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Background and purpose: Sex di�erences in cerebral microbleeds (CMBs) are

not well-known. We aimed to assess the impact of sex on the progression

of CMBs.

Methods: The CHALLENGE (Comparison Study of Cilostazol and Aspirin on

Changes in Volume of Cerebral Small Vessel Disease White Matter Changes)

database was analyzed. Out of 256 subjects, 189 participants with a follow-up

brain scan were included in the analysis. The linear mixed-e�ect model was

used to compare the 2-year changes in the number of CMBs between men

and women.

Results: A total of 65 men and 124 women were analyzed. There were no

significant di�erences in the prevalence (70.8 vs. 71.8%; P = 1.000) and the

median [interquartile range (IQR)] number of total CMBs [1 (0–7) vs. 2 (0–7);

P = 0.810] at baseline between men and women. The median (IQR) increase

over 2 years in the number of CMBs was statistically higher in women than

in men [1 (0–2) vs. 0 (0–1), P = 0.026]. The multivariate linear mixed-e�ects

model showed that women had a significantly greater increase in the number

of total, deep, and lobar CMBs compared to men after adjusting for age and

the baseline number of CMBs [estimated log-transformed mean of di�erence

between women and men: 0.040 (P = 0.028) for total CMBs, 0.037 (P = 0.047)

for deep CMBs, and 0.047 (P = 0.009) for lobar CMBs].

Conclusion: The progression of CMB over 2 years was significantly greater in

women than in men.
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Introduction

Sex differences have been reported in various aspects of

cerebrovascular disease (CVD) (1–4). Accumulating data on

CVD-related sex differences can improve understanding and

planning of sex-specific care. Cerebral small vessel disease

(cSVD) is one of the most common forms of CVD and is

associated with stroke and dementia (5). In cSVD, sex differences

can also be expected, and some relevant studies have been

published (6–9). Previous studies have shown that white matter

hyperintensities (WMH), one of the representative markers of

cSVD, is associated with sex differences. For instance, women

tend to have larger volumes and faster progression of WMH

compared to men (6–9).

Cerebral microbleed (CMB) is also considered one of the

cSVD markers (10, 11). CMB is a clinically important marker

of a bleeding-prone microangiopathy that is associated with

hemorrhagic stroke and hemorrhagic complication following

antithrombotic therapy (12). CMBs are also known to be

associated with risks of cognitive decline and dementia (13).

However, sex differences in CMBs are not well-known. In this

study, we aimed to explore the impact of sex on the progression

of CMBs using longitudinal data from the CHALLENGE

(Comparison Study of Cilostazol and Aspirin on Changes

in Volume of Cerebral Small Vessel Disease White Matter

Changes) trial (14).

Methods

Study participants

This study is a sub-analysis of the CHALLENGE

(Clinicaltrials.gov; Unique identifier: NCT01932203) trial,

a multicenter, double-blind, randomized controlled trial that

enrolled participants aged 50–85 years with cSVD (14). The

diagnosis of cSVD was established based on the presence of at

least one lacune and moderate to severe WMH, according to the

modified Fazekas criteria for periventricular WMH with a cap

or rim of ≥5mm and deep WMH with a maximum diameter

of ≥10mm (15). The main objective of the trial was to compare

the effects of cilostazol and aspirin on the changes in WMH

volume over 2 years. Between July 2013 and August 2016, 282

participants were screened for eligibility, of whom 256 were

randomly assigned to the cilostazol or aspirin group. Out of

256 CHALLENGE subjects, 189 participants with a follow-up

magnetic resonance imaging (MRI) scan were included in our

analysis. The comparison between subjects with and without

a follow-up MRI scan is shown in Supplementary Table 1.

There were no significant differences between the two groups,

including age, sex, vascular risk factors and baseline CMBs.

The Institutional Review Boards of the participating centers

approved this study. The approval number of the affiliated center

TABLE 1 Comparison of baseline characteristics between men and

women.

Men

(n = 65)

Women

(n = 124)

P-value

Age, years 71.5 (7.8) 74.5 (5.9) 0.014

Hypertension 52 (80.0%) 104 (83.9%) 0.548

Diabetes 27 (41.5%) 46 (37.1%) 0.637

Dyslipidemia 33 (50.8%) 60 (48.4%) 0.759

Current Smoking 10 (15.4%) 2 (1.6%) < 0.001

Body mass index, kg/m2 24.2 (2.7) 25.0 (3.2) 0.085

Systolic blood pressure,

mmHg

130.8 (14.6) 129.3 (12.6) 0.464

Diastolic blood

pressure, mmHg

73.8 (9.9) 73.8 (9.5) 0.986

Apolipoprotein E4

carrier

19 (29.2%) 30 (24.2%) 0.602

Apolipoprotein E2

carrier

6 (9.2%) 13 (10.5%) 0.804

Antiplatelet medication 0.542

Aspirin 33 (50.8%) 69 (55.6%)

Cilostazol 32 (49.2%) 55 (44.4%)

Follow-up, years 1.99

(1.98–2.02)

2.00

(1.98–2.02)

0.998

Baseline cSVDmarkers

WMH volume, mL 34.5

(20.0–47.7)

34.8

(26.5–50.0)

0.262

Number of lacunes 8 (4–13) 5 (2–9) 0.014

Presence of CMBs 46 (70.8%) 89 (71.8%) 1.000

Number of CMBs

Deep 1 (0–4) 1 (0–4.5) 0.291

Lobar 1 (0–3) 0 (0–2) 0.407

Total 1 (0–7) 2 (0–7) 0.810

The values are presented as percentages (%), mean (SD), or median (IQR). CMB, cerebral

microbleed; cSVD, cerebral small vessel disease; IQR, interquartile range; SD, standard

deviation; WMH, white matter hyperintensities.

of the corresponding author (SC) was 2013-03-006. Written

informed consent was obtained from all potential participants

prior to enrollment.

Imaging markers

Brain MRI data including axial T2∗-weighted gradient-echo

sequence (4-mm slice thickness with no interslice gap) were

acquired using a 3.0 Tesla MR scanner. The same scanner and

the same sequence were used for the baseline and the follow-

up MRI.

CMBs were defined as lesions with a diameter of ≤10mm

and rated using the Microbleed Anatomical Rating Scale
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TABLE 2 Comparison of longitudinal changes in the number of cerebral microbleeds between men and women.

Changes in the number of CMBs over the 2-year follow-up period (log-transformed)

Men Women Differences between women and men

(men as a reference)

Estimated mean (SE) Estimated mean (SE) Estimated mean (SE) P-value

Total Model 1* 0.056 (0.013) 0.096 (0.011) 0.040 (0.018) 0.028

Model 2† 0.056 (0.013) 0.095 (0.012) 0.039 (0.018) 0.036

Deep Model 1* 0.022 (0.015) 0.059 (0.011) 0.037 (0.018) 0.047

Model 2† 0.022 (0.016) 0.062 (0.011) 0.040 (0.019) 0.038

Lobar Model 1* 0.034 (0.013) 0.082 (0.011) 0.047 (0.018) 0.009

Model 2† 0.034 (0.013) 0.080 (0.011) 0.046 (0.018) 0.012

CMBs, cerebral microbleeds; SE, Standard error. *Results of a linear mixed model adjusted for the baseline number of CMBs and age. †Results of a linear mixed model adjusted for the

baseline number of CMBs, age, hypertension, diabetes, dyslipidemia, current smoking, body mass index, apolipoprotein E4 and E2, and antiplatelet agents (cilostazol vs. aspirin).

(MARS) (16). Two experienced neurologists, blinded to clinical

information, counted the number of CMBs on gradient-echo

MRI images. The Pearson’s correlation coefficient of agreement

on the number of CMBs between the two neurologists was

0.958 (95% confidence interval 0.809–0.989; P < 0.001). The

two neurologists reached a consensus after discussion in cases

with initial disagreement. CMBs were categorized as deep (basal

ganglia, thalamus, internal/external capsule, corpus callosum,

deep/periventricular white matter, and brainstem) and lobar

(frontal, parietal, temporal, occipital, and insular cortices).

Statistical analysis

The baseline characteristics were compared between men

and women using the chi-square test for categorical variables

and the Student’s t-test or the Mann–Whitney U-test for

continuous variables. The change in the number of CMBs and

the proportion of patients with CMB progression (defined as an

increase in the number of CMBs ≥1) during the 2-year follow-

up period were compared using the Mann–Whitney U-test and

the chi-square test.

We used the linear mixed-effects model with a random

subject effect to estimate and compare changes in the number

of CMBs over 2 years. To assess the trend in each group, linear

mixed-model analyses were performed separately using time

(baseline and 2-year follow-up visit) as a predictor. To determine

the impact of sex on the longitudinal changes in CMB counts,

we explored the interaction between sex and time (sex × time)

adjusted for age and the number of CMBs at baseline (model

1). Model 2 was adjusted for the variables in model 1 and

hypertension (HTN), diabetes, dyslipidemia, current smoking,

body mass index (BMI), apolipoproteins E4 (APOE4) and E2

(APOE2), and antiplatelet medication (aspirin vs. cilostazol).

The number of CMBs was logarithmically transformed due to

a skewed distribution. Before the logarithmic transformation, a

FIGURE 1

E�ect of sex on longitudinal changes in the number of cerebral

microbleeds (CMBs) during the 2-year follow-up period.

Predicted mean values for the number of CMBs

(log-transformed for normality) in women (solid line) and men

(dotted line) from the linear mixed-e�ects model. Analysis

controlled for age and the baseline number of CMBs. Error bars

indicate a 95% confidence interval.

constant of 1 was added to all values to overcome the problem of

zero values.

All statistical analyses were performed using SPSS version

23.0 (IBM SPSS Inc., USA). Two-tailed P-values were reported,

and P < 0.05 was considered statistically significant.

Results

A total of 65 men and 124 women were included in

the analysis. The baseline characteristics of men and women

are shown in Table 1. Compared to men, women were older:
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the mean age for women and men was 74.5 and 71.5 years,

respectively. Men were more likely than women to be cigarette

smokers at present (15.4 vs. 1.6%; P < 0.001). There were no

significant differences between the two groups in other vascular

risk factors, the proportion of APOE4 and APOE2 carriers,

the antiplatelet medications administered (aspirin vs. cilostazol),

and follow up duration. Regarding cSVD markers at baseline,

men had a higher median [interquartile range (IQR)] number

of lacunes than women [8 (4–13) vs. 5 (2–9); P = 0.014]. There

were no significant differences in the total WMH volume, as well

as in the prevalence (70.8 vs. 71.8%; P= 1.000) or median (IQR)

number of CMBs [1 (0–7) vs. 2 (0–7); P = 0.810] at baseline.

After 2 years of follow-up, the proportion of patients with

CMBprogression (defined as an increase in the number of CMBs

by ≥ 1) tended to be higher in women than in men [54.8%

(68/124) vs. 40.0% (26/65); P = 0.066]. The median (IQR)

increase in the number of CMBs over 2 years was statistically

higher in women than in men [1 (0–2) vs. 0 (0–1), P = 0.026].

In the linear mixed-effect model, which tested the sex x time

interaction effect on changes in CMB counts, women had a

much greater increase in CMB counts than men after adjusting

for age and the baseline number of CMBs (model 1), regardless

of the location of CMBs (deep and lobar; Table 2). Model 2,

in which HTN, diabetes, dyslipidemia, current smoking, BMI,

APOE4, APOE2, and antiplatelet medications were adjusted in

addition to model 1 variables, showed the same result (Table 2).

Figure 1 shows the estimated effect of sex on longitudinal

changes in the number of CMBs over a 2-year follow-up period.

Discussion

In this longitudinal study, we compared the progression of

CMBs in men and women. When interpreting the results of our

study, it is important to remember that our sample consisted of

fairly old individuals with relatively severe pre-existing cSVD.

For this reason, the proportion of patients with baseline CMB

was much higher in our study (over 70% in both men and

women) compared to studies that enrolled participants from the

general population (17, 18). It is well-known that the baseline

burden of cSVD is closely related to the progression of cSVD

(19). Therefore, the progression of CMBs in our patient sample

may be higher than that in the general population.

Our major finding was that women showed a much

greater increase in CMB counts than men, although there

was no significant difference in the degree of CMBs at

baseline. This difference between the sexes persisted even after

adjusting for the baseline burden and various risk factors.

The cause behind the more pronounced CMB progression

in women than in men is unclear; however, there are some

possible explanations. The formation of CMBs is considered a

microangiopathic process. Structural weakening and endothelial

dysfunction of the microvasculature as a result of oxidative

stress, inflammation, and degenerative changes, increased pulse

pressure on the microvasculature due to arterial stiffening,

as well as impaired myogenic autoregulatory protection of

the cerebral microvasculature are thought to be the potential

mechanisms of CMB formation (20, 21). Previous studies have

demonstrated sex differences in the structure and function of

blood vessels, including myogenic reactivity and endothelial

function mainly by the protective role of female sex hormone,

particularly estrogen (22, 23). However, postmenopausal women

may be more vulnerable to CMB formation due to reduced

protective effects of estrogen. Regarding WMH, another

representative marker of cSVD along with CMB, previous

studies have also shown that elderly women have a faster

progression of WMH compared to elderly men (9, 19). It might

be explained in a similar fashion that generally women have

a lower prevalence of cardiovascular disease than men before

menopause, however, after menopause, this trend is reversed

(24). The age range of women in our study was 56–85 years,

and it was very likely that these patients were in menopause. The

results could be different if the comparative analysis is conducted

in younger patients.

In our study, women showed a more pronounced increase

in both deep and lobar CMBs. The location and distribution

of CMBs are considered to reflect their underlying pathology

(25). Cerebrovascular risk factors, including HTN, mainly cause

deep CMBs, which reflects the involvement of deep perforating

arteries (25). For lobar CMBs, the etiology is deemed similar to

that of deep CMBs but only in cases of mixed CMBs, where

lobar CMBs co-occur with deep CMBs (11, 26, 27). On the

other hand, cases of strictly lobar CMBs are considered to be

caused by cerebral amyloid angiopathy (CAA), in which amyloid

deposition occurs in cortical/leptomeningeal vessels (28). We

speculated that most CMBs in our patients were likely caused

by vascular risk factors rather than CAA, since we included

only patients with underlying lacunes and moderate to severe

deep WMHs and our patients had high prevalence of HTN over

80%. Furthermore, none of our patients met the Boston criteria

as possible or probable CAA (29). However, the possibility of

concomitant CAA in our patients cannot be completely ruled

out. In animal models of CAA, female mice had a significantly

higher burden of CMBs than males (30). Further research

and data collection, including those on amyloid positivity, are

needed to identify sex differences in the progression of CMBs

based on their underlying pathology.

The limitations of our study should be noted. The

CHALLENGE trial, which formed the foundation for our

analysis, was not designed to explore the differences between

men and women, and there was a difference in the proportion

of men and women initially enrolled in the trial. Although

age and current smoking were adjusted for in the multivariate

analysis, women were older than men and men were more likely

to smoke than women in our study. Our patient group is not

representative of the general population. As mentioned earlier,

there is a possibility that the results may differ in younger people

who have less burden of underlying cSVD and vascular risk
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factors. It should also be noted that all of our patients were taking

antiplatelet agents (aspirin or cilostazol) during the follow-up

period. Finally, the overall sample size of this study was relatively

small. A study with a larger sample size and a more extended

follow-up period may be needed to validate our findings.

Conclusion

In this prospective study, women showed a much greater

increase in CMB counts over 2 years than men. Our

study highlights sex differences in the progression of CMBs,

and understanding these sex differences may inform the

development of sex-specific care strategies.
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