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The forebrain plays important roles in many critical functions, including the

control of breathing. We propose that the forebrain is important for ensuring

that breathing matches current and anticipated behavioral, emotional, and

physiological needs. This review will summarize anatomical and functional

evidence implicating forebrain regions in the control of breathing. These

regions include the cerebral cortex, extended amygdala, hippocampus,

hypothalamus, and thalamus. We will also point out areas where additional

research is needed to better understand the specific roles of forebrain regions

in the control of breathing.
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Introduction

Breathing is an essential function for humans during every waking and sleeping

moment to provide movement of air in and out of the lungs (1–3). Our oxygen demands

are dynamic and constantly changing depending on our activity level, emotional state,

health status, and current behaviors. Because of this, the brain must constantly ensure

that our breathing is appropriately matched to our physiological state and behavior. For

example, our breathing rate and/or volume changes in anticipation of altered needs for

gas exchange and tissue oxygenation during exercise or other physical activities (4). This

feed-forward control is critical for maintaining homeostasis because there is no known

mechanism for sensing gas exchange in the muscle or lungs. Breathing changes with

emotional states as well, as the feelings of stress and fear can cause hyperventilation (5–7).

Although the basic pattern of respiration (inspiration, post-inspiration, and expiration

phases) is generated by neurons in the brainstem and transmitted to respiratory muscles

via spinal circuits (1, 2, 8), these neurons are influenced by other brain regions in order

to ensure that breathing is appropriate for the current situation.

Breathing, unlike other autonomic processes such as heart rate and blood pressure,

can be modulated voluntarily in addition to autonomically (9–11). For example, singers

and musicians that play wind instruments need precise control over their breathing

to produce the correct notes and tones. Mindfulness exercises such as meditation and

yoga utilize deliberate and precise breathing methods to elicit calming responses from

the body, including lowering blood pressure and heart rate. Competitive weightlifters

are among a variety of athletes that use methodic breathing techniques such as
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hyperventilating before their lift to provide sympathetic

activation to maximize strength during their lift. Swimmers pace

their breathing to ensure that they do not inadvertently inhale

water. Thus, intentionally pacing respiration or modulating

breathing volume is a tool that humans and animals use to

control their own physiology.

The forebrain is important for the planning and execution of

movements, sensory processing, regulating sleep wake states and

behavioral responses to emotions such as stress and fear (5, 7).

Each of these functions can have an impact on breathing. For

example, fear is linked with a variety of respiratory changes-

you may gasp if you are startled, you might find yourself

holding your breath when scared, or even hyperventilating as

your body prepares its fight or flight response. Sleep/wake states

strongly influence the control of breathing, with important

consequences if this relationship is dysfunctional, such as sleep

apnea, congenital central hypoventilation syndrome, sudden

infant death syndrome, or sudden unexpected death in epilepsy.

Thus, we propose that the forebrain may be important

for ensuring that breathing matches current and anticipated

emotional, behavioral, and physiological needs. However, the

circuits and mechanisms by which the forebrain exerts control

over breathing are only partly understood. This review will

summarize anatomical and functional evidence implicating

forebrain regions in the control of breathing. These regions

include the cerebral cortex, extended amygdala, hippocampus,

hypothalamus, and thalamus (Figure 1). We will also point out

areas where additional research is needed to better understand

the specific roles of forebrain regions in the control of breathing.

Brainstem and midbrain control of
breathing

The brainstem is critical for the generation of respiratory

rhythm, patterning of motor output, and adapting respiration

to changes in blood gasses to ensure adequate ventilation at

all times (1–3, 8, 12). Historically, the brainstem has been

broadly divided into the ventral respiratory column, dorsal

respiratory group, the parafacial respiratory group, and the

pontine respiratory group. Here, we describe themain structures

within these groups responsible for the control of breathing

to provide a foundation for understanding how forebrain

structures might modify breathing via their connections to

these structures.

Ventral respiratory column and the triple
oscillator model

The pre-Bötzinger complex (preBötC), post-inspiratory

complex (PiCo), and lateral portion of the parafacial respiratory

group (pFL) are thought to be oscillatory rhythm generators

responsible for driving the inspiratory, post-inspiratory, and

expiratory phases of breathing, respectively (13). The preBötC

is part of the ventral respiratory column that also includes

the Bötzinger complex (BötC), rostral ventral respiratory

group (rVRG), and caudal ventral respiratory group (cVRG)

(1). The preBötC drives inspiration via connections to

bulbospinal neurons in the rVRG (14). PiCo is an oscillatory

neuronal population adjacent to the BötC and parafacial

respiratory groups that is active in the post-inspiratory period

(15). The pFL drives expiration via connections to the

bulbospinal neurons in the cVRG (1). Expiration is passive

at rest and expiratory muscles are only recruited when

metabolic/ventilatory demand is high, such as during exercise.

The BötC contains inhibitory neurons that are active during

post-inspiration and/or expiration and inhibit the preBötC

and other brainstem regions (16). Inhibitory connections

between the three oscillators are thought to maintain the

three distinct phases of breathing (13). Forebrain regions

with connections to the ventral respiratory column could

potentially alter the inspiratory rhythm, coordination between

the three oscillators/phases of breathing, or transmission of the

respiratory rhythm to motor neurons.

Parafacial respiratory group

The parafacial respiratory group consists of a lateral part

(pFL) and a ventral part (pFV), located adjacent to the

facial motor nucleus. The pFL is thought to generate the

rhythm responsible for the expiratory phase of breathing, as

discussed above. The pFV (also referred to as the retrotrapezoid

nucleus) is critical for central chemosensation- responding

to changes in pCO2 and pH in the blood (12). These

two groups can be distinguished by their location as well

as expression of Phox2b only in the pFV (17, 18). Thus,

forebrain connections to the pFRG region could potentially

alter expiratory rhythm, control passive vs. active expiration, or

modulate chemosensory responses.

Dorsal respiratory group

The dorsal respiratory group consists of a population of

respiratory neurons within the nucleus of the solitary tract

(NTS) in the medulla. The NTS receives sensory input from the

periphery and projects throughout the brainstem to modulate

autonomic functions such as breathing and heart rate (19, 20).

It is a major information processing and relay station, though

only a portion of the NTS is involved in respiratory function.

In the context of respiration, the NTS relays sensory afferent

information from the vagal and glossopharyngeal nerves to

the ventral respiratory column and receives information from

the carotid bodies about circulating blood gas concentrations

Frontiers inNeurology 02 frontiersin.org

https://doi.org/10.3389/fneur.2022.1041887
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Schottelkotte and Crone 10.3389/fneur.2022.1041887

FIGURE 1

Location of regions involved in the control of breathing. Illustration of a sagittal section of the human brain showing the approximate location of

respiratory-associated brain regions discussed in the text. The inset image shows brainstem respiratory regions, PAG, periaqueductal gray; PB,

parabrachial nuclei; KF, Kölliker-Fuse nucleus; PiCo, post-inspiratory complex; pF, parafacial respiratory groups; NTS, nucleus of the solitary

tract, BötC, Bötzinger complex; preBötC, preBötzinger complex; rVRG, rostral ventral respiratory group; cVRG, caudal ventral respiratory group.

Created with BioRender.com.

(19, 20). Therefore, forebrain regions connected to the dorsal

respiratory group are likely to modify respiratory responses to

peripheral sensory information or alter sensory processing.

Pontine respiratory group

The pontine respiratory group is comprised of the

Kölliker-Fuse nucleus and parabrachial nuclei. These are

a collection of neurochemically diverse structures that are

important for coordinating respiratory muscles during

breathing and other orofacial behaviors such as vocalizing,

coughing, swallowing, and emesis (21–23). The Kölliker-

Fuse nucleus patterns respiratory muscle activity during

the transition from the inspiratory to expiratory phases,

mediates the inspiratory off-switch that triggers glottal

closure, and controls upper airway patency (22, 24). The

parabrachial nuclei pattern airway and expiratory muscle

activity as well as receive chemosensory (i.e., hypoxia

and hypercapnia) and mechanosensory information (i.e.,

negative airway pressure) important for arousal from

hypercapnia (25, 26). These areas are likely critical for

coordinating airway and respiratory muscles during

diverse respiratory-related and orofacial behaviors driven

by the forebrain.

Periaqueductal gray

Located in the midbrain, the periaqueductal gray (PAG)

serves as an interface between the forebrain and the brainstem to

produce integrated behavioral responses to internal or external

stressors (e.g., pain or threats) (27). The PAG coordinates

respiratory, cardiovascular, and pain responses, as well as plays

a part in vocalization, cough, sneeze, swallow, crying, laughter,

micturition, arousal, thermoregulation, and sexual behaviors

(27–30). As part of the “emotional motor system,” a major role of

the PAG is likely to regulate breathing in response to emotional

challenges and survival programs such as “fight or flight” or

freezing responses (30).

The PAG receives inputs from the prefrontal cortex,

amygdala, hypothalamus and nociceptive pathways and

coordinates respiratory, cardiovascular, motor, and pain

responses via efferents to the brainstem, forebrain and spinal

cord (27, 30). Electrical or chemical stimulation of the PAG

changes breathing patterns in rodents (31–33). Importantly,

the pattern produced is dependent on which part of the PAG

is stimulated. The effects of PAG stimulation on breathing

include increasing respiratory frequency (e.g., tachypnea) and

inspiratory effort (dorsal PAG, ventral part of lateral PAG),

lengthening (e.g., apneusis) or shortening the inspiratory period

(lateral PAG), or apnea (ventrolateral PAG) (32). The PAG is
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part of a descending system that modulates airway sensory

processing, critical for control of breathing and breathing

related behaviors, via projections to the nucleus of the solitary

tract (29). The PAG can also directly control breathing through

projections to the preBötzinger complex that modify the activity

of pre-inspiratory neurons (32, 34). In addition, the PAG

projects to the nucleus retroambiguus, a medullary region

important for airway control during breathing, vocalization,

and other behaviors (30, 35), as well as the Raphe nuclei and

adrenergic nuclei (29). Thus, the PAG relays information from

the forebrain to the brainstem to ensure that breathing patterns

suit current behavioral or emotional needs such as fleeing

predators, freezing, talking, crying, coughing, etc.

Cerebellum

The cerebellum contains nearly half of the neurons in

the central nervous system (36) and is a hub for processing

information frommany regions of the nervous system including

the motor cortex, brainstem, and sensory afferents (37, 38).

Although not principally a “respiratory region,” respiration is

among the many motor and non-motor aspects modulated

by the cerebellum (39–43). The ventral respiratory group

sends numerous projections to the cerebellum and cerebellar

deep nuclei send projections back to the ventral respiratory

group (44–46), providing evidence that the cerebellum is

actively involved in respiratory regulation. The cerebellum also

has numerous reciprocal connections to other brainstem and

forebrain regions, including those associated with responses

to hypercapnia and air hunger (42–44). Additional evidence

also suggests that the cerebellum is involved in the response

to chemical (hypoxia and hypercapnia), and mechanical

(tracheal occlusion and positive pressure breathing) respiratory

challenges (41, 43, 45, 47). Although the role of the cerebellum

in control of breathing is not fully understood, it’s connectivity

to both forebrain and brainstem respiratory centers makes it a

potential hub for the forebrain to exert control over breathing.

Forebrain control of breathing

The following sections will describe the anatomical and

functional evidence supporting a role for each of the following

structures in the control of breathing: cerebral cortex, amygdala,

bed nucleus of the stria terminalis, hippocampus, hypothalamus,

and thalamus (Figure 1).

Cerebral cortex

The cerebral cortex of the brain is responsible for a diverse

array of functions including voluntary motor functions, sensory

processing, emotional processing, executive functions, attention,

perception, memory, language, and cognition (48). Respiration

is a motor function that is modified by sensory processes and

emotional state, indicating that the cerebral cortex likely plays

multiple roles in the control of breathing (49). This section will

discuss evidence that different regions of the cerebral cortex

likely play different roles in the control of breathing.

Motor cortex

The motor cortex is responsible for selecting, planning, and

executing movements. Early evidence for a role of the cortex

in breathing came in the late 1950’s when it was noted that

stimulation of the motor cortex in cats activated the phrenic

nerve with a short latency, indicating a possible direct cortico-

motoneuronal connection from the motor cortex to the phrenic

motor nucleus (50), which was corroborated by various other

studies (9, 51, 52). Investigators have suggested that activation

of the diaphragm via the motor cortex is congruent with similar

experiments that activate limb muscles through corticospinal

pathways (53). In fact, the diaphragm region of the motor cortex

can control forelimb muscles following a phrenic nerve transfer

to the forelimb (54). It has since been shown that direct cortico-

motoneuronal as well as cortico-reticulospinal and cortico-

propriospinal-motor neuron pathways can mediate cortical

control of breathing (9, 51, 55) and that these pathways do not

involve medullary respiratory regions (9, 52, 56). The primary

motor area, premotor area, and the supplementary motor

area likely cooperate to modulate breathing. Respiratory linked

activity has been observed in all three brain regions through

a combination of EEG recordings, transcranial stimulation

experiments, and neuroimaging efforts (57–61). Vocalizations

require the deliberate and precise modification of respiration,

and much of these signals originate in premotor cortices (11,

59, 62–64). The supplementary motor area exhibits a tonic drive

to phrenic motoneurons that is thought to play an important

role in the wakefulness drive to breathe as well as modulating

breathing for speech (59, 63). A better understanding of how

the motor cortex exerts volitional and tonic drive to spinal

respiratory circuits could lead to new therapies to improve

breathing in cases of disease or injury in which respiratory drive

is insufficient.

Somatosensory cortex

The somatosensory cortex is activated by respiratory loads

as well as low tidal volume, presumably via lung and chest

wall mechanoreceptors (49). Low tidal volume also activates

association motor cortices. Hypercapnia, which is sensed by

carotid body and medullary chemoreceptors, does not activate

the somatosensory cortex. Intriguingly, human subjects are able

to distinguish between different magnitudes of respiratory loads,
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but not hypercapnia, consistent with the somatosensory cortex

being important for discriminatory processes (49).

Insular and cingulate cortices

The insular and cingulate cortices have gained attention for

their role in the sensation of dyspnea, the feeling of being unable

to breathe (65–67). Therefore, these regions are particularly

responsive to respiratory challenges such as hypercapnia, low

tidal volume, and respiratory loads (49, 68–73). Due to their

ties to the limbic system (65, 74) these regions also integrate

emotional valence to sensory information (67, 71, 75) and likely

play a role in generating behavioral responses to uncomfortable

respiratory sensations (49).

The extended amygdala: Amygdala and
bed nucleus of the stria terminalis

The amygdala is part of the limbic system and evaluates

the emotional importance of sensory information to prompt

an appropriate response. It is known for its roles in

processing fearful or threatening stimuli, reward processing, and

stimulating aggressive behavior (5, 7, 76).

The bed nucleus of the stria terminalis (BNST) is a limbic

structure adjacent to the amygdala that is also involved in fear

and aggressive behaviors (7, 77, 78). We refer to these structures

together as the extended amygdala due to their close functional

association. This section of the review will discuss what is

currently known about the role of the amygdala and the bed

nucleus of the stria terminalis in the control of breathing and

suggest directions for future research.

The extended amygdala has connections to
brainstem respiratory regions

Functional imaging and electroencephalogram (EEG)

studies have shown that the amygdala, along with other cortical

and limbic brain regions, exhibits a high degree of coordination

with the respiratory cycle predominantly within the lateral

amygdaloid region (10, 76, 79). However, ablation of the

amygdala has no effect on eupnea in rodents (80). Anterograde

and retrograde tracing studies demonstrated that there are

reciprocal connections between the extended amygdala and the

ventral respiratory group (VRG) (44), which could potentially

mediate the coordination of activity. In fact, the central nucleus

of the amygdala (the output center of the amygdala), has

direct, monosynaptic projections to the preBötzinger Complex,

as identified by viral tracing experiments (11, 81). Although

the central nucleus is predominantly composed of inhibitory

GABAergic neurons, it has connections to both excitatory and

inhibitory neurons of the preBötzinger Complex (preBötC)

and thus is poised to exert a variety of effects on the preBötC,

possibly dependent upon emotional states (82–85). These

reciprocal connectivity between the extended amygdala and

VRG may serve as a substrate to regulate breathing in response

to fear/anxiety, regulate fear-related behaviors in response to

breathing rhythm, or both. Functional testing of this hypothesis

in animal models awaits future studies.

The extended amygdala also has connections to other brain

regions important for the control of breathing. Retrograde-

tracing studies in rats and mice have shown that both the

bed nucleus of the stria terminalis and central nucleus of the

amygdala have afferent projections to the nucleus of the solitary

tract, which is the viscerosensory tract that bears information

from the vagus nerve among others (19, 86). However, since

both the nucleus of the solitary tract and extended amygdala

have broad functions in autonomic control, it is unclear whether

this connection has a role in respiration. The midline apneic

site, a medullary brain region related to the raphe nuclei and

partially containing the raphe pallidus, receives projections from

both the BNST and central nucleus of the amygdala (87). This

connection could provide an explanation for the respiratory

depression and central apnea that is elicited by stimulation of

the central amygdala and bed nucleus of the stria terminalis

(see below).

Amygdala stimulation can inhibit breathing

Direct proof that the amygdala can influence breathing

comes from animal studies demonstrating that electrical

stimulation of the lateral amygdala region can reduce phrenic

nerve output and slow ventilation (82). Working with human

epilepsy and non-epileptic patients, multiple studies have noted

that electrical stimulation of the amygdala can cause apnea

(83, 85, 88, 89). The location of this site, called the amygdala

inhibition of respiration (AIR) site, has beenmapped in pediatric

patients (85). Intriguingly, stimulation of the amygdala in excess

of 30 s evoked apnea; yet the subjects showed no signs of

discomfort (i.e., dyspnea) or arousal (83, 85). For comparison,

subjects were unable to voluntarily hold their breath for longer

than 20 s without experiencing dyspnea. Interestingly, patients

stimulated in the amygdala were still able to breathe by bringing

their attention (6, 89). Another interesting finding is that apnea

only occurs when the patient is breathing through their nose;

apnea did not occur following amygdala stimulation when the

patient was instructed to breathe through their mouth (89). This

discovery is likely mediated through higher brain regions, as

voluntary breathing is known to override amygdala stimulation-

induced apnea and cortical structures have a known impact

on volitional breathing. These findings may have important

implications for sudden death in epilepsy (SUDEP) or sudden

infant death syndrome (SIDS) as they suggest a mechanism

whereby altered amygdala function could cause prolonged

apneas while at the same time inhibiting dyspnea and arousal,

leading to death.
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The extended amygdala and sudden death in
epilepsy

There is a growing body of evidence implicating the

extended amygdala in seizure-induced respiratory dysfunction.

In several mouse models of epilepsy, induction of seizures can

result in central apnea and peri-ictal respiratory depression

that can lead to death (80, 90–92). Studies in epileptic patients

have shown that seizure spread to the amygdala is correlated

with apneas (83, 85, 93). Moreover, electrolytic lesions of the

amygdala reduce the occurrence of seizure-induced respiratory

arrest in a mouse SUDEP model (80). Together with the

studies described above showing that direct stimulation of

the amygdala can cause apneas (see: Amygdala stimulation

can inhibit breathing), these findings suggest that aberrant

activity of the amygdala during or following seizures could

lead to breathing dysfunction and SUDEP. Currently, it is

not clear whether the amygdala directly alters breathing via

connections to the VRG, NTS and other brainstem structures,

and/or alternatively via other forebrain or midbrain regions.

The bed nucleus of the stria terminalis has also been implicated

in seizure-induced respiratory changes as these neurons are

activated by seizures in a mouse model of Dravet syndrome (78).

The investigators demonstrated that neurons projecting from

the bed nucleus of the stria terminalis to the parabrachial nucleus

(a pontine structure that regulates breathing) are hypoexcitable

in Dravet syndrome mice, suggesting a potential circuit leading

to breathing dysfunction and SUDEP (78). Additional studies

are warranted to identify and further test which circuits

are responsible for seizure-induced breathing abnormalities in

different forms or models of epilepsy and how they might lead

to SUDEP.

Hippocampus

The hippocampus is a structure located in the archicortex or

allocortex and is considered an extension of the temporal lobe

of the cerebral cortex although anatomically and functionally

distinct (94). Main functions of the hippocampus include, but

are not limited to, emotional processing, memory and learning,

and spatial navigation. The role that the hippocampus plays in

respiration is still not well understood but current evidence will

be discussed below.

Lack of evidence for direct connectivity to
brainstem respiratory centers

Viral tracing studies in rats demonstrate that the

hippocampus receives connections from the nucleus of

the solitary tract via polysynaptic pathways, suggesting

the hippocampus may play a role in processing afferent

information from the vagus nerve (95). However, whether

the hippocampus receives information from lung afferents

has not yet been determined. Diffusion imaging studies in

humans provide evidence that there are connections between

the hippocampus and the brainstem and cervical spinal cord

(96). Electrophysiological studies in rodents have demonstrated

sleep-state dependent functional connectivity between the

hippocampus and brainstem (97). However, the imaging and

electrophysiological studies could not assess the direction of

signaling between the brainstem and hippocampus. Moreover,

evidence of direct connections from the hippocampus to

brainstem respiratory centers is lacking (44, 76, 81, 87, 98).

Effects of the hippocampus on breathing are likely to be indirect

(i.e., polysynaptic), mediated through another region such as

the thalamus, cortex or amygdala, or the connections could be

so sparse that they are difficult to label and trace.

Hippocampus stimulation alters breathing

Cells of the hippocampus have also been reported to

discharge in phase with respiratory patterns in humans

and rodents (10, 84, 99–102). Electrical stimulation of the

hippocampus can result in the cessation of breathing (6, 88,

103). Like the amygdala, hippocampal-produced apnea can

be overcome by volitional breathing or speech (6). Varying

the levels of stimulation intensity or location can result in a

spectrum of breathing differences (6). For example, stimulating

the hippocampus during expiration can halt expiration or

induce a phase switch to inspiration (100). The hippocampus

may also play a role in triggering sighs, or “augmented

breaths.” Sighs are a normal component of breathing driven

by the preBötzinger complex that are important for reinflating

collapsed alveoli (1), but are also associated with the expression

of mood and emotions. Poe et al. (101) noted that hippocampal

activity in freely behaving cats increased prior to the initiation

of a sigh or the end of an apnea. However, another

study demonstrated that electrical stimulation of the ventral

hippocampus inhibits sighs (99). Thus, it has been proposed that

the hippocampus may play a role in controlling the timing of

sighs (99). The ventral region of the hippocampus is a primary

region dealing with fear and anxiety. Thus, it seems likely

that the hippocampus is part of a limbic circuit that controls

emotional aspects of sighing via indirect connections to the

preBötzinger complex.

Hypothalamus

The hypothalamus is a structure located just above the

brainstem with well-known roles in homeostatic regulation:

from metabolism and endocrine function to sleep regulation

and the circadian rhythm (48, 104). Since the hypothalamus

is involved in many autonomic processes, researchers have

explored its role in respiration. For a more focused discussion

on the role of the hypothalamus in control of breathing, we
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recommend Fukushi et al. (105). Here, we first discuss the

main neuropeptide hormones produced by the hypothalamus

that influence breathing (orexin and vasopressin). We then

describe potential roles of the distinct hypothalamic regions in

the control of breathing, including: the paraventricular nucleus,

perifornical area, dorsomedial region of the hypothalamus, and

lateral and posterior hypothalamus.

Neuropeptide hormone signaling by the
hypothalamus

The hypothalamus is responsible for the production and

release of numerous hormones that regulate a broad variety

of autonomic and behavioral functions (106–108). Two in

particular, vasopressin and orexin, appear to be involved in

respiratory physiology and will be discussed below (109, 110).

Vasopressin, also known as antidiuretic hormone, is

generated in the paraventricular and supraoptic nuclei of the

hypothalamus by processing of the same pre-pro-hormone that

generates neurophysin II and copeptin (109). It is well known for

its role in maintaining the balance of water and electrolytes in

the kidneys and circulatory system but can also influence other

homeostatic functions such as glucose regulation, cardiovascular

regulation, and breathing (109). Vasopressin can act as a

hormone in the periphery or as a neuropeptide within the

central nervous system by binding to one of three different G-

protein coupled receptors (V1a, V1b, V2) (109). The receptor

most significant for the control of breathing is likely the V1a

receptor (V1aR), which is expressed in the lungs, carotid bodies,

and circumventricular organs (subfornical organ, area postrema,

and organum vasculosum laminae terminalis). Within the

brainstem, V1aRs can be found in the rostral ventrolateral

medulla, the rostral ventral respiratory column, and the

preBötzinger complex, as well as the nucleus of the solitary tract,

and the phrenic nuclei (111–113). A link between vasopressin

and control of breathing was established by studies showing

that the same stimuli that release vasopressin also result in

changes to ventilation (114–118). The effects of circulating

or central release of vasopressin on breathing can vary by

target region, but it is generally inhibitory to breathing (109).

Vasopressin is released during physical exercise, and it has been

noted that increased levels of vasopressin accompany respiratory

disorders such as COPD and pneumonia (119). Moreover, the

expression of V1aRs has been shown to change in response to

respiratory stresses. For example, hypoxia has been shown to

increase the expression of V1aRs in the rostral ventrolateral

medulla, the ventral respiratory column, and the phrenic nuclei

(113). Additionally, hypercapnia has been shown to activate

the vasopressinergic neurons of the paraventricular nucleus

in the hypothalamus (120). Thus, vasopressin likely plays a

homeostatic role in the control of breathing by modulating the

function of multiple brain and spinal cord regions in response

to activity or respiratory stress. Although it is not clear why

a hormone that is generally inhibitory to breathing is released

under conditions of respiratory stress, it has been proposed

to play a protective role in preventing hyperventilation (109).

Additional research is warranted to better understand the role of

vasopressin in control of breathing.

Orexin (also known as hypocretin) is a neuropeptide

expressed exclusively in the hypothalamus that acts onG-protein

coupled receptors throughout the central nervous system (110,

121, 122). It has two forms (orexin-A and orexin-B) derived

from the same precursor protein. The loss of orexinergic

neurons leading to narcolepsy, demonstrating its critical role

in promoting wakefulness (123, 124). Orexin has also been

implicated in regulating aspects of metabolism, homeostasis,

reward seeking behavior, and respiration (122, 125). Orexinergic

neurons can be found in the perifornical area, dorsomedial

hypothalamus, and lateral hypothalamus (110, 121, 126) and

have known projections to respiratory regions, including: the

preBötzinger complex, nucleus of the solitary tract, Kölliker-

Fuse nucleus, parabrachial nuclei, and the phrenic nucleus of the

spinal cord (122, 124, 127–132). Orexin neurons are sensitive to

CO2, implicating them in chemosensory responses (133, 134).

Orexin is likely important for sleep state-dependent regulation

of breathing, as its expression is greatest during wakefulness.

Further, mice lacking orexin show a 50% decrease in the

respiratory response to CO2 during wakefulness, but not during

sleep (135), which can be remedied by orexin supplementation

(123). Consistent with this data, orexin deficiency can lead to

sleep apneas in animal models (123) and decreased orexin levels

are found in patients with obstructive sleep apneas (136). At

least some of the stimulatory effects of orexin on breathing

appear to be mediated through projections to the Kölliker-Fuse

nucleus, as injection of orexin-B into this region increases the

respiratory frequency in rodent brainstem preparation (137).

A better understanding of the role of orexin in sleep state-

dependent regulation of breathing and arousal could have

important implications for sudden infant death syndrome

(SIDS) or sudden death in epilepsy (SUDEP).

Paraventricular nucleus

The paraventricular nucleus (PVN) is predominantly known

for its role in the regulation of various autonomic functions

including stress responses, metabolism, and reproduction (138–

140). The PVN has vast connections to brainstem regions

important for respiratory control including the periaqueductal

gray, parabrachial nucleus, retrotrapezoid nucleus, nucleus of

the solitary tract, preBötzinger complex, and the phrenic nucleus

in the spinal cord (105, 139, 141, 142). Experiments in rats and

rabbits found that electrical or chemical (glutamate) stimulation

of the paraventricular nucleus increases respiration (140, 143).

The paraventricular nucleus receives afferent input from other

parts of the hypothalamus, as well as the subfornical organ

(a chemosensory organ), and the BNST (see: The extended
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amygdala: amygdala and bed nucleus of the stria terminalis)

(144). Inputs from the hippocampus, amygdala, and lateral

septum can influence magnocellular neurosecretory cells in

the PVN, likely via short projections from other parts of

the hypothalamus and/or from the BNST. Thus, the PVN

may serve as a relay station or integration center for other

forebrain regions to influence the brainstem and/or spinal

circuits controlling breathing.

Perifornical area

The perifornical area is commonly known for its role in

the hypothalamic defense system, which is important for the

assessment of threats, and predatory threats in particular (105,

126, 145, 146). The perifornical area is a widely interconnected

region, showing projections to the nucleus of the solitary tract,

Kölliker-Fuse nucleus, parabrachial nuclei, and periaqueductal

gray (121, 123, 147–153). Chemical inhibition of the perifornical

area abolishes the respiratory response to stressful auditory and

visual stimuli in rats (145). Further, chemical disinhibition of the

perifornical area of rats increases respiration (146). Thus, this

area is likely to work with limbic structures to drive appropriate

respiratory responses to stress and fear.

Dorsomedial hypothalamus

The dorsomedial hypothalamus plays a prominent role in

response to stress and arousal (105, 154) and is crucial for

the processing of respiratory and other autonomic changes in

response to psychological stressors (145, 155). Congruent with

its role in stress and arousal, the dorsomedial hypothalamus

receives dense projections from the amygdala and bed nucleus of

the stria terminalis (126, 156). The dorsomedial hypothalamus is

known to send projections to the ventral respiratory column, as

well as the periaqueductal gray, nucleus of the solitary tract, and

Kölliker-Fuse nucleus/parabrachial nuclei (121, 123, 149, 152,

157–160). Disinhibition of the dorsomedial hypothalamus by

injecting bicuculline in rats leads to increased respiratory drive

and hyperventilation (161, 162). Working in concert with the

perifornical area, these neighboring regions form the center of

the hypothalamic defense area that is known to elicit a variety of

sympathetic changes including increases in cardiovascular and

respiratory activity in response to stress (126, 146, 163).

Lateral hypothalamus

The lateral hypothalamus is classically known as the

“feeding center” because of its association with driving the

motivation to eat and drink (164, 165) and also plays a role

in controlling sleep/wake states (122, 123). Destruction of the

lateral hypothalamus or inhibition by barbiturates has been

shown to decrease the frequency and depth of ventilation

(104). The lateral hypothalamus contains orexinergic neurons

and has known projections to the rostral ventral respiratory

group (44). The lateral hypothalamus also has a role in central

chemosensation as neurons in this region respond to changes

in the levels of carbon dioxide (133, 134). This region is also

known to receive projections from the preBötzinger Complex

(166). Chemosensory activation of the lateral hypothalamus

is likely to regulate breathing at least in part via release of

orexin, which is released maximally during wakefulness (134)

(see:Neuropeptide hormone signaling by the hypothalamus). This

region is thus likely important for sleep/wake state-dependent

regulation of breathing.

Posterior hypothalamus

The posterior hypothalamus, also referred to as the caudal

hypothalamus, is involved in a variety of behaviors and processes

including: cardiovascular regulation, cardiorespiratory

responses, locomotion, circadian rhythms, and defense

responses (105, 106, 110, 167). This region has strong

connections to the periaqueductal gray and medullary

respiratory centers (168, 169). The posterior hypothalamus

may play a role in the respiratory increase that accompanies

movement (i.e., exercise hyperpnea) (105, 155, 170). Prior to

and during exercise, both feedforward (central command) and

feedback (chemosensory) signaling mechanisms ensure that

respiration is able to provide enough oxygen for the increase

in metabolic demand. The posterior hypothalamus contains

chemosensitive neurons that respond to hypoxia and facilitate

respiration as well as GABAergic neurons that modulate the

respiratory response to hypercapnia (105, 171, 172). The

posterior hypothalamus likely plays a role in the feedforward

mechanism of exercise hyperpnea as electrical stimulation

or chemical disinhibition are able to induce both increased

respiration and spontaneous locomotion (170, 173, 174). These

results indicate that the posterior hypothalamus uses multiple

mechanisms to ensure that respiratory activity is matched to

behavioral and metabolic demands.

Thalamus

The thalamus is a structure of the diencephalon

important for relaying sensory information to the cortex

and motor information from the cortex to other brain

regions (175–178). There are several thalamic nuclei that

are known to send direct, monosynaptic projections to

the rVRG, namely the parafascicular, mediodorsal, and

subparafascicular nuclei (44). The thalamus may also influence

respiration indirectly via connections to the cerebral cortex,

hippocampus, extended amygdala or other brain areas that

control breathing.

As different parts of the thalamus play different roles in

gating sensory and motor information, it is not surprising

that different parts of the thalamus appear to have different

effects on breathing. Electrical stimulation of the mediodorsal
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FIGURE 2

Forebrain projections to brainstem respiratory regions. Diagram of known projections from forebrain regions to brainstem respiratory regions as

discussed in the text. Connections from the brainstem to forebrain regions are not shown. Connections from the hippocampus to other

forebrain regions highlight potential pathways through which the hippocampus might influence respiration in lieu of known direct projections to

brainstem respiratory regions. The extensive connections between other forebrain regions are not shown. Important connections within the

brainstem highlight additional pathways through which the forebrain might influence breathing, even in the absence of direct connections to

specific brainstem respiratory regions. Additional regions, such as the cerebellum and periaqueductal gray (not shown), may relay information

from the forebrain to the brainstem.

nucleus of the thalamus in cats can increase respiratory rate

(179). However, electrical stimulation of the parafascicular

nucleus of the thalamus in fetal sheep reduces respiratory

frequency (180). Consistent with this finding, lesions to the

posteromedial thalamus, and particularly the parafascicular

nuclei, abolished the normal response of the fetus to hypoxic

conditions (181, 182). This region of the thalamus is involved

with sleep regulation postnatally (181), but its involvement

in sleep-disordered breathing is currently unclear. In a rat

model for obstructive sleep apnea, rats exposed to chronic

intermittent hypoxia revealed increased c-fos expression in

the paraventricular thalamus (183). In this situation, the

increase in neuronal activity indicated by the increase in c-

fos expression suggests that the thalamus plays an important

role in the stress response as it relays information to

the prefrontal and insular cortices. Additional research is

needed to better understand how sensory (or chemosensory)

information is gated by the thalamus as well as how
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respiratory motor output may be processed for the control

of breathing.

Conclusions

Our brain uses a variety of feedback, feedforward, and

homeostatic mechanisms to ensure that our breathing is

appropriately matched to our physiological, emotional, and

behavioral state. We propose that the forebrain regions reviewed

here (the cerebral cortex, extended amygdala, hippocampus,

hypothalamus, and thalamus) contribute to the regulation

of breathing for this purpose. These forebrain regions have

multiple connections to each other, as well as direct or indirect

connections to brainstem regions known to be important for

the control of breathing (Figure 2). For each region, there

is functional evidence that they play a role in the control

of breathing, at least during certain behaviors, conditions, or

physiological states. Further research is necessary to elucidate

the roles of these forebrain structures in the control of breathing

under different conditions as well as the specific circuits and

mechanisms involved.
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