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Sleep disorders are a common health problem in modern society. Long-term

sleep deficiency increases the risk for Alzheimer’s disease. However, the exact

mechanisms by which sleep deficiency a�ects Alzheimer’s disease remain

unclear. Therefore, we reviewed the relevant studies and investigated the role

of sleep deprivation in Alzheimer’s disease pathogenesis. Sleep deficiency was

found to be associated with oxidative stress, β-amyloid protein deposition, tau

hyperphosphorylation, and neuroinflammation, which are known to increase

the risk for Alzheimer’s disease. In addition, insu�cient sleep also increases

glucocorticoid levels, decreases brain-derived neurotrophic factor levels, and

reduces the number of synapses in the central nervous system. These factors

also promote Alzheimer’s disease development and progression. The present

study showed that a growing body of evidence supports an association

between sleep disturbances and Alzheimer’s disease. It discusses the role of

sleep insu�ciency in Alzheimer’s disease pathogenesis, which may provide a

theoretical basis for e�ective treatment and prevention strategies.
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1. Introduction

Sleep deficiency occurs when the body does not get the required amount of sleep, i.e.,

insufficient sleep time or poor sleep quality. The earliest research on sleep deficiency can

be traced to more than 100 years ago (1). Approximately 38.2% of the general Chinese

population has insomnia symptoms (2). Humans store energy during sleep, reverse

damages caused while awake, and process information to facilitate learning and memory

(3). Sleep deficiency can cause various adverse effects, including reduced reaction time,

reduced vigilance, increased perceptual and cognitive distortion, emotional changes, and

even neurodegenerative diseases, including Alzheimer’s disease (AD) and Parkinson (4).

Sleep deficiency is a common early symptom of neurodegenerative diseases. Long-term

sleep deficiency affects emotions, learning, and memory (5, 6).

AD is an age-related neurodegenerative disease of the central nervous system

characterized by progressive cognitive and memory impairment and the loss of

general intelligence, including memory, judgment, and abstract thinking (7). The most

characteristic pathological changes associated with AD are senile plaques (SPs) formed
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by the deposition of β-amyloid protein (Aβ), neurofibrillary

tangles (NFTs) formed by intracellular aggregation of

abnormally phosphorylated tau proteins, loss of neuronal

synapses, and reduced numbers of neurons (8).

Recent studies have extensively investigated the effect of

sleep deficiency on AD (9). Clinical and animal experiments

suggest that chronic sleep insufficiency may increase AD

incidence and accelerate its pathogenesis (10). However, the

pathophysiological mechanisms by which long-term sleep

deficiency promotes AD progression remain unclear. In this

study, we reviewed the literature and analyzed relevant studies

to determine the mechanisms for AD induced by long-term

sleep deficiency.

2. Mechanism of AD caused by sleep
deficiency

Studies have shown that long-term insomnia increases

the risk for neurodegenerative diseases, including AD (11).

Epidemiological investigations have revealed that about 44%

of AD patients had sleep disorders and circadian rhythm

disorders (12, 13). With increasing age, the circadian rhythm

and sleep-wake regulation system of the elderly gradually

degenerate, while the regulation function is weakened, which

significantly increases the risk of AD (14). A meta-analysis of

27 observational studies showed that the risk for AD increased

by 3.78 times with insomnia and that effective insomnia

interventions could delay AD progression in about 15% of

the patients (15). In addition, studies have shown that non-

rapid eye movement (NREM) sleep slow wave activity decreases

with increase of Aβ deposition and tau accumulation (16).

Roh et al. reported that a normal sleep-wake cycle and diurnal

fluctuation of interstitial fluid (ISF) Aβ are present in the brain

of APPswe/PS1δE9 mice before Aβ plaque formation. Following

plaque formation, the sleep-wake cycle markedly deteriorated

and the diurnal fluctuation of ISF Aβ dissipated (17). Therefore,

investigating sleep deficiencies could be significant for AD

prevention and treatment.

2.1. Sleep deficiency promotes Aβ

deposition

Preclinical studies have demonstrated that neurons release

Aβ in an activity-dependent manner under physiological

conditions, and that brain Aβ levels show diurnal fluctuations;

secretion increases when awake and decreases during sleep

(18). Compared to high-quality rest, decreased, low-quality or

slow-wave sleep increases cortical neuronal activity and Aβ

release (19). With continuous Aβ plaque formation in sleep-

regulation centers, sleep cycle-related variations in extracellular

Aβ levels disappear. This creates a positive feedback loop;

insufficient sleep leads to Aβ deposition and Aβ plaques further

affect sleep (20). Kang et al. found that ISF Aβ levels were

correlated with wakefulness using in vivo microdialysis, and

they demonstrated that Aβ levels in the brain increased and

plaque deposition potentially increased in both mouse and

human sleep disorders (21). Ooms et al. demonstrated that Aβ1-

42 levels in the cerebrospinal fluid increased significantly in

healthy males during sleep deprivation, and this change was

reversed during good sleep at night, suggesting that short-

term sleep deprivation increases Aβ levels (22). Studies in

transgenic mice have shown that locus coeruleus degeneration

and impaired cortical norepinephrine neuron function could

increase the inflammatory response, which was related to

increased Aβ and memory deficits (23). Mammalian brain

control sleep and wakefulness through complex interactions

between subcortical neuromodulatory neurons in the brain

stem, midbrain, hypothalamus, and basal forebrain, thalamus,

and cortex drive behavioral, physiological, and electrocortical

sleep/wake states. Locus coeruleus is also a major brain region

among the wake-promoting monoaminergic and cholinergic

populations (24). It has also been demonstrated that chronic

sleep deficiency increases extracellular Aβ concentration in the

brains of model animals, while prolonged sleep reduces Aβ

plaque formation (25). Hence, sleep contributes to Aβ clearance,

while sleep deprivation promotes Aβ deposition, thus forming

the characteristic pathological changes of AD.

2.2. Sleep deficiency induces abnormal
tau protein phosphorylation

Tau protein is a protein that regulates and maintains

microtubule stability. Under normal conditions, the

phosphorylation/dephosphorylation level of tau protein is

balanced, which promotes microtubule aggregation and

maintains its stability (26). Tau hyperphosphorylation leads

to its accumulation and formation of pairs of double helix

structures (27). In the brains of AD patients, excessive tau

phosphorylation and aggregated NFT deposition results in

neuronal degeneration and apoptosis (28). NFTs are the primary

brain microstructural features of AD. It has been demonstrated

that adults with extreme sleep deficiency have increased tau

protein levels in the brain and cerebrospinal fluid (29). Evidence

from animal models indicates that changes in sleep-wake cycles

increase hyperphosphorylated tau protein levels in the brain

(30). Holth et al. showed that mouse ISF tau increased ∼90%

during normal wakefulness vs. sleep and ∼100% during sleep

deprivation. In humans, tau levels in the cerebrospinal fluid

also increased by more than 50% during sleep deprivation.

Thus, the sleep-wake cycle regulates tau level in the brain, and

sleep deprivation increases cerebral tau and its pathological

diffusion (31). It has been reported that sleep deficiency for two
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consecutive months can lead to >50% increase in insoluble Tau

in the brains of AD patients (32). It can be seen that insufficient

sleep can lead to increased tau protein levels, thereby increasing

the risk of AD. Thus, optimization of sleep-wake cycle is

important for the prevention and treatment of AD.

2.3. Sleep deficiency increases oxidative
stress in the brain

Oxidative stress refers to an imbalance between oxidation

and anti-oxidation in vivo. Oxidative reactions provide

an advantage by producing large numbers of oxidation

intermediates (33). Studies have shown that sleep deprivation

is linked to free radicals production, which induces oxidative

stress. Sleep protects the brain by reducing free radical

production (34). The oxidative stress response is influenced

by sleep deprivation through three mechanisms. First, sleep

deprivation causes abnormal energy metabolism and increases

the production of reactive oxygen species and other free

radicals. Second, it suppresses the antioxidant defense system.

Third, sleep deprivation causes endoplasmic reticulum stress,

which indirectly causes oxidative stress (35). In a study, the

concentration of glutathione was significantly reduced in rat

brains after 96 h of rapid eye movement sleep deprivation

compared to controls (36). Ramanathan et al. showed that long-

term sleep deprivation significantly decreased the antioxidant

activity of superoxide dismutase in rat hippocampi and

brainstems (37). Studies have also shown that reduced efficiency

of the antioxidant system and excessive production of free

radicals, including superoxide anion, hydrogen peroxide, and

nitric oxide, are involved in AD pathogenesis (38). The positive

correlation between amyloid plaque and lipid peroxidation

markers, 4-hydroxynonaldehyde and malondialdehyde (MDA),

supports this hypothesis (39). Therefore, insufficient sleep may

promote AD by increasing oxidative stress in the brain.

2.4. Sleep deficiency induces
neuroinflammation

Neuroinflammation occurs in all neurodegenerative diseases

and may be involved in their pathogenesis (40). Microglial cells

are involved in immune functions and internal environment

homeostasis in the brain. Excessive microglial activation releases

inflammatory factors and promotes neuroinflammation (41).

Long-term sleep deficiency can lead to chronic systemic low-

grade inflammation and is associated with various inflammatory

diseases (42). In sleep-related studies, limiting the sleep time

for healthy participants to 4 h/day for five consecutive days

increased plasma interleukin-6 and C-reactive protein levels

in most participants (43). This indicates that a non-specific

inflammatory response occurs with prolonged sleep deficiency.

It was also reported that serum tumor necrosis factor levels

decreased during sleep but increased after 2 days of normal

sleep, which indicates the regulation inflammatory cytokines

by sleep (44). Spangenberg et al. suggested that extracellular

Aβ accumulation may cause chronic neuroinflammation in AD

and proposed a microglia-mediated chronic neuroinflammation

model, which showed that Aβ binds to microglial toll-like

receptors during AD development (45). Initial microglial

activation develops into chronic inflammation due to continued

stimulation, leading to reduced synaptic remodeling and

neuronal death (46). Therefore, inflammation is hypothesized to

be a biologically plausible pathway linking sleep disturbance and

the risk of AD.

2.5. Sleep deficiency increases
glucocorticoid levels

Physiological glucocorticoids regulate growth, immunity,

andmetabolism (47).When the body encounters injury or stress,

excessive glucocorticoids can exert negative effects (48). Long-

term stress leads to the dysfunction of hypothalamic-pituitary-

adrenal (HPA) axis, resulting in a sustained increase in blood

glucocorticoid levels (49).

Clinical studies have shown that cortisol levels increase

in the early stages of AD (50). Excessive cortisol secretion

may promote neuronal loss and accelerate cognitive decline

and disease progression. A longitudinal study from Baltimore

suggests that elevated cortisol levels may increase the risk for

AD in the elderly (51). Animal experiments have shown that

long-term sleep deprivation reduces cell proliferation and adult

neurogenesis in rat dentate gyri by increasing glucocorticoids

(52). Therefore, increased glucocorticoid levels caused by

insufficient sleep lead to decreased cell proliferation. It has been

reported that HPA axis hyperactivity may be related to chronic

insomnia (53) and that sleep interruptions may be caused by

increased corticotropin-releasing hormone (54). Studies have

also shown that glucocorticoid receptor antagonists improve

sleep quality and may be used to treat chronic insomnia by

regulating HPA axis activity (55). Glucocorticoid upregulation

is also a typical pathological feature of these two conditions.

2.6. Sleep deficiency reduces synaptic
plasticity

Synapses form connections between neurons and are

essential for information transmission (56). Synaptic plasticity,

including structural and functional plasticity, is a primary

manifestation of neural plasticity, which reflects the variability

in synaptic morphology, function, and number (57). Sleep
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deficiency reduces synaptic plasticity, which impairs learning

and memory and increases the risk of cognitive impairment

in insomniac individuals (58). Studies have shown that

synaptic astrocytes promote the development and maturation

of dendritic spines and regulate synaptic plasticity. Sleep

deficiency reduces dendritic spine density by inhibiting

hippocampal astrocytes regulation, thereby affecting the normal

hippocampal function (59). A recent positron emission

tomography imaging study of AD patients found that sleep

deprivation significantly reduced hippocampal synaptic density

(60). Wang et al. demonstrated that chronic sleep deprivation

aggravated hippocampal synaptic plasticity damage in APP/PS1

double transgenic AD model mice (61). Thus, insufficient sleep

decreases the number of synapses in AD patients and impairs

signal transduction between neurons.

2.7. Sleep deficiency a�ects
brain-derived neurotrophic factor levels

Brain-derived neurotrophic factor (BDNF), a neurotrophic

protein synthesized in the brain, promotes neuronal growth,

development, survival, and differentiation (62). It is an

important regulator of learning and memory (63). BDNF

is down-regulated in both AD and sleep deficiency and is,

therefore, a common pathological feature.

Synaptic plasticity in p75 neurotrophin receptor gene

knock-out mice after sleep deprivation was found to depend on

the enhancement of BDNF pathway conduction (64). Increased

expression of BDNF, postsynaptic density protein 95, and

other synaptic plasticity-related proteins significantly alleviates

hippocampal memory and learning disorders caused by sleep

deficiency (65). Animal experiments have also shown that the

hippocampal BDNF expression increased 24 h after acute sleep

deprivation in mice (66). This was consistent with previous

studies that reported that short-term sleep deprivation in

humans up-regulated BDNF levels (67). In animal experiments,

BDNF consumption and loss increased the number and size of

cortical amyloid plaques and aggravated the neuropathological

changes in AD mice (68). Increased BDNF levels may also

reduce abnormal Aβ production (69).

3. Summary

A growing body of evidence has demonstrated a close

relationship between sleep deficiency and AD. Sleep deficiency

induces and aggravates AD development and progression

(15). Sleep insufficiency accelerates Aβ generation and

deposition, promotes Tau protein hyperphosphorylation,

and causes oxidative stress and inflammation in the

nervous system, thereby increasing the risk for AD. It

FIGURE 1

Mechanism summary of sleep deficiency and AD.

also reduces the number and transmission function of

synapses, increases glucocorticoid level, and decreases BDNF

levels, which further promotes AD (Figure 1). Therefore,

improving sleep quality may be effective in preventing

AD progression.

Sleep deficiency is increasingly viewed as an early event in

the course of AD. Understanding the mechanisms underlying

the effect of sleep deficiency on AD has the potential to optimize

efforts for the identification of targets for overcoming AD. This

review provides a new perspective for future research on AD,

it is that, improving sleep may become an effective means to

delay or reduce the occurrence of AD. Therefore, it may provide

new insights and entry for researchers to prevent and treat AD

by improving sleep in basic and clinical research. Given the

evidence in the paper that sleep deficiency is associated with

several risk factors for AD, further research is needed to explore

how to target improvement of sleep as a novel treatment and

even a prevention strategy for AD. We believe that further

research on the underlying mechanisms for the association of

sleep deficiency with AD will bring us new knowledge.
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