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protect blood-spinal cord
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Blood–spinal cord barrier (BSCB) disruption is a pivotal event in spinal cord

injury (SCI) that aggravates secondary injury but has no specific treatment.

Previous reports have shown that systemic therapeutic hypothermia (TH) can

protect the blood–brain barrier after brain injury. To verify whether a similar

e�ect exists on the BSCB after SCI, moderate systemic TH at 32◦Cwas induced

for 4 h on the mice with contusion-SCI. In vivo two-photon microscopy was

utilized to dynamically monitor the BSCB leakage 1h after SCI, combined with

immunohistochemistry to detect BSCB leakage at 1 and 4h after SCI. The BSCB

leakage was not di�erent between the normothermia (NT) and TH groups at

both the in vivo and postmortem levels. The expression of endothelial tight

junctions was not significantly di�erent between the NT and TH groups 4h

after SCI, as detected by capillary western blotting. The structural damage of

the BSCB was examined with immunofluorescence, but the occurrence of

junctional gaps was not changed by TH 4h after SCI. Our results have shown

that moderate systemic TH induced for 4 h does not have a protective e�ect

on the disrupted BSCB in early SCI. This treatment method has a low value and

is not recommended for BSCB disruption therapy in early SCI.

KEYWORDS

spinal cord injury, hypothermia, blood-spinal cord barrier, two-photon microscopy,

tight junctions

Introduction

Spinal cord injury (SCI) damages neural tissue and causes severe disability, leading

to motor, sensory and autonomic dysfunction (1). After the primary mechanical impact,

secondary injury exacerbates the degree of injury and extends the range of tissue damage

in SCI (2, 3), represented as the continuous deterioration of neurological function (4).

The spinal cord has a vital barrier structure similar to the brain, called the blood–spinal

cord barrier (BSCB), to separate neural tissue from the peripheral blood flow by selective

molecular substance exchange (5, 6). The permeability of the barrier function in the

BSCB requires the formation of tight junctions (TJs), which seal the contacts between the

endothelial cells and act as selective gates to control the paracellular diffusion of ions and
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solutes (7, 8). In addition, the BSCB maintains the immune

isolation of neural tissue from the peripheral immune system,

preventing pathogens and peripheral immune substances from

entering the neural tissue (9, 10). BSCB disruption predictably

emerges soon after the primary injury and is the main

factor that induces secondary injury in tissue damage and

neuroinflammation (11–13). However, no effective strategy has

been developed to protect the BSCB or restore its disrupted

barrier function after SCI (10).

Systemic therapeutic hypothermia (TH) has been employed

as adjuvant therapy in traumatic brain injury and SCI for nearly

a century by decreasing the core temperature through surface

or endovascular cooling (14–17). TH has been reported to have

beneficial effects on brain and spinal cord functions after injury

and during neurosurgery, such as reducing tissue damage and

better functional outcomes (18). The general opinion is that TH

reduces the rate of biological reactions and processes, therefore

targeting broad pathological processes in injury, including

excitotoxicity, neuroinflammation, necrosis, and free radical

production (1), but its neuroprotective mechanism remains

unconfirmed. Some data have shown that TH can prevent

the breakdown of the blood–brain barrier (19, 20), probably

due to a membrane- or barrier-stabilizing effect to decrease

barrier permeability and edema formation (21, 22). Multiple

studies have shown that TH at 33◦C for 4 h reduced the barrier

leakage as demonstrated by various tracers and attenuated the

local inflammatory response in brain trauma (23–26), while the

underlying mechanism has not been fully verified. This effect

was also suggested in human SCI patients, presenting as reduced

tissue edema (27), along with improved motor neuron activity

and blood supply in the spinal cord (28). However, these reports

did not fully verify the underlying mechanism by which TH

reduces barrier leakage.

Based on the current situation that no specific treatment

is available to protect the BSCB after SCI, we aimed to test

whether TH is sufficient to protect the BSCB or relieve BSCB

leakage after SCI. We applied the typical procedure that has

been proven to reduce blood–brain barrier leakage in animal

brain trauma to the SCI model. In vivo two-photon microscopy

was employed to monitor the BSCB leakage, combined with

traditional histological examination. In addition, the effect of TH

for 4 h on the expression and structural changes of TJ proteins

after SCI was examined.

Materials and methods

Animals

All animal procedures were approved by the Animal

Welfare Committee of Peking University Health Science Center

(Protocol No. LA2019018). C57BL/6 mice were purchased

from the Department of Laboratory Animal Science of Peking

University Health Science Center. Male mice 8–10 weeks of age

and 23 ± 1 g of weight were randomly allocated into different

groups. Only male mice were chosen because SCI patients are

mainly adult men. All mice had ad libitum access to food

and water in a specific pathogen-free environment with a 12-h

light/dark cycle.

Surgical procedure

The mice were anesthetized with intraperitoneally injected

pentobarbital (70 mg/kg, subsequently 35 mg/kg per hour).

Mice were placed on a feedback-controlled hot plate with a

rectal probe to monitor their core temperature (RWD Life

Science, CHN) and maintain it to within 37.0 ± 0.5◦C in the

normothermia (NT) group and the control (Ctrl) group and

within 32.0 ± 0.5◦C in the moderate therapeutic hypothermia

(TH) group. Their pulse, respiratory rate, and blood oxygen

concentration were monitored. The shaved back surface of the

mice was sprayed with alcohol for cooling and disinfection.

A midline incision ∼1.5 cm in length was then made in the

back. Themuscles covering the vertebra were carefully separated

before a bilateral laminectomy was performed on the T12

vertebral column to expose the dorsal spinal cord. The dura

mater was not removed. The mild contusion-SCI model was

generated by a New York University Impactor (RWD Life

Science) equipped with a 10 g hammer dropped from a height

of 6 cm. Mice in the control group only received bilateral

laminectomy but not SCI. A gelatin sponge soaked in saline was

placed on the spinal cord to keep it moist and stop any bleeding.

Two-photon in vivo microscopy

Animals were intravenously administered 5% (w/v in saline)

40 kDa TIRTC-dextran (Sigma, USA) 30min before imaging (n

= 6 mice each group). Kwik-Sil (World Precision Instruments,

USA) and dental cement were carefully applied around the

tip of a custom-made spine fixation apparatus and the rostral

and caudal spines to build a chamber for imaging (29). The

imaging window was built large enough to permit the tip

of the impact hammer after the first imaging pre-SCI. Two-

photon imaging was performed with a Leica TCS SP8/DIVE

microscope equipped with a Mai Tai DeepSee pulsed laser

(Spectra-Physics, USA). Imaging was performed under an

HCX IR APO L25×/0.95 water immersion objective (Leica,

GER). TRITC was excited at 1,050 nm with identical imaging

conditions in all groups. Images of 512 × 512 pixel fields were

acquired with 2µm increments of z-stacks. The3D projections

of vessel segmentations were reconstructed in LasX (Leica).

The integrated density of the extravascular fluorescence was

measured in ImageJ (NIH, USA). In brief, the image stacks

were projected by the “sum intensity” at each time point. The
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spatial position of the vessels was calibrated by “rigid body”

transformation to avoid small misalignments in the time-lapse

image series. The integrated intensity in the extravascular area

was measured by the same region of interest manually drawn

outside the vessels and applied to each image in the image series.

Immunohistochemistry

Anesthetized animals were transcardially perfused with 6

U/ml heparin in PBS and 4% paraformaldehyde (PFA) for 1

or 4 h after SCI (n = 5 mice each group). Three spinal cord

segments (including the injured segment and the two adjacent

segments) were harvested, postfixed in paraformaldehyde

overnight, and dehydrated in gradient sucrose solutions. The

fixed tissue blocks were sectioned at a thickness of 8µm.

Every tenth slice was attached to a glass slide. The sections

were incubated in 3% hydrogen peroxide with methanol for

30min, 10% blocking serum for 2 h, and then primary anti-

IgG antibody (Bethyl, USA. Cat# A90-131A, 1:800) overnight

at 4 ◦C. The primary antibody was detected with the HRP-

conjugated secondary antibody and 3
′

-diaminobenzidine (DAB)

substrate kit (Zsbio, CHN). Negative control slides were

incubated in 10% serum without primary antibody. The sections

were scanned with the NanoZoomer Digital Pathology system

(Hamamatsu, JPN), and the optical density of IgG was analyzed

in ImageJ (NIH).

Capillary western blot

TJ proteins weremeasured by an automatic capillary western

blot system (Simple Western, ProteinSimple, USA) according to

the manufacturer’s instructions. Tissues were harvested 4 h after

SCI (n = 5 mice each group). The membrane components used

to check claudin-5 and occludin were extracted by the Mem-

PER Plus kit (Pierce, USA). ZO-1 expression was measured in

whole lysed tissue homogenate for it undetectable in membrane

or plasma components. The samples from each mouse were not

pooled together and were instead detected individually. In brief,

the samples were denatured at 95◦C for 5min and diluted to

the appropriate concentration with master mix (ProteinSimple).

Claudin and occludin always have two bands in a capillary

western blot when denatured at 95◦C, so the samples were

denatured at 37◦C for 30min in the claudin and occludin groups

according to the manufacturer’s advice. Each sample and the

commercialized reagents provided by the manufacturer were

loaded into the assay well plate (ProteinSimple) and repeated

twice. Vinculin (Cell Signaling, USA. Cat# 13901, 1:400) was

used as a loading control for ZO-1 (Invitrogen, USA. Cat# 40-

2200, 1:200), and ATPase (Abcam, UK. Cat# ab76020, 1:500) for

claudin-5 (Abcam, Cat# ab131259, 1:100) and occludin (Abcam,

Cat# ab167161, 1:100). ATPase was used as a loading control for

claudin-5 and occludin, and vinculin was used for ZO-1. The

target proteins and their reference proteins could not be detected

in the same well by the machine, so they were added in adjoining

wells according to the manufacturer’s advice. The molecular

weights of the proteins were confirmed by the manufacturer’s

antibody vocabulary. The chemiluminescence intensity of the

proteins was automatically evaluated by Compass software

(ProteinSimple) (30). Virtual images of the lanes were only used

as representative images.

Immunofluorescence

The tissue preparation was the same as for

immunohistochemistry (n = 5 mice each group). The

fixed tissue blocks were sectioned at a thickness of 35µm.

The sections were blocked with 2% PBST (2% Triton X-100 in

PBS) containing 5% goat serum for 30min at 37◦C and then

incubated with the primary antibody diluted in 0.4% PBST

containing 1.5% goat serum for two nights at 4◦C. The primary

antibodies included claudin-5 (Bioworld, USA. Cat# BS1069,

1:200), occludin (Invitrogen, Cat# 40-4700, 1:150) and ZO-1

(Invitrogen, Cat# 40-2200, 1:150). The sections were washed

with 0.4% PBST and incubated with secondary antibodies

and DAPI (Abcam, Cat# ab150157, 1:500) diluted in 0.4%

PBST containing 1.5% goat serum overnight at 4◦C. The tissue

sections were washed and mounted on glass slides. Negative

control slides were incubated in 10% goat serum without

primary antibody.

Images were taken with a Leica TCS STED microscope

(Leica) equipped with a 40× HC PL APO CS2 oil-immersion

lens (NA 1.3). Images of TJs on non-capillary vessels with

diameters ranging from 10–30µm were captured in 512 ×

512 pixel fields as z-stacks with 0.5µm increments. The TJ

discontinuities with more than a 70% reduction in fluorescence

intensity were defined as gaps. The gaps were manually

measured and counted with LasX software (Leica software) in

a double-blind manner.

Statistics

All statistical analyses were performed in Prism 9 (GraphPad

Software, USA). The sample sizes were determined based on

previous experiments in our laboratory and representative

literature that performed similar experiments. The power

calculations were performed in SPSS (IBM, USA). Five animals

were estimated to achieve 78.5–90.5% effect in this study.

Multiple group comparisons were conducted by one-way

ANOVA followed by a post hoc Bonferroni analysis. Time-lapse

data were analyzed by two-way ANOVA followed by a post hoc

Bonferroni analysis. No data were excluded from the statistical

analysis. Details of the statistical results, including the exact
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FIGURE 1

BSCB leakage of intravenously injected fluorescence-dextran in the injured segment after SCI. (A) Representative images of in vivo two-photon

microscopy of the intravenously injected 40 kDa TRITC-dextran leaking from the disrupted BSCB an hour post-SCI. The 40 kDa TRITC-dextran

did not leak from the normal BSCB pre-SCI. Scale bar: 200µm. (B) The e�ect of TH on the volume of extravascular TRITC-dextran leaked from

the disrupted BSCB an hour post-SCI (P = 0.997). (C) The e�ect of TH on the integrated intensity of the extravascular TRITC-dextran leaked from

the disrupted BSCB with TH an hour post-SCI (P = 0.688). NT, normothermia; TH, therapeutic hypothermia; ns, non-significance. n = 6 mice per

group, data are shown as mean ± SEM; nested, two-way ANOVA.

n numbers, statistical tests, and definitions of significance, are

presented in the figure legends. In all graphs, the data are

expressed as the mean ± SEM; n.s. represents non-significant

and ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, ∗∗∗∗P < 0.0001.

Results

Therapeutic hypothermia does not
reduce BSCB leakage after SCI

Intravascular tracers leaking into the neural tissue are the

main indicator of barrier disruption. To monitor the process

of BSCB leakage in real time, we used in vivo two-photon

microscopy to trace the intravenously injected fluorescence-

labeled dextran in the spinal cord segment pre-SCI and post-SCI

(Figure 1A). The imaging endpoint was set to 1 h because the

fluorescence intensity had a theoretical ceiling effect, and the

outline of the blood vessels gradually became indistinct. Under

physiological conditions, 40 kDa dextran does not freely pass

through the barrier, while the fluorescence-labeled substances

increased outside the vessels gradually after SCI, indicating

that the BSCB leaked. Quantification of fluorescence-labeled

indicators showed no difference between the NT and TH groups

in either the volume (Figure 1B) or the integrated density

(Figure 1C). These in vivo data show that applying TH cannot

reduce BSBC leakage within 1 h after SCI.

However, two-photon in vivo imaging cannot image the

ventral side of the injured spinal cord due to the limited

penetration of photons, so we employed the traditional

histological method to determine the effect of TH on BCSB

leakage after SCI. Peripheral immunoglobulin G (IgG) is not

permitted to enter neural tissue under normal barrier function

(31). Furthermore, the B lymphocytes generating IgG have been

proven to migrate to the spinal cord several days after SCI

(32). Hence, IgG in the spinal cord parenchyma in early SCI
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FIGURE 2

Serum non-specific immunoglobin G (IgG) leaked into the

neural tissue after SCI. (A) Representative

immunohistochemistry images of leaked serum IgG in the

injured spinal cord (non-epicenter) 1 and 4h post-SCI. Scale

bar: 1mm. (B) The integrated optical intensity of IgG in the

impact and adjacent spinal segments with TH 1 and 4h

post-SCI. Normally, serum IgG does not exist in neural tissue.

The optical density in the Ctrl group is the value of the tissue

background. n = 5 mice per group, data are shown as the mean

± SEM; ns, non-significance; *P = 0.002, ****P < 0.0001, NT 1h

& TH 1 h: P = 0.716, NT 4h & TH 4 h: P = 0.656; nested,

one-way ANOVA with Bonferroni’s post hoc test.

is thought to be present only if there is a disrupted barrier

(33, 34). Immunohistochemical staining was performed on the

injured and adjacent segments of the spinal cord 1 and 4 h after

SCI (Figure 2A). The optical density of IgG in the spinal cord

increased significantly after SCI, but applying TH resulted in no

difference in IgG leakage compared to the NT group (Figure 2B).

The in vivo and postmortem results suggest that TH cannot

attenuate the leakage of different substances by disrupting the

BSCB in the early period of SCI.

Therapeutic hypothermia does not
change the expression of tight junctions
after SCI

Previous studies showing that TH reduces the permeability

of the blood–brain barrier did not reveal the exact underlying

mechanism. Moreover, TH has some anticoagulatory effects

(35–37), which could aggravate the microhemorrhage where the

blood vessels are disrupted, along with the BSCB disruption

presented by the leakage of intravascular tracers. Considering

that these side effects can result in contradictory results, we

next checked the effect of TH on the changes in TJs, which

are the major foundation of the barrier in the endothelium

(38, 39). The absolute content of TJs in neural tissue is relatively

low for adequate detection by traditional western blotting

without isolating microvessels from neural tissue (40–42). To

overcome this problem, we performed capillary western blotting

to detect TJ proteins, including claudin-5, occludin, and ZO-

1 (Figure 3A). Compared to the non-injured spinal cord, the

expression of claudin-5, occludin, and ZO-1 was not decreased

4 h after SCI. Meanwhile, therapeutic TH had no effect on the

expression of TJs within 4 h after SCI (Figures 3B–D). SCI did

not cause any significant expression changes in TJ proteins 4 h

after SCI. Therefore, THwas not able to show a therapeutic effect

on the expression of TJ proteins during this period.

Therapeutic hypothermia does not
alleviate the structural damage to tight
junctions after SCI

Theoretically, the majority of BSCB leakage occurs in a

paracellular manner by opening the paracellular junctions, while

minor extravasation processes occur in a transcellular fashion

transported within a vesicle-like structure through endothelial

cells (43). BSCB leakage emerged, but the expression of TJs

was not downregulated during this period, indicating that some

other changes in TJs have occurred. To investigate the structural

integrity of the TJs, immunofluorescence staining of claudin-

5, occludin, and ZO-1 was performed 4 h after SCI. Many

fluorescence discontinuities were observed among the TJs. We

defined the fluorescence intensity decline by 70% as a TJ gap

(Figures 4A,B). The TJ gaps increased significantly 4 h after SCI,

but the density of TJ gaps was not different between the NT

and TH groups (Figures 4C–F). These results indicate that TH

cannot alleviate the structural damage to the BSCB in the early

period after SCI.

Discussion

BSCB disruption is a pivotal factor in the secondary

injury process that further aggregates damage after SCI (44).

Preventing BSCB disruption is a theoretically critical method for

reducing SCI damage (45, 46), although no specific treatment

has been proposed for the BSCB disruption (10). TH has been

well established in treating nervous system injury (16, 17, 47)

and has been reported to provide some effect in protecting

the blood–brain barrier (19, 48) by reducing the barrier’s
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FIGURE 3

The expression change of endothelial tight junctions (TJ) with TH 4h post-SCI. (A) Representative virtual lanes of capillary western blot analysis

of TJ with TH 4h post-SCI. These virtual lanes were generated from the ProteinSimpleTM system but not used for quantification. ATPase and

vinculin were used as loading controls. (B) Quantification of the relative expression of claudin-5 with TH 4h post-SCI (n = 5 mice per group, Ctrl

& NT: P = 0.995, NT & TH: P = 0.856). (C) Quantification of the relative expression of occludin with TH 4h post-SCI (n = 5 per group, Ctrl & NT: P

= 0.99, NT & TH: P = 0.863). (D) Quantification of the relative expression of ZO-1 with TH 4h post-SCI (n = 5 mice per group, Ctrl & NT: P =

0.28, NT & TH: P = 0.152). Data are shown as mean ± SEM; ns, non-significance; nested, one-way ANOVA with Bonferroni’s post hoc test.

permeability and alleviating edema (19, 49, 50). However, these

observations did not elucidate the underlying mechanism of TH

on the blood–brain barrier.

In our study, we used contusion SCI and combined in vivo

and in vitro methods to check the effect of therapeutic TH on

BSCB disruption during the early period of SCI, when BSCB

leakage was most remarkable (51, 52). Two-photon microscopy

and immunohistochemistry staining showed that applying TH

for 1 and 4 h did not reduce BSCB leakage. Moreover, TH

did not regulate the expression of TJs assessed by capillary

western blotting and did not diminish the TJ gaps detected

by immunofluorescence. Our data show that the application of

32◦C TH for 4 h does not have sufficient potency to protect the

BSCB in the early period after contusion SCI.

Previous studies on BSCB disruption were based on

postmortem examinations, requiring harvesting the spinal

cord from different animals at discontinuous time points,

which requires sacrificing a large number of animals. To

enable the dynamic monitoring of BSCB disruption, we

utilized in vivo two-photon microscopy to record the leakage

process in a time-lapse manner on individual mice before

and after SCI, which is very suitable for tracing these

dynamic processes (53). However, this in vivo approach has

its drawbacks. Due to the limited penetration of photons,

two-photon microscopy cannot image deeper tissue to view

the ventral side of the spinal cord (54, 55). In addition,

the massive vascular leakage blurs the boundaries of vessels

over time. Therefore, we also employed the traditional

immunohistochemistry method to monitor the BSCB leakage.

The combination of the two methods can compensate for

each other’s shortcomings. Meanwhile, the experimental results

were reconfirmed.
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FIGURE 4

The e�ect of TH on structural damage to the TJs after SCI. (A) Representative images of the gaps in the TJs (white arrow). Scale bar: 20µm.

(B) Fluorescence intensity decline of the gap in Figure 1A. Fluorescence intensity declines of 70% were identified as a gap. (C) Representative

images of immunofluorescence staining of TJs 4h post-SCI. Scale bar: 20µm. (D) The density of the gaps that emerged on claudin-5 with TH

4h post-SCI (n = 5 per group, total 153 vessels, Ctrl & NT: P < 0.0001, NT & TH: P = 0.415). (E) The density of gaps that emerged on occludin

with TH 4h post-SCI (n = 5 per group, total 152 vessels, Ctrl & NT: P < 0.0001, NT & TH: P > 0.99). (F) The density of gaps that emerged on

ZO-1 with TH 4h post-SCI (n = 5 mice per group, total 157 vessels, Ctrl & NT: P < 0.0001, NT & TH: P = 0.609). Data are shown as mean ± SEM;

ns, non-significance; ****P < 0.0001; nested, one-way ANOVA with Bonferroni’s post hoc test.

The mechanism of the neuroprotective effect of TH is

still inconclusive (1). TH has a very complicated effect on

multiple systems. Generally, TH probably reduces the rate

of biological reactions and processes, thus decreasing many
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pathological processes after an injury (1). In clinical studies,

clinical scores (such as the ASIA score) or functional tests

(such as electrophysiology) are frequently used to detect

the efficacy of TH, but without pathological study. These

observation data cannot provide detailed clues to themechanism

of the observed neuroprotective phenomenon. Despite many

successful reports showing improved motor and sensory

function (16, 56), the neuroprotective effects of TH treatment

for SCI are constantly inconsistent. The American Association

of Neurological Surgeons (AANS/CNS) emphasizes its refusal

to recommend TH for SCI until a multicenter randomized

controlled trial is completed (57).

Previous data showed that 33◦C TH for 4 h decreased

the amounts of the different tracers entering the brain (23–

26). However, a similar condition applied to the spinal cord

did not show a positive result. One previous report found

that profound TH (<30◦C) for 20 mins could slightly reduce

plasma-derived albumin and fibrinogen-positive staining after

compression SCI (58). However, the mechanism by which TH

reduces BSCB leakage is unclear. Some researchers believe that

TH can attenuate the permeability of the BSCB and reduce

edema after SCI (59, 60) because TH could reduce the activity

of multiple matrix metalloproteinases (MMPs) to relieve blood–

brain barrier disruption or downregulate the water channel

aquaporin-4 to reduce edema after brain injury (25, 61).

Many reports have shown that MMPs increase after SCI (51),

degrading TJ proteins and thus disrupting the BSCB (51, 62).

In addition, some reports have shown that TH could reduce the

level and activity of MMPs (24, 25). However, the MMPs start to

increase significantly at ∼8 h after SCI (63, 64), and it can even

take days for keyMMPs such asMMP-9 andMMP-12 to increase

(63, 65), strongly suggesting that these enzymes do not play a

pivotal role in early SCI. In this research, the level of TJ proteins

was unchanged at 4 h after SCI, indicating that BSCB leakage in

this period is not due to the degradation of TJ proteins, which

MMPs usually cause. In addition, many gaps emerged in the

TJs at 4 h after SCI. The structural changes in TJs reflect the

barrier function of the BSCB (45, 51). The application of TH

neither changed the expression of TJ proteins nor reduced the

structural damage to the TJs, indicating that moderate TH does

not have sufficient therapeutic efficacy to protect the BSCB early

after SCI.

Moreover, systemic TH has a wide range of side effects

on different systems. As observed in previous studies, a

lower induced temperature of TH is accompanied by more

severe complications (66). Profound TH (core temperature

< 30◦C) maintained for a long duration is not safe for

mammals (21). In this study, we did not conduct experiments

over a wider range of hypothermia. Reports from the

University of Miami have shown that the optimized temperature

for SCI patients is ∼33◦C (17), which is similar to our

empirically selected temperature. Furthermore, a common

complication of TH treatment is an anticoagulatory effect

that worsens bleeding (17), including platelet, coagulation,

and fibrinolysis dysfunction (21, 67). During TH treatment in

experiments, physical injury-induced microhemorrhage could

be amplified by coagulation disturbance and interfere with

the quantitative analysis of BSCB disruption. Therefore, we

only used mild contusion SCI to avoid bleeding. Additional

measurements are needed to evaluate the role of TH in

BSCB disruption after SCI to rule out the possibility that

other factors may interfere with the effect of TH in reducing

BSCB leakage.

Treating BSCB disruption after SCI requires fast-acting

and effective treatments. The observations for 4 h in this

study is relatively short and does not cover the entire acute

period. However, TH can affect various systems and cause

many complications. Prolonged TH is usually accompanied

by more severe complications (66), which can be life-

threatening and require further intensive care. Nevertheless,

the duration of TH for human patients could be longer in

the intensive care unit, while including long cooling induction

and rewarming periods. Moreover, BSCB disruption is a key

promotor of secondary injury, a self-promoted cascade that

will peak at several hours after the injury. The protective

effect of TH on the BSCB decreases over time because the

BSCB disruption has already spread and aggravated secondary

injury (2, 10, 68). Therefore, relieving the BSCB disruption

at an early time point within the therapeutic window is

essential. Assuming TH is effective for BSCB disruption, it

needs to be applied within the early therapeutic window

to have any clinical impact. In this study, TH was applied

immediately after SCI, which provides the best opportunity

to see a protective effect on the BSCB after SCI. However,

the protective value of moderate TH treatment for the BSCB

was insufficient.

In summary, this study explored the efficacy of TH in

protecting the BSCB after SCI from multiple perspectives,

including barrier leakage, the expression of TJs, and

structural damage to the TJs. Based on the findings of

this study, a 4-h TH may not have a therapeutic effect on

BSCB disruption after SCI. The evidence base data drawn

from brain injuries may not be appropriate for the spinal

cord, probably due to the different organ structures or

pathological mechanisms. Other methods to protect the

BSCB or alleviate BSCB disruption after SCI require further

exploration. In-depth research exploring the pathological

mechanism of BSCB disruption is necessary to identify

a more effective method for treating barrier disruption

after SCI.
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