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Stroke is a major cause of death or disability. As imaging-based patient

stratification improves acute stroke therapy, dynamic susceptibility contrast

magnetic resonance imaging (DSC-MRI) is of major interest in image brain

perfusion. However, expert-level perfusion maps require a manual or semi-

manual post-processing by a medical expert making the procedure time-

consuming and less-standardized. Modern machine learning methods such

as generative adversarial networks (GANs) have the potential to automate

the perfusion map generation on an expert level without manual validation.

We propose a modified pix2pix GAN with a temporal component (temp-

pix2pix-GAN) that generates perfusion maps in an end-to-end fashion.

We train our model on perfusion maps infused with expert knowledge to

encode it into the GANs. The performance was trained and evaluated using

the structural similarity index measure (SSIM) on two datasets including

patients with acute stroke and the steno-occlusive disease. Our temp-pix2pix

architecture showed high performance on the acute stroke dataset for all

perfusion maps (mean SSIM 0.92–0.99) and good performance on data

including patients with the steno-occlusive disease (mean SSIM 0.84–0.99).
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While clinical validation is still necessary for future studies, our results mark an

important step toward automated expert-level perfusion maps and thus fast

patient stratification.

KEYWORDS

stroke, perfusion-weighted imaging, dynamic susceptibility contrast MR imaging

(DSC-MR imaging), cerebrovascular disease, generative adversarial network (GAN)

1. Introduction

Ischemic stroke is a leading cause of death or disability

worldwide.1 In such a situation, time is brain (1). This

requires rapid decision-making in the clinical setting to

ensure an optimal outcome for an affected patient. Standard

treatment strategies include recanalization by mechanical or

pharmacological intervention, or a combination of both (2, 3).

In this context, the eligibility of patients for treatment is mainly

based on large cohorts of interventional trials that implement

few imaging information (4, 5). However, this means that some

patients will not receive treatment that would be beneficial

for them, and conversely, some patients will be subjected

to futile treatment attempts (6). An alternative approach to

improve outcomes is individualized patient stratification based

on specific patient characteristics (7, 8). One of the most

important techniques for this approach is perfusion-weighted

imaging, a special imaging technique used in both computed

tomography (CT) andmagnetic resonance imaging (MRI) (9). It

provides highly relevant information about (patho)physiological

blood flow in and around the ischemic brain tissue (10). In

MRI, the most commonly used perfusion imaging technique is

dynamic susceptibility contrast (DSC) MRI (11). It measures

brain perfusion by injecting a gadolinium-based contrast agent

into the patient’s blood (11), followed by a series of T2- or T2*-

weighted MRI sequences that record the flow of the contrast

agent through the brain. The resulting four-dimensional image

is deconvolved voxel-wise with an arterial input function (AIF)

(12). The tissue concentration curve and the deconvolved curve

result in interpretable perfusion parameter maps, such as the

cerebral blood flow (CBF), cerebral blood volume (CBV), mean

transit time (MTT), time-to-maximum (Tmax), and time-to-

peak (TTP) (12). These maps are different representations of the

information encoded in the time-intensity curve for each voxel.

For all except TTP, to derive robust and valid parameter maps,

the time-intensity curve must be deconvolved with an AIF (12).

Ideally, the AIF is derived for each voxel separately, but in the

clinical setting, the calculation of a global AIF is preferred (12).

1 WHO EMRO Stroke, Cerebrovascular Accident | Health Topics.

Available online at: http://www.emro.who.int/health-topics/stroke-

cerebrovascular-accident/index.html.

The gold standard is the manual selection of several—usually

3 or 4—AIFs in the hemisphere contralateral to the stroke,

from segments of the middle cerebral artery (12). The manual

selection of AIFs is a tedious and time-consuming process that

can only be performed after training (12). Therefore, automated

methods whose results are subsequently reviewed by an expert

are preferred in clinical practice (12).

However, the correct shape of the AIF has to be visually

confirmed by an expert user. Otherwise, incorrect perfusion

maps are generated, which can result in a serious diagnostic

error (13). Therefore, there is a great clinical demand for

novel automation approaches that provide validated, expert-

level perfusion maps without the necessity for any expert

oversight. This is especially important in smaller institutions

where no expert is readily available and yet a quick decisionmust

be made whether to treat a patient with an acute stroke or even

transfer them for further endovascular therapy.

One possible solution is the application of modern artificial

intelligence (AI) methods based on machine learning and in

this study, particularly, deep learning approaches. These have

shown great promise for solving medical imaging problems

in the past few years (14, 15). This includes problems in

stroke, such as stroke time onset prediction (16), lesion

segmentation (17), and patient outcome prediction (18, 19).

Among deep learning applications, generative adversarial

networks (GANs) are particularly promising for the generation

of expert-level perfusion maps. For example, GANs can be

presented both with an original image and a processed image

and learn to generate the processed image from the original.

This is achieved by the special architecture of GANs, and they

consist of two neural networks that try to fool each other (20).

One network, the generator, synthesizes a data sample such as

an image, whereas the other network, the discriminator, decides

whether the sample looks like a real sample or not. At the end of

the training, the generated sample should resemble the original

as closely as possible. For image-to-image translations, GANs are

considered to be state of the art in the medical field (21, 22),

and a conditional GAN, such as the pix2pix GAN, can be

applied (23). For example, pix2pix GANs have been successfully

applied to transform MR images to CT images (cross-modal)

or to transform 3T MR images to 7T MR images (intramodal)

(24, 25).
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FIGURE 1

Workflow of the study. Our GAN is trained on expert-level perfusion maps. The resulting model is able to synthesize perfusion maps from

unseen data without the need of manual AIF selection, at the same expert level that was present in the training data.

Given that the translation of a time series of perfusion

information from source images to a single perfusion map can

be seen as a highly similar medical image-to-image translation

problem, GANs are a highly promising method for this use case.

Preliminary work on GANs for the translation of time-series in

dynamic cine applications has been published (26). Yet, to the

best of our knowledge, no study has investigated the generation

of DSC perfusion images from perfusion source data so far.

The use of GANs would also present a new advantage: Since

we use the final perfusion map for training, the GAN would

not simply copy the map generation algorithm but would merge

the map generation algorithm and the optimal AIF placement

information into one algorithm. The GAN system would thus be

able to generate perfusion maps even on images where manual

AIF placement is not possible, such as due to motion artifacts,

which are quite common in acute stroke (13).

Thus, we propose a modified slice-wise pix2pix GAN with

a temporal component (temp-pix2pix-GAN) to account for

the time dimension in DSC source perfusion imaging. Our

GAN model automatically generates perfusion parameter

maps in an end-to-end fashion. We train our model on

expert-level perfusion parameter maps (see Figure 1).

The performance of our temp-pix2pix-GAN model is

compared to a standard pix2pix GAN without a temporal

component. We train and test our approach on two different

datasets including patients with acute stroke and those

chronic cerebrovascular disease, and perfusion data with

motion artifacts.

2. Materials and methods

2.1. Data

In total, 276 patients were included in this study. Of

which, 204 patients from a study performed at Heidelberg

University Hospital suffered from acute stroke. Imaging was

performed with a T2*-weighted gradient-echo EPI sequence

with fat suppression TR = 2,220 ms, TE = 36 ms, flip angle

90◦, field of view: 240 x 240 mm2, image matrix: 128 x 128

mm, and 25–27 slices with ST of 5 mm and was started

simultaneously with bolus injection of a standard dose (0.1

mmol/kg) of an intravenous gadolinium-based contrast agent

on 3 Tesla MRI systems (Magnetom Verio, TIM Trio and

Magnetom Prisma; Siemens Healthcare, Erlangen, Germany). In

total, 50–75 dynamic measurements were performed (including

at least eight prebolus measurements). Bolus and prebolus were

injected with a pneumatically driven injection pump at an

injection rate of 5 ml/s. The study protocol for this retrospective

analysis of our prospectively established stroke database was

approved by the Ethics Committee of Heidelberg University, and

patient informed consent was waived.

A total of 72 patients with steno-occlusive disease were

included in the PEGASUS study (27). A total of 80 whole-brain

images were recorded using a single-shot FID-EPI sequence (TR

= 1,390 ms, TE = 29 ms, and voxel size: 1.8 x 1.8 x 5 mm3)

after automatic and synchronized injection of 5 ml Gadovist

(Gadobutrol, 1 M, Bayer Schering Pharma AG, Berlin) followed
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FIGURE 2

Rescaling of the DSC source images. The DSC source images need to be rescaled to the same dimension to be suitable for a machine

learning-based analysis. For this, all images that consisted of less than 80 time points were rescaled by copying the image of the last time point,

where the contrast agent had already left the brain tissue. Essentially, this simply prolongs the baseline and has no e�ect on the parts of the time

series that contain relevant information.

by 25 ml saline flush by a power injector (Spectris, Medrad

Inc., Warrendale PA, USA) at a rate of 5 ml/s. The acquisition

time was 1:54 min. All patients gave their written informed

consent, and the study has been authorized by the Ethical

Review Committee of Charité - Universitatsmedizin Berlin. DSC

post-processing was performed blinded to clinical outcome.

For the acute stroke data from Heidelberg, DSC data

were post-processed with Olea Sphere R© (Olea Medical, La

Ciotat, France) in-house at the stroke center in Heidelberg,

and automatic motion correction was applied. Raw DSC images

were used to calculate perfusion maps of time-to-peak (TTP)

from the tissue response curve. Maps of cerebral blood flow

(CBF), cerebral blood volume (CBV), mean transit time (MTT),

and time-to-maximum (Tmax) were created by deconvolution

of a regional concentration-time curve with an arterial input

function (AIF). Block-circulant singular value decomposition

(cSVD) deconvolution was applied. The arterial input function

(AIF) was detected automatically. All AIFs were visually

inspected by a neuroradiology expert (MAM, with over 6 years

of experience in perfusion imaging), and only in two cases, the

automatically detected AIF needed to be manually corrected.

For PEGASUS patients, DSC data were post-processed with

PGui software (version 1.0, provided for research purposes by

the Center for Functional Neuroimaging, Aarhus University,

Denmark). Motion correction was not available. Raw DSC

images were used to calculate perfusion maps of TTP from the

tissue response curve. Maps of CBF, CBV, MTT, and Tmax were

created by deconvolution of a regional concentration-time curve

with an AIF. Parametric deconvolution was applied (28). For

each patient, an AIF was determined by a junior rater (JB, with

2 years of experience in perfusion imaging) by manual selection

of three or four intravascular voxels of the MCA M2 segment

contralateral to the side of stenosis minimizing partial volume

effects and bolus delay. The AIF shape was visually assessed for

peak sharpness, bolus peak time, and amplitude width (12, 29).

The AIFs were inspected by a senior rater (VIM, with over 12

years of experience in perfusion imaging).

The acute stroke data were resized to 21 horizontal slices

each containing 128 x 128 voxels. To make the DSC source

images suitable for our machine learning models, they were

rescaled to 80 time points by copying the last slice until there

were 80 slices in total (see Figure 2). All images of one parameter

map and the DSC source images were normalized between −1

and +1 to ensure the stability of the GAN and then split into

horizontal slices.

The post-processed data were split into training (acute

stroke data: 142 patients, PEGASUS: 50 patients), validation

(acute stroke data: 20 patients, PEGASUS: eight patients), and

test (acute stroke data: 41 patients, PEGASUS: 12 patients) sets.

Since the patient cohorts were different for the acute stroke

dataset and the PEGASUS dataset consisting of patients with

steno-occlusive disease, separate models were trained on the

datasets. For optimization, hyperparameters such as the learning

rate were selected based on visual inspection of the generated
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FIGURE 3

Architecture of the pix2pix and temp-pix2pix GAN. (A) Shows the overall GAN architecture, whereas (B, C) depict the two di�erent generators,

and (D) shows the discriminator.

images and the performance on the validation test (for details,

see Section 2.4). The generalizable performance was estimated

by the performance of the test set.

2.2. General methodological approach

We utilized a special type of AI model, which was developed

for generating an image based on the input of another image:

the pix2pix GAN (23). A pix2pix GAN consists of two neural

networks that try to mislead each other. The first network,

the generator, aims to produce realistic looking images based

on another image (e.g., produce a CT based on an MR

image), whereas, the second network, the discriminator, tries to

distinguish between the generated image and real image. Based

on the discriminator’s feedback, both networks get better in their

respective tasks.

Typically, the input and output to a pix2pix GAN generator

are a 2D image. For this use case, we modified the pix2pix

GAN to take a 3D image (time sequence of the 2D DSC

source image) as an input and synthesize the corresponding 2D

perfusion map slice (e.g., Tmax). In this work, we implemented

two different generator architectures. The first architecture, the

classical pix2pix GAN, took in the 3D input image without

accounting for the temporal relation between the images. In

contrast to that, the second architecture, the temp-pix2pix GAN,

was designed to first extract the temporal relation between the

images followed by the transformation to the output image

(see Figure 3). Both architectures were first trained on the

acute stroke dataset. The resulting models served as weight

initialization for the models trained on the PEGASUS dataset.

In the following, the technical details of the two approaches are

described in depth.

2.3. Network architecture

The GAN architecture was adapted from the pix2pix GAN

(23). In our first architecture, we utilized the original U-Net

generator as proposed in the paper with the time steps being
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represented in the channels. For the second architecture, we

modified the U-Net by adding 3D temporal convolutions before

feeding the result into the U-Net in the generator (see Figure 3).

Both GAN architectures consisted of two neural networks:

the generator G and the discriminator D. On the one hand,

the generator’s task was to synthesize perfusion parameter

maps such as Tmax or CBF from the DSC source image. The

discriminator, on the other hand, learned to distinguish between

the real DSC source image together with the real perfusion

parameter map and the real DSC with the generated perfusion

parameter map.

In general, the objective function of a conditional GAN such

as the pix2pix GAN is as follows:

LcGAN(G,D) = Ex,y[logD(x, y)]+ Ex,z[log(1− D(x,G(x, z))]

(1)

Where x is the input image (DSC source in our case) and

y is the output image (for example, Tmax) and z is a noise

vector, which is implicitly implemented as a dropout in the

generator architecture (23). The generator tries to maximize the

objective which is achieved when the discriminator outputs a

high probability of the generated image pair being real and a

low probability for the real image pair, respectively. In contrast

to that, the discriminator tries to minimize this objective, and

identify the real input images. The pix2pix GAN does not

directly incorporate the noise vector z but introduces noise in

the network using dropout in the generator.

The loss of the generator consisted of two parts. The first

part was the adversarial loss, which took into account the

feedback of the discriminator as described earlier. In addition,

a reconstruction loss directly penalized deviation from the

original image using the L1 norm. This second loss was added

to the adversarial loss, and both were weighted by 1 after testing

different weightings.

Two different GAN variants, the pix2pix GAN and the temp-

pix2pix GAN, were implemented. They both differed in the

generator’s architecture and the generator’s input representation.

The pix2pix generator was a 2D U-Net with six

downsampling and upsampling layers (see Figure 3B). One

DSC source slice at a time was fed as an input to the generator.

The different time points of the DSC were concatenated in

the channel dimension leading to 3D input data (channel,

image height, and image width). Each downsampling layer

consisted of a convolutional layer, batch normalization layer,

and a LeakyReLU with slope 0.2, and the upsampling layers

of ConvTranspose-layers, batch normalization, and a ReLU

activation. After the last convolution, a tanh was applied.

In contrast to that, the generator of the temp-pix2pix GAN

took one slice of the DSC source at all time points as an

input. Here, the time points were represented in a separate time

dimension leading to a 4D input (channel, image height, image

width, and time). The time sequence of slices was then fed

through six 3D convolutions over the time dimension iteratively

reducing this dimension to 1. Each convolutional layer was

followed by a batch normalization layer and a LeakyReLu with

slope 0.2. After the temporal path, the output is fed into a

2D U-Net with convolutions over the spatial dimensions with

six downsampling and upsampling layers in an early fusion

approach as shown in Figure 3C.

The discriminator adapted the architecture of the

discriminator from the PatchGAN as suggested by Isola

et al. (23). It consisted of three convolutional layers with batch

normalization and a LeakyReLU activation function followed by

another convolutional layer and a sigmoid activation function

(see Figure 3D). For both the generator and discriminator, the

kernel size was four with strides of two.

2.4. Training

For each architecture, five GANs were trained on the acute

stroke dataset from Heidelberg for each of the five parameter

maps (CBF, CBV, MTT, Tmax, and TTP). The models were

trained with a learning rate of 0.0001 for both the generator

and discriminator using the Adam optimizer with β1 = 0.5 and

β2 = 0.999. The networks were trained for 100 epochs at which

point convergence of the two networks was achieved. The batch

size was 4 and the dropout was 0. As the PEGASUS dataset was

smaller, the models trained on the acute stroke dataset served

as a weight initialization for the PEGASUS models and were

then only fine-tuned for additional 50 epochs. Thus, in total, 10

models were trained per architecture.

All hyperparameters mentioned earlier were tuned and

selected according to visual inspection of the generated images

and the performance on the validation set. Due to the

computational limitations, an automated search was not feasible.

The code was implemented in PyTorch and is publicly available2.

The models were trained on a TESLA V100 GPU (NVIDIA

Corporation, Santa Clara, CA, USA).

2.5. Performance evaluation

The generated images were first visually inspected. In

addition, four metrics were applied: the mean absolute error

(MAE) or L1 norm of the error, the normalized root mean

squared error (NRMSE), the structural similarity index measure

(SSIM), and the peak-signal-to-noise-ratio (PSNR). These

metrics are standard performance measures for pairwise image

comparison and were selected to better compare with existing

studies (30).

The MAE is defined voxel-wise and measures the average

absolute of the error between the real image y and the generated

2 https://github.com/prediction2020/DSC-to-perfusion
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FIGURE 4

Synthesized perfusion parameter maps (middle, bottom rows) compared with the ground truth reviewed by an expert (top row) for one

representative patient showing average performances from the acute stroke test dataset. The perfusion parameter maps generated by the

temp-pix2pix all look similar to the ground truth, whereas the time-dependent parameters (Tmax and TTP) are not well captured by the pix2pix

GAN.

image ŷ:

MAE =
1

n

n
∑

i=1

∣

∣yi − ŷi
∣

∣ (2)

The NRMSE is defined as the root mean squared error

normalized by average euclidean norm of the true image y:

NRMSE =
RMSE

√

1
n

∑n
i=1 y

2
i

(3)

with

RMSE =

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)2 (4)

The SSIM is defined as a combination of luminance, contrast,

and structure and can be summed up as follows:

SSIM(y, ŷ) =
(2µyµŷ + c1)(2σyŷ + c2)

(µ2
y + µ2

ŷ
+ c1)(σ

2
y + σ 2

ŷ
+ c2)

, (5)

Where µy and µŷ are the average values of y and ŷ, respectively,

σy is the variance, and σyŷ is the covariance. c1 and c2 are

constants for stabilization and defined as c1 = (k1L)
2 and

c2 = (k2L)
2, with L being the dynamic range of the pixel values

and k1, k2 ≪ 1 small constants. The higher the SSIM, the more

similar are the two images with 1 denoting the highest similarity.

The PSNR is defined as follows:

PSNR = 10 log

(

MAXI

MSE

)

(6)

with

MSE =
1

n

n
∑

i=1

(yi − ŷi)
2 (7)

MAXI is the maximal possible pixel/voxel value. It describes

the ratio between the maximal possible signal power and noise

power contained in the sample.

The performancemetrics of each trained temp-pix2pix GAN

were compared to the pix2pix GAN performance using the

paired Wilcoxon signed-rank test. For p < 0.05, the difference

between performances was considered statistically significant.

3. Results

Visual inspection of the results of the acute stroke dataset

showed that the perfusion parameter maps generated by the

temp-pix2pix GAN looked similar to the ground truth (see

Figure 4). For the pix2pix model, on the contrary, only CBF,
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FIGURE 5

Mean performance metrics for evaluating the similarity between the ground truth and the synthesized parameter maps generated by the pix2pix

GAN (green) and the temp-pxi2pix GAN (blue) on the acute stroke dataset. (A, B) Show the mean absolute error (MAE) and normalized mean

root squared error (NRMSE), respectively (the lower, the better). (C, D) Show the structural similarity index measure (SSIM) and the

peak-signal-to-noise-ratio (PSNR) (the higher, the better). For all parameter maps, the temp-pix2pix architecture shows a better or comparable

performance compared with the pix2pix GAN. For the time-dependent parameter maps such as Tmax and TTP, the di�erence between the

pix2pix and temp-pix2pix GAN performance is larger than the other three maps. The error bar represents the standard deviation.

CBV, and MTT were of sufficient quality, whereas the time-

dependent parameters TTP and Tmax did not consistently

resemble the ground truth (also Figure 4).

The quantitative analysis in the acute stroke dataset revealed

for all parameter maps a high SSIM ranging from 0.92 to 0.99

for the temp-pix2pix model (Figure 5). In contrast to this, the

pix2pix GAN showed a comparable or worse SSIM ranging from

0.86 to 0.98. A performance difference between the pix2pix and

temp-pix2pix models was especially prominent for Tmax and

TTP (SSIM 0.92 vs. 0.86 and 0.95 vs. 0.91, respectively). The

temp-pix2pix model showed a significantly better performance

than the pix2pix model (p < 0.05) for all metrics and perfusion

maps, except for the MAE of CBV (MAE of 0.009 for both

models, p = 0.53).

For the PEGASUS dataset, the perfusion maps generated by

both the fine-tuned pix2pix and temp-pix2pix GAN look similar

to the ground truth (see Figure 6). For both networks, MTT

appeared to be the least well-reconstructed parameter map,

which is also reflected in themetrics (Figure 7). Furthermore, the

high intensities of Tmax were not well-captured by the pix2pix

GAN (Figure 6). The performance metrics of the pix2pix and

temp-pix2pix GAN and the ground truth for the PEGASUS

dataset showed a low error and high SSIM and PSNR for CBF,

CBV, and Tmax. Here, for most metrics, the temp-pix2pix GAN

achieved a slightly better performance in contrast to the pix2pix

GAN. For MTT and TTP, the temp-pix2pix showed a better

performance compared with the pix2pix GAN (SSIM 0.84 vs.

0.78 and 0.86 vs. 0.82, respectively). Overall, the metrics of the

synthesized MTT and TTP maps obtained a worst performance

compared with the other parameter maps. Again, the temp-

pix2pix model showed a significantly better performance than

the pix2pix model (p < 0.05) for most metrics and perfusion

maps, except for the PSNR and NRMSE of Tmax (PSNR of 37.28

vs. 37.83, p = 0.29; NRMSE of 0.032 vs. 0.031, p = 0.10).

Figure 8A shows two patients whose generated parameters

showed the worst performance. For the acute stroke dataset,

these are two Tmax maps (Figure 8A, first and second columns),

whereas, the generated Tmax in the first column did not capture

the high intensities well, the generated map in the second

column visually looked well. For the PEGASUS models, MTT

performed the worst (Figure 8A, third and fourth columns). In

the third column, the generated MTT appears less noisy than

the ground truth. In contrast to that, in the fourth column, the

generated MTT map looked noisier compared with the ground
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FIGURE 6

Synthesized perfusion parameter maps (middle, bottom rows) compared with the ground truth reviewed by an expert (top row) for one

representative patient showing average performances from the PEGASUS test dataset. Both pix2pix and temp-pix2pix GAN synthesized most

parameter maps that resemble the ground truth. Parts of MTT were not entirely captured by pix2pix and temp-pix2pix. Moreover, the pix2pix

GAN did not synthesize the higher intensities of Tmax well. For MTT and Tmax, the temp-pix2pix GAN showed better performance in all metrics

compared with the pix2pix GAN.

truth. Figure 8B shows that the Tmax maps generated by the

temp-pix2pix and pix2pix GAN for four patients for which an

AIF could not be placed.

4. Discussion

In the present study, we propose a novel pix2pix GAN

variant with temporal convolutions-coined temp-pix2pix-to

generate expert-level perfusion parameter maps from DSC-MR

images in an end-to-end fashion for the first time. The temp-

pix2pix architecture showed high performance in a dataset of

patients with acute stroke and good performance on data of

patients with the chronic steno-occlusive disease. Our results

mark a decisive step toward the automated generation of expert-

level DSC perfusion maps for acute stroke and their application

in the clinical setting.

This requires rapid decision-making in the clinical setting

to ensure an optimal outcome for an affected patient. While

automated methods for parameter map generation have shown

inconclusive results in the literature (26, 31–35), they are

successfully used in acute stroke to identify stroke-affected

tissue. In our sample, this was confirmed as the automatically

derived arterial input functions only required expert adjustment

in 2 out of 204 patients in the acute stroke set. Nevertheless,

this approach still requires a manual check resulting in a time

delay of a few minutes per patient before patient stratification.

As a consequence, there is a major clinical need for automated

methods that provide final perfusion parameter maps without

any manual input. Here, we chose a GAN AI approach, as

presenting this methodology expert-level perfusion maps would

lead to a model after training that could then generate expert-

level perfusion maps, implicitly encoding the choice of AIFs

within ∼ 1.8 s per patient (speed of our GAN). Our exploratory

results show that this approach was successful.

This may have a positive impact on the clinical setting. First,

it would eliminate the need for a manual review of AIFs. This

would reduce the time needed to calculate perfusion parameter

maps and also reduce resource requirements as radiologists and

neurologists would no longer need to be trained on how to

identify optimal AIFs. Second, as we have shown, it is even

possible to calculate parameter maps for patients who currently

have to be excluded due to motion artifacts that make it

impossible for the standard software to calculate the parameter
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FIGURE 7

Mean performance metrics for evaluating the similarity between the ground truth and the synthesized parameter maps generated by the pix2pix

GAN (green) and the temp-pxi2pix GAN (blue) on the PEGASUS dataset. (A, B) Show the mean absolute error (MAE) and normalized mean root

squared error (NRMSE), respectively (the lower, the better). (C, D) Show the structural similarity index measure (SSIM) and the

peak-signal-to-noise-ratio (PSNR) (the higher, the better). For most metrics and parameter maps, the temp-pix2pix architecture shows a better

performance compared with the pix2pix GAN. In terms of the metrics, the generated MTT maps showed the worst performance. The error bar

represents the standard deviation.

maps. At this point, it is important to emphasize that our study

is exploratory, and the generated model is only used for internal

research purposes. This is due to the fact that the generative AI

has fundamentally learned to approximate the non-AI algorithm

that was originally used to calculate the perfusion parameter

maps. To maximize clinical impact, we thus encourage the

developers and vendors of relevant clinically used perfusion

software to consider adding GAN-based automated perfusion

calculation modules to their products. To facilitate this process,

we have made our code publicly available.

One of the most important contributions of our approach

was the consideration of the temporal dimension of the time

series input. Not surprisingly, the temp-pix2pix architecture

performed better than the pix2pix GAN without a temporal

component in both datasets. This was particularly noticeable

in the acute stroke dataset for parameters directly related to

the correct order of the time-intensity curve, namely TTP and

Tmax. Maps of CBF, CBV, and MTT (derived by the central

volume theorem as CBV/CBF) also performed quite well in

the baseline architecture without a temporal component, as for

these maps, the order of input is not relevant. This is because

CBV corresponds to the area under the time-intensity curve and

CBF is calculated based on the height of the slope, which are

indifferent to the order. In the chronic stroke dataset, the temp-

pix2pix also outperformed the baseline GANwithout a temporal

component. However, the difference in performance was not as

pronounced as in the acute stroke dataset. This could be due

to the fact that patients with acute vascular obstruction usually

have significantly higher delays than patients with chronic steno-

occlusive disease, and the performance advantage of temp-

pix2pix increases with increasing delay. It is noteworthy that in

contrast to the patients with acute stroke in the chronic steno-

occlusive cohort, MTT and TTP maps performed worse than

the other parameter maps. This might be related to the more

complex perfusion pathophysiology in chronic steno-occlusive

disease.Whereas in acute stroke, delay is themain contributor to

blood flow abnormalities, and in chronic steno-occlusive disease,

it is the sum of delay and considerable dispersion due to vessel

abnormalities (36). This could pose particular difficulties for

neural networks to learn the relationships required to create

parameter maps: MTT is a parameter that depends on two other

parameters (CBV and CBF) in the original software solutions,

which are likely to have greater variability in chronic steno-

occlusive disease. In addition, TTP delays are attributable to
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FIGURE 8

Two patients with the poorest performance according to the metrics for each of the two datasets (A) and patients for which no AIF could be

computed (B). (A) The first and second columns show Tmax for two patients with acute stroke. Whereas the synthesized image in the first

column does not fully capture the hypoperfused areas, the generated image in the second column looks quite close to the ground truth.

Columns three and four show MTT for two PEGASUS patients. While the generated image in the third column shows less noise than the ground

truth, the GAN introduced noise in the fourth column in the synthesized image. (B) Four Tmax maps generated by temp-pix2pix (upper row) and

pix2pix (lower row) for cases from the acute stroke data for which no AIF could be computed, and thus with conventional methods not imaging

would be available. To get an estimate of the true lesion, 24 h CT is plotted in the lower row. Note that for the CT images, only 2D visualizations

were available. Thus, they are not aligned with the perfusion parameter map. Since motion artifacts a�ect the quality of the time series, in these

cases the baseline pix2pix performs better than the temp-pix2pix.

both delay and dispersion, with varying weights in individual

patients leading again to a larger variability (this effect is

much less pronounced in Tmax parameter maps due to the

deconvolution procedure). Such increased variability might lead

to less stable models and thus increased noise in the generated

maps.

Our work is the first work to utilize GANs to create

perfusion parameter maps in DSC imaging. A few works exist

that used different machine learning and deep learning methods

to generate parameter perfusion maps from the DSC source

image. For instance, McKinley et al. (37) used several classical

voxel-wise machine learning approaches to generate manually
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validated perfusion parameter maps and identified a tree-based

algorithm as the best performing model. Their best results for

Tmax achieved a lower performance with an NRMSE of 0.113

compared with our best model with an NRMSE of 0.095. Vialard

et al. (38) suggested a deep learning-based spatiotemporal U-

net approach for translating DSC-MR patches to CBV maps

in patients with brain tumors. With an SSIM of 0.821, their

generated CBV maps obtained a poor performance compared

to our CBV generated by the temp-pix2pix model, with a SSIM

of 0.986. In the field of stroke, Ho et al. (39) proposed a patch-

based deep learning approach to generate CBF, CBV, MTT, and

Tmax. The average RMSE for their generated Tmax showed a

higher error of 1.33 compared with ours with 0.06. Hess et al.

(40) utilized a different voxel-wise deep learning approach to

approximate Tmax from DSC-MR. This approach was clinically

evaluated in another study (41). In a study by Hess et al. (40),

they reported the performance in terms of MAE with clipping

to not account for noise. The generated Tmax achieved an MAE

with clipping of 0.524 compared to our approach showing an

MSE of 0.016. These differences compared to our study might

be due to the novel use of the GAN method and the fact that

our model considered whole slices instead of patches to better

account for the spatial dimension. Of course, these comparisons

need to be additionally evaluated as they might depend on

differences in training and test data.

It is also worth noting that AIFs are known to exhibit

considerable variation (42, 43) and the predictive performance

of perfusion image maps can be influenced by the AIF

shape (44). We performed a cursory visual inspection of the

AIFs of the patients in the test set of our study but could

not find any striking correlation between the AIF shape and

the performance metrics of a generated image. However, all

AIFs in our study were selected and reviewed by well-trained

and experienced staff, so differences between AIFs could be

rather subtle. Therefore, a potential relationship between the

shape of the AIF and the performance of the generated image

can probably only be detected in a quantitative analysis where

the AIFs are parameterized and numerically compared with

performance metrics. This is beyond the scope of our study but

is a very interesting approach for further research.

Our study has several limitations. First, our network was

based on 2D slices instead of the full 3D volumes due to

computational restrictions. It is likely that the results could be

improved further using the full 3D images. Second, our study

is an exploratory hypothesis generating study. Its results need

to be clinically validated in a future study before integrating

into clinical practice would be possible. This includes clinical

evaluation metrics beyond voxel-wise comparison such as

comparing manually segmented lesion volumes. Furthermore,

due to data availability, this analysis was only performed on

MR data and did not include CT perfusion images. Lastly, our

approach so far is a black-box approach. It could be extended

with explainable AI to generate insights into which areas in

the source images are particularly relevant for the creation

of different perfusion parameter maps. This could further

elucidate the causes of the performance differences between the

maps that we identified and could guide the way for further

improvements.

5. Conclusion

We generated expert-level perfusion parameter maps using a

novel GAN approach showcasing that AI approaches might have

the ability to overcome the need for oversight bymedical experts.

Our exploratory study paves the way for fully-automated DSC-

MR processing for faster patient stratification in acute stroke. In

the clinical setting where time is crucial for patient outcome, this

could have a big impact on standardized patient care in acute

stroke.
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