustering was selected as those

motor, cognitive and apathy outcomes are related to each

other as disease progresses, therefore 3D clustering can replace

individual three cluster trajectories. This single 3D cluster was

used to build a single prediction model that could predict

disease progression trajectories discussed in the next section.

TMS (motor domain), SDMT (cognitive domain) and Apathy

(behavioral domain) were used to cluster participants based

on similarities in progression trajectories. 3D dynamic plots

were exported to visualize joint clustering, which provides

better representation of the interaction between each pair of

two outcome trajectories. The optimal number of clusters was

selected based on model selection criteria (to achieve optimal

partition) and clinical interpretation.

Predicting trajectory assignment

The most impactful features that predicted trajectory

assignment were identified using supervised learning.

The extreme gradient boosting machines algorithm

(XGBoost) (21) was used to identify impactful features

out of a preselected pool of demographic, genetic/family

history, social, symptom, medication and clinical factors

based on published literature and clinical input (Table 1).

Variable importance scores were calculated from loss

of function then scaled from 0 to 1. Scores closer to

0 were indicative of a less important variable in the

TABLE 1 Candidate features tested for cluster prediction using a

supervised machine learning method (XGBoost).

Predicting
feature group∗

Predicting feature descriptions

Demographic Region, sex, race, weight at visit, BMI at

enrollment visit

Disease characteristics Age at visit, CAG repeat length, CAP score at

enrollment visit, years since rater’s diagnosis

Social status at visit Education level (ISCED), caregiver status

Use of concomitant

medication

E.g. use of tiapride, tetrabenazine, olanzapine

Family history Including mother/father affected status, age

of onset of symptoms in mother/father, etc.

HD symptom history Presence or absence at enrollment visit

(depression, irritability, violent behavior,

apathy, psychosis, perseverative obsessive

behaviors, cognitive impairment)

Suicidal history Presence or absence at enrollment visit

∗All information for predicting features was collected at enrollment visit because baseline

from Enroll-HD is not a true baseline for manifest HD.

BMI, body mass index; CAG, cytosine adenine guanine; CAP, CAG-age product;

HD, Huntington’s disease; ISCED, International Standard Classification of Education.

prediction model; scores closer to 1 were indicative of

higher importance.

The model training was performed on a training dataset

(randomly selected 80% of subjects) andmodel performance was

evaluated on a testing set (the remaining data) with 5-fold cross-

validation. Partial dependence plots were produced to describe

the marginal effect on target features.

Handling of missing data

Missing values were interpreted as containing information

(i.e., missing for a reason), rather than missing at random,

as missed visits were more likely to occur in patients

with greater disease severity. During the tree building

process, split decisions for every node were found by

minimising loss of function and treating missing values as

a separate category.

XGBoost automatically learned the most appropriate

direction to diverge when a value was missing (21). The

raw variable importance for each feature was calculated then

scaled between 0 and 1 as relative scales (via H2O) were

plotted (22).

Results

Unsupervised learning: K-mean
clustering

Three clusters were selected as the optimal number for

compactness within, and separation between, clusters. In

addition, the presentation of the clusters in a three-dimensional

view (Figures 3–5) provides a view of different modalities (x

– cognition, y – time since onset and z – motor) and their

relationship to one another.

Concordance was examined to select the scale that best

represented the three domains. Concordance rates were

high between SWR and SDMT (cognitive), and between

TFC (daily function) and TMS (motor). Therefore, SWR

and SDMT were considered exchangeable to cluster patients

in the cognitive domain. This was similar for TFC and

TMS in the motor/daily function domains. Additionally,

Apathy score was selected to represent the behavioral domain

among PBA-s scores as this had similarities in disease

progression trajectories.

Participants with manifest HD were grouped into three

clusters (rapid [Cluster A], moderate [Cluster B] or slow [Cluster

C] progressors) based on joint longitudinal trajectories of the

selected outcomes: SDMT (cognition), Apathy (behavioral) and

TMS (motor) scores (Figures 2–5).
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FIGURE 2

Marginal plots to demonstrate rapid, moderate and slow disease progression trajectories in the motor (A), cognitive (B) and behavioral (C)

domains included in the multidimensional progression model*. *Marginal 2D plots are shown to visualize the longitudinal progression for each

endpoint separately; however, a multidimensional approach was used (km3d) where all three endpoints were jointly modeled. †Symptom onset

time ‘0’ defined as the approximate time of first symptom onset (any domain) as determined by the rater using information from multiple sources

(e.g., information provided by participant and/or caregiver, medical notes, etc). SDMT, Symbol Digit Modalities Test; TMS, Total Motor Score.

FIGURE 3

TMS–SDMT 3D plot for clustering. Red, rapid progressors; Green, moderate progressors; Blue, slow progressors; SDMT, Symbol Digit Modalities

Test; TMS, Total Motor Score.

Demographics of each cluster

Out of 4,961 participants, 1,255 (25.3%) were categorized as

rapid progressors, 2,256 (45.5%) were categorized as moderate

progressors and 1,450 (29.2%) were categorized as slow

progressors. The demographics and clinical characteristics of

each cluster and the overall cohort at enrollment visit (first

visit) are summarized in Table 2 below. The proportion of

males and females was similar across clusters (49% male; 52%

female). Strikingly, a higher proportion of those in Cluster
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FIGURE 4

TMS–Apathy 3D plot for clustering. Red, rapid progressors; Green, moderate progressors; Blue, slow progressors; TMS, Total Motor Score.

A (rapid progressors) came with companions to their visit

compared with those in Cluster B (moderate) or C (slow).

History of medications including tetrabenazine, antipsychotics

and antidepressants, and mood problems such as apathy,

irritability and psychosis were more common in Cluster A than

Cluster B or C. Higher CAG and CAG-age product (CAP), lower

age of parent HD diagnosis and lower level of education were

also observed in those in Cluster A. The age of symptom onset

and number of years since symptom onset did not seem to vary

systematically between clusters.

The majority of participants (>94%) were white

regardless of clustering and most participants were

from Europe for all clusters. Compared with Clusters B

and C, Cluster A (rapid progressors) included a higher

proportion of Europeans and a lower proportion of

Northern Americans.

Predicting features

The top predicting features of cluster assignment can be

seen in Figure 6. CAP at enrollment visit was the top predicting

feature to predict cluster assignment, followed by years since

symptom onset, no medical history of apathy, BMI and age at

enrollment visit.

For the 10 top predicting features, the partial dependence

plots provided a graphical explanation of the marginal effect

of each feature on clusters. The top five predicting features are

illustrated in Figures 7A–E. The other partial dependency plots

can be seen in Supplementary Figures 1A–E.

Overall, participants in Cluster C exhibited lower CAP

scores at enrollment visit, longer duration between symptom

onset and enrollment visit, presence of medical history of

apathy, higher BMI scores and younger age at enrollment visit

(Figures 7A–E).

Those in Cluster B had the highest CAP score at enrollment

visit, a moderate duration between symptom onset and

enrollment visit, higher medical history of apathy, higher BMI

scores and were older at enrollment (Figures 7A–E).

Participants in Cluster A exhibited moderate CAP scores at

enrollment visit, had a short duration between symptom onset

and enrollment visit, low medical history of apathy, had the

lowest BMI at enrollment and were older at enrollment visit

(Figures 7A–E).
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FIGURE 5

SDMT–Apathy 3D plot for clustering. Red, rapid progressors; Green, moderate progressors; Blue, slow progressors; SDMT, Symbol Digit

Modalities Test.

Discussion

The natural history of HD varies greatly among individuals,

particularly since motor, cognitive and behavioral symptoms

may manifest differently across individual patients over

time. The present study applies k-means clustering to

the Enroll-HD data, which to our knowledge has not

been applied to explore the natural progression of HD

before. This machine learning method, coupled with a

multivariate approach, enables us to consider change over

time simultaneously among motor, cognitive and behavioral

domains. In doing so, we found that it was possible to crudely

cluster patients into rapid, moderate and slow progressors,

and to identify a set of cross-sectional characteristics

that best predicted which trajectory they would follow.

These results provide useful additions to the HD natural

history literature.

Participants with manifest HD were clustered based on

joint longitudinal trajectories of TMS, SDMT and Apathy

scores. Apathy was selected as this score is most commonly

associated with HD among behavioral domains and was also

available in the Enroll-HD data. Additionally, the Apathy scores

collected show trends over time, which was an advantage over

other behavioral domains. At the time of enrollment, CAP

score was the most impactful feature predictive of manifest

HD progression cluster assignment, followed by years since

symptom onset and medical history of apathy. Clustering and

prediction provide a profile for different rates of manifest HD

progression, which may be useful to guide personalized clinical

care and management plans.

Holistically capturing disease progression can be helpful

for understanding the global pattern of symptoms over the

lifespan of individuals with HD. There have been other efforts

to simultaneously capture the progression of multiple outcomes.

For example, the cUHDRS (23) is a composite clinically

validated measure that weights the SDMT, SWR, TMS and

TFC into a single component score. Whilst the cUHDRS

showed good utility as a primary outcome measure in global

clinical trials, in the present study we wanted to acknowledge

the behavioral/psychiatric domain of HD and to be able to

visualize how each domain evolves over time. A study utilizing

a principal component analysis on longitudinal data from

the TRACK-HD and Track-ON studies found that the first

principal component correlated highly with all motor–cognitive

measures, accounting for 67.6% of their combined variance and

was inversely and non-linearly associated with age of onset
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TABLE 2 Baseline characteristics by cluster.

A (N = 1,255) B (N = 2,256) C (N = 1,450) Overall (N = 4,961)

Sex

F 656 (52.3%) 1,178 (52.2%) 706 (48.7%) 2,540 (51.2%)

M 599 (47.7%) 1,078 (47.8%) 744 (51.3%) 2,421 (48.8%)

Race (pooled)

Others 64 (5.1%) 130 (5.8%) 64 (4.4%) 258 (5.2%)

White 1,191 (94.9%) 2,126 (94.2%) 1,386 (95.6%) 4,703 (94.8%)

Region (pooled)

Europe 1,066 (84.9%) 1,472 (65.2%) 937 (64.6%) 3,475 (70.0%)

Northern America 153 (12.2%) 684 (30.3%) 461 (31.8%) 1,298 (26.2%)

Others 36 (2.9%) 100 (4.4%) 52 (3.6%) 188 (3.8%)

Came with companions or not

No 179 (14.3%) 672 (29.8%) 695 (47.9%) 1,546 (31.2%)

Yes 1,072 (85.4%) 1,578 (69.9%) 755 (52.1%) 3,405 (68.6%)

Missing 4 (0.3%) 6 (0.3%) 0 (0%) 10 (0.2%)

Nerve drug

No 775 (61.8%) 1,628 (72.2%) 1,225 (84.5%) 3,628 (73.1%)

Yes 480 (38.2%) 628 (27.8%) 225 (15.5%) 1,333 (26.9%)

Tetrabenazine flag: trt movement disorder by HD

No 802 (63.9%) 1,728 (76.6%) 1,278 (88.1%) 3,808 (76.8%)

Yes 453 (36.1%) 528 (23.4%) 172 (11.9%) 1,153 (23.2%)

Antipsychotics-Benzamides flag: depression drug

No 916 (73.0%) 1,975 (87.5%) 1,321 (91.1%) 4,212 (84.9%)

Yes 339 (27.0%) 281 (12.5%) 129 (8.9%) 749 (15.1%)

Antipsychotics flag: bipolar disorder drug

No 624 (49.7%) 1,629 (72.2%) 1,163 (80.2%) 3,416 (68.9%)

Yes 631 (50.3%) 627 (27.8%) 287 (19.8%) 1,545 (31.1%)

Mother a�ected

No 786 (62.6%) 1,354 (60.0%) 773 (53.3%) 2,913 (58.7%)

Yes 469 (37.4%) 902 (40.0%) 677 (46.7%) 2,048 (41.3%)

Father a�ected

No 821 (65.4%) 1,436 (63.7%) 884 (61.0%) 3,141 (63.3%)

Yes 434 (34.6%) 820 (36.3%) 566 (39.0%) 1,820 (36.7%)

Suicide attempt

No 809 (64.5%) 1,657 (73.4%) 970 (66.9%) 3,436 (69.3%)

Yes 445 (35.5%) 598 (26.5%) 479 (33.0%) 1,522 (30.7%)

Missing 1 (0.1%) 1 (0.0%) 1 (0.1%) 3 (0.1%)

Depression history

No 210 (16.7%) 662 (29.3%) 339 (23.4%) 1,211 (24.4%)

Yes 1,045 (83.3%) 1,593 (70.6%) 1,111 (76.6%) 3,749 (75.6%)

Missing 0 (0%) 1 (0.0%) 0 (0%) 1 (0.0%)

(Continued)

Frontiers inNeurology 08 frontiersin.org

https://doi.org/10.3389/fneur.2022.1034269
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Ko et al. 10.3389/fneur.2022.1034269

TABLE 2 (Continued)

A (N = 1,255) B (N = 2,256) C (N = 1,450) Overall (N = 4,961)

Irritability history

No 238 (19.0%) 732 (32.4%) 380 (26.2%) 1,350 (27.2%)

Yes 1,016 (81.0%) 1,523 (67.5%) 1,070 (73.8%) 3,609 (72.7%)

Missing 1 (0.1%) 1 (0.0%) 0 (0%) 2 (0.0%)

Violent or aggressive history

No 619 (49.3%) 1,441 (63.9%) 845 (58.3%) 2,905 (58.6%)

Yes 635 (50.6%) 815 (36.1%) 605 (41.7%) 2,055 (41.4%)

Missing 1 (0.1%) 0 (0%) 0 (0%) 1 (0.0%)

Apathy history

No 80 (6.4%) 929 (41.2%) 587 (40.5%) 1,596 (32.2%)

Yes 1,175 (93.6%) 1,327 (58.8%) 863 (59.5%) 3,365 (67.8%)

Perseverative obsessive behaviors history

No 315 (25.1%) 963 (42.7%) 707 (48.8%) 1,985 (40.0%)

Yes 939 (74.8%) 1,293 (57.3%) 743 (51.2%) 2,975 (60.0%)

Missing 1 (0.1%) 0 (0%) 0 (0%) 1 (0.0%)

Psychosis (hallucinations or delusions) history

No 1,008 (80.3%) 2,028 (89.9%) 1,329 (91.7%) 4,365 (88.0%)

Yes 247 (19.7%) 228 (10.1%) 121 (8.3%) 596 (12.0%)

Family history of psychotic illness

No 169 (13.5%) 169 (7.5%) 82 (5.7%) 420 (8.5%)

Yes 40 (3.2%) 26 (1.2%) 27 (1.9%) 93 (1.9%)

Missing 1,046 (83.3%) 2,061 (91.4%) 1,341 (92.5%) 4,448 (89.7%)

Cognitive impairment or dementia history

No 302 (24.1%) 1,012 (44.9%) 781 (53.9%) 2,095 (42.2%)

Yes 952 (75.9%) 1,242 (55.1%) 669 (46.1%) 2,863 (57.7%)

Missing 1 (0.1%) 2 (0.1%) 0 (0%) 3 (0.1%)

BMI

Mean (SD) 24.8 (4.74) 24.8 (4.61) 26.2 (5.18) 25.2 (4.86)

Median [Min, Max] 24.2 [14.9, 52.6] 24.1 [11.7, 49.5] 25.3 [16.0, 58.3] 24.5 [11.7, 58.3]

Missing 48 (3.8%) 44 (2.0%) 20 (1.4%) 112 (2.3%)

CAG

Mean (SD) 44.6 (3.74) 43.9 (3.31) 42.8 (2.61) 43.7 (3.31)

Median [Min, Max] 44.0 [36.0, 64.0] 43.0 [36.0, 63.0] 42.0 [36.0, 58.0] 43.0 [36.0, 64.0]

CAP: age diagnosis ∗ (CAG high −33.6)

Mean (SD) 526 (91.6) 512 (84.1) 439 (84.0) 494 (93.1)

Median [Min, Max] 522 [161, 1,050] 509 [152, 1,070] 442 [91.3, 748] 496 [91.3, 1,070]

Mother symptom onset age

Mean (SD) 45.5 (12.5) 47.0 (12.2) 49.0 (11.5) 47.3 (12.1)

Median [Min, Max] 45.0 [20.0, 85.0] 45.0 [19.0, 90.0] 50.0 [21.0, 90.0] 46.0 [19.0, 90.0]

Missing 786 (62.6%) 1,354 (60.0%) 773 (53.3%) 2,913 (58.7%)

(Continued)
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TABLE 2 (Continued)

A (N = 1,255) B (N = 2,256) C (N = 1,450) Overall (N = 4,961)

Father symptom onset age

Mean (SD) 47.3 (11.4) 48.5 (12.0) 49.9 (11.6) 48.7 (11.8)

Median [Min, Max] 45.5 [17.0, 80.0] 48.0 [10.0, 87.0] 50.0 [18.0, 85.0] 49.0 [10.0, 87.0]

Missing 821 (65.4%) 1,436 (63.7%) 884 (61.0%) 3,141 (63.3%)

Years since symptom onset

Mean (SD) 5.51 (3.76) 5.96 (4.28) 6.30 (5.22) 5.95 (4.47)

Median [Min, Max] 5.00 [−3.00, 17.0] 5.00 [−4.00, 20.0] 6.00 [−5.00, 21.0] 5.00 [−5.00, 21.0]

Education level (pooled)

Advanced (4–6) 378 (30.1%) 1,029 (45.6%) 857 (59.1%) 2,264 (45.6%)

Primary (0–3) 872 (69.5%) 1,218 (54.0%) 592 (40.8%) 2,682 (54.1%)

Missing 5 (0.4%) 9 (0.4%) 1 (0.1%) 15 (0.3%)

Age of symptom onset

Mean (SD) 46.1 (11.9) 47.1 (11.8) 44.1 (10.6) 46.0 (11.5)

Median [Min, Max] 46.0 [20.0, 81.0] 47.0 [20.0, 85.0] 45.0 [20.0, 75.0] 46.0 [20.0, 85.0]

BMI, body mass index; CAG, cytosine adenine guanine; CAP, CAG-age product; F, Female; HD, Huntington’s disease; M, male; SD, standard deviation.

Cluster A, rapid progressors, Cluster B, moderate progressors, Cluster C, slow progressors.

FIGURE 6

Factor importance of the top 10 predicting features of manifest HD progression clusters. BMI, body mass index; CAG, cytosine adenine guanine;

CAP, CAG-age product; HD, Huntington’s disease.

and CAG repeat length (included in the top 10 features in our

study) (12). Whilst a principal component analysis approach

is a good way to reduce multidimensional data, it is also

difficult to interpret the influence of the individual component

features. In our study we selected a priori: a set of clinically

meaningful motor, cognitive and behavioral outcomes that
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FIGURE 7

Partial dependency plots describing the top five predicting features against average cluster probability (y-axis). (A) CAP score at enrollment. (B)

Years to symptom onset. (C) Apathy. (D) BMI at enrollment. (E) Age at enrollment. *0 = No; 1 = Yes. BMI, body mass index; CAG, cytosine

adenine guanine; CAP, CAG-age product.

clinicians were likely to be familiar with in clinical practice, and

we showed the joint evolution of these outcomes in multiple

dimensions, which aids interpretability. Despite the individual

heterogeneity in the rate of decline between domains, our

approach suggests that it may be possible to classify patients

into rapid, moderate and slow progressors, depending on their

overall function.

By assessing the baseline demographics and predictors of

cluster assignment, it is evident that those in Cluster A are

more advanced at enrollment than those in Cluster B or

C, since they have a longer history of medication use and

behavioral issues. Interestingly, we observe that patients in

this cluster have a lower educational attainment and their

parents are diagnosed at a younger age. CAG repeat length
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is also longer in patients in Cluster A. All together, this

supports the understanding that familial factors may influence

the rate of progression. These familial factors may include

a combination of genetic factors (e.g., inherited CAG repeat

length which is inversely associated with rate of progression

(24)) and environmental factors (e.g., generational burden

which may influence the ability to receive education). It

was not in the scope of this analysis to comment on the

causal relationship between genetic and environmental factors

and symptomatic therapies, and their effect on longitudinal

outcomes; however, our findings corroborate a picture of

higher disease burden in those who progress more rapidly.

Indeed, despite methodological differences, our study supports

other publications that show that the CAP score (also known

as the disease burden score) and CAG repeat length are

within the top 10 predicting factors of longitudinal HD

progression (14).

Machine learning approaches such as this could be

considered for application in real-world clinical practice to

support the treating physician in assessing whether patients

are improving or worsening on disease-modifying treatment

(DMT) compared with patients of a similar clinical profile

receiving standard of care. For example, a clinical visit could

include a series of core assessments (equivalent to the enrollment

visit in this study), using a model that is trained on Enroll-

HD data, which could predict which trajectory a patient is

on compared with others with a similar profile. Over time,

this prediction may support a change in clinical decision

making, thereby personalising each patient’s healthcare journey.

In addition to the TMS, SDMT and PBA-s Apathy outcomes,

the top 10 predictive features in this study may be considered

as high-priority variables to measure at a clinical visit, in

order to maximize the chances of successfully predicting

performance. DMTs are in development that aim to slow

or halt the progression of HD, although a clinician-facing

tool for assessing real-world clinical efficacy is currently not

available. A clinical dashboard has been developed to compare

an individual’s progression with a global cohort adjusting for age

and CAG repeat, utilizing Enroll-HD data (18). However, the

heterogeneity in the progression of patients was not accounted

for, and potential predictors other than age and CAG repeat were

not examined. Nevertheless, their findings, like ours, support

the notion that providing clinicians with the ability to monitor

an individuals’ progression against key cognitive, behavioral

and motor symptoms in real time will support enhanced

decision making and identify those eligible for clinical trials of

DMTs earlier.

The premanifest participants were not included as this study

focuses on the disease trajectory from first motor symptom

onset. However, it will be of interest to build additional

predictive models in future studies to estimate first symptom

onset time using the premanifest participants’ baseline or

disease characteristics.

Our results should be interpreted with caution due to the

following limitations. We chose ‘estimated symptom onset’ as

the study index date, since it is a more clinically relevant

disease milestone than the first Enroll-HD visit. It should be

acknowledged however, that there is likely some uncertainty

around the exact symptom onset as this is a retrospective

estimate by the person conducting the Enroll-HD assessment,

since symptom onset was not observed during the course of the

Enroll-HD data. This enabled us to describe trajectories over

a longer time period (∼20 years) even though they were not

continually observed during this time. To address this concern,

the information for years from symptom onset to enrollment

visit was included in the prediction model. Other modifiers

of progression have been identified previously, including other

genetic modifiers (25), regional brain atrophy (12) and lifestyle

factors (26). However, these data were not available in the Enroll-

HD periodic dataset and therefore it was not possible to include

the list of features explored in this study.

In conclusion, knowledge of predictive features of

manifest HD progression could guide the development

of individualized clinical care and disease management

approaches. Future research could extend this work by

applying data-driven machine learning models to capture

disease progression across multiple domains. Such a tool

could be used in a real-world setting to understand whether

patients are responding positively to treatments relative to

natural history.
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