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Epidemiological, clinical, and radiological studies have provided insights into

the phenomenology and biological basis of cognitive impairment in COVID-

19 survivors. Furthermore, its association with biomarkers associated with

neuroinflammation and neurodegeneration supports the notion that it is a

distinct aspect of LongCOVID syndrome with specific underlying biology.

Accounting for the latter, translational studies on SARS-CoV-2’s interactions

with its hosts have provided evidence on type I interferon dysregulation, which

is seen in neuroinflammatory and neurodegenerative diseases. To date, studies

attempting to describe this overlap have only described commonmechanisms.

In this manuscript, we attempt to propose a mechanistic model based on

the host-virus interaction hypothesis. We discuss the molecular basis for a

SARS-CoV-2-associated neurocognitive disorder (SAND) focusing on specific

genes and pathways with potential mechanistic implications, several of which

have been predicted by Vavougios and their research group. Furthermore,

our hypothesis links translational evidence on interferon-responsive gene

perturbations introduced by SARS-CoV-2 and known dysregulated pathways

in dementia. Discussion emphasizes the crosstalk between central and

peripheral immunity via danger-associated molecular patterns in inducing

SAND’s emergence in the absence of neuroinfection. Finally, we outline

approaches to identifying targets that are both testable and druggable, and

could serve in the design of future clinical and translational studies.
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Introduction

Cognitive impairment secondary to COVID-19 is now

a recognized, health concern. It emerges as part of the

LongCOVID spectrum, without a clearly defined cause (1).

Clinical, pathological and radiological manifestations of this

SARS-CoV-2 associated neurocognitive disorder (SAND) have

outlined its significant overlap with neurodegenerative dementia

(2), which extends to biomarkers in some individuals to include

biomarkers consistent with neurodegenerative diseases such as

Alzheimer’s disease (AD), including beta amyloid oligomers

(Aβ), tau, neurofilament light chain (Nfl) and others (3, 4).

Towards this end, several recent translational studies have

confirmed overlap on themolecular level of contributing biology

between COVID-19 and AD disease, with innate immunity at

its epicenter (5–12). Collectively, these studies point toward

type I interferon signaling, a pathway contested by SARS-CoV-2

(13), as the potential culprit. Furthermore, interferon responsive

genes such as those in the ISG, OAS, and IFITM families,

dysregulated by SARS-CoV-2, have recently and independently

emerged as key players in AD (9, 14, 15). To date, studies

attempting to summarize the evidence on this overlap have not

attempted to explore their synthesis towards an etiopathogenic

mechanism emerging from host-virus interactions.

This review aims to outline emerging evidence on the genes

and pathways that could define SAND on the molecular level.

We aim to go beyond a presentation of potential mechanisms,

presenting them instead through the evolution of host-virus

interactions, the mobilization of innate immunity, and the

consequences of both.

The viral lifecycle: Kinase
recruitment and tauopathy

The first specificmechanistic indication that the intracellular

lifecycle of SARS-CoV-2 may be linked with neurodegeneration,

and specifically with tauopathies, came from a brain organoid

infection model; SARS-CoV-2 neuroinfection was quiescent,

causing neuronal apoptosis with hyperphosphorylated tau as

its hallmark (16). A possible explanation for these findings is

that SARS-CoV-2-dependent perturbations in kinases such as

FYN (10) and GSK3 (17, 18) during their recruitment as part

of the virus’ lifecycle could escalate to increasing downstream

tau hyperphosphorylation and oligomerization, as seen in other

RNA viruses, i.e. DENV (19) and HIV-1 (20). In the setting of

the human central nervous system (CNS), the mechanism of

tau hyperphosphorylation and oligomerization, however, may

not require subsequent de novo infection. Rather, increasing

evidence suggests that transsynaptic spread of tau (21, 22),

amyloid oligomers (8), and viral particles via extracellular

vesicles (5) may sustain a neuroinflammatory process from an

infected hub and this may evolve to or enhance pre-existing

neurodegeneration in its connected network (23, 24).

The combination of anosmia, cognitive impairment, and

limbic degeneration in some individuals suggests a link between

SAND and neurodegenerative dementia (25) and with tau

pathology specifically (26). In humans, significant differences in

peripheral markers of age-related neurodegeneration, including

specific forms of phosphorylated tau or p-tau have been

identified both in COVID-19 patients (27) and survivors in the

post-COVID-19 setting over 6 months follow up (28). Notably,

these changes appear linked with proinflammatory cytokines,

however not all data show that these are persistent (3) and there

is still much to learn about the biological underpinnings that

may continue to contribute.

Taken together, both phenomenology, biomarkers, and

underlying genes potentially recruited by SARS-CoV-2 indicate

that tauopathy may be a plausible mechanism by which the

CNS is affected. Notably, the transmission of tau seeds via

peripheral sites to the CNS via exosomes and their neurotoxicity

has been previously observed in P. Aeruginosa pneumonia

(29), furthermore indicating that systemic infection may affect

the CNS even in the absence of neuroinfection. Considering

that tau can activate type I interferon signaling as seen in

neurodegenerative disease in the absence of infection (30),

tau transmission during SARS-CoV-2 infection could be seen

as a canonical alarmin/pathogen-associated molecular pattern

(PAMP) (31–33), which can readily lead to a detriment for the

recipient cell.

The host response: Type I interferon
response, amyloid beta, and cognitive
impairment

Type I interferon (IFN-1) perturbations are an established

hallmark of Alzheimer’s disease, mediating neuroinflammatory

synapse loss (14, 34). During SARS-CoV-2 infection, IFN-I

pathways are among the first activated pathways between host

and pathogen, a finding confirmed by multiple translational

studies (13, 35). From then on, the interaction between IFN-

I signaling, a canonical response to infection (36), and SARS-

CoV-2’s immunoevasion stratagems are highly complex (37).

As a primary event, SARS-CoV-2’s lifecycle may be effectively

disrupted by a pre-established IFN-I cellular milieu (38). On

the contrary, delayed type I responses in the nasal epithelial

have been shown to enhance SARS-CoV-2 permissiveness (39).

Correspondingly, inborn errors in IFN-I may render carriers

specifically vulnerable to SARS-CoV-2, as they correspond to

differentially perturbed IFN-I responses (40, 41). Adding to the

complexity of this interaction is SARS-CoV-2’s armamentarium

of proteins that target IFN-I responses (42). Notably, these same

targets of virus-host protein interactions also play a central
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role in neuroinflammation and neurodegeneration, for example

in TBK1 (42, 43), KPNA2/Karyopherin (44, 45), and alpha-

synuclein, among others.

Further dissection of the IFN-I signalosome reveals specific

genes that are key players in both innate immune responses and

AD. In recently published work by Vavougios and colleagues

(46), disrupted proteostasis and trained immunity pathways

were among overlapping molecular pathways that are common

across different tissues in AD. This work suggested that IFN-

1 has a specific relationship with unique signaling cascades,

focusing on the IFN response to antiviral effectors, such as

the interferon-inducible transmembrane (IFITM) and the 2
′

-

5
′

-oligoadenylate synthase (OAS) family genes in both AD

and COVID-19 (15). The specific relationship of perturbed

IFN-I signaling to both AD and COVID-19, focuses on

interferon responsive antiviral effectors, such as IFITMs and

OASs, which are interferon stimulated (ISGs) gene families that

provide cellular-level defense against intracellular pathogens.

Dysfunctions of IFITMs and OASs on a pathway level not

only have the potential to abrogate antiviral activity, but several

studies suggest this dysfunction enables these factors to act as

pro-viral factors (47–49). Vavougios and colleagues found that

IFN-I signatures containing members of these ISG families are

common in neurons, peripheral immune cells, and microglia

affected by COVID-19 or by AD (10, 15, 33, 50, 51).

The relationship of both gene families, as well as other

ISGs such as MX and IFITs (10, 15), and IFN-I signaling as

a nexus for both COVID-19 and AD has been corroborated

by others in various experimental and model system settings

(6, 7, 9, 11–13, 52–54). Gamma secretase activity in response to

viral infection has also been shown to be functionally linked with

type I and type II interferon responses in peripheral immune

cells; gamma secretase is involved in the production of the

beta-amyloid protein (55). Lastly, IFN1 signaling in AD-related

microglia was shown to upregulate IFITM3, which in turn

modulates gamma secretase processing. The antigenic stimulus

for this cascade of molecular events was nucleic acid (NA)-

enriched neuritic plaques, and notably, microglia may not then

distinguish viral from endogenous NAs (14, 49). This suggests

that as an innate immunity protein, IFITM3 may canonically

intercept SARS-CoV-2 (56), with its upregulation concomitantly

building up to both increased beta amyloid production (14) and

fed-forward IFN-I upregulation (34). Notably, such interactions

have also been observed with the structurally similar IFITM2 in

modulating the host’s type I interferon signaling.

Taken together, these events show that IFN-I signaling

dysregulation secondary to SARS-CoV-2 infection may be

relayed by endothelial cells (7, 11, 54) to microglia, priming

them (57) and may potentially result in upregulation of IFITMs

and increased presence of beta amyloid production (57). If this

priming is successful in restricting SARS-CoV-2, as heralded

by S1 – Aβ1−42 interactions (58), neuroinflammation but not

neuroinvasion would be expected to predominate. Notably,

S1 itself has been shown to function as a danger-associated

molecular pattern (DAMP) for microglia, furthermore inducing

neuroinflammatory phenotypes (32, 57), indicating that Roy et

al.’s (49). HSV-1 model of AD pathogenesis may also provide

some context to consider for SARS-CoV-2 (59). Furthermore,

in the same model, the transmission of tau seeds as observed

elsewhere (29) would also fit our current understanding of

tau and Aβ as Type I interferon stimulants, as observed in

neurodegenerative disease (30).

SARS-CoV-2 associated neurocognitive
disorder as innate immunity’s pyrrhic
victory

Regardless of the specific pathogen or PAMP (33) involved,

IFN1 signaling canonically induced as an innate immunity

response is a firmly recognized inducer of cognitive impairment

(34, 55, 60). Specific molecular events that may account for

this relationship involve increased beta amyloid production,

proinflammatory microglial activation, and impaired neuronal

homeostasis (14, 34, 49, 60). SARS-CoV-2 introduction to this

system is an immunogenic challenge with potential advanced

capabilities to modulate IFN-I signaling, subverting it to its

favor processes that enable evasion of the immune system (13).

An example of this proposed mechanism can be found in

the amyloidogenic interaction between N and alpha-synuclein

(aSyn), where N functions as a scaffold for aSyn aggregation (61).

The abrogation of aSyn would arrest its function as a canonical,

neuron-specific IFN-I modulator (62); the aggregation of aSyn

however would in turn activate IFN-I by a (presumably) non-

canonical pathway, observed in neurodegenerative disease (63).

This sterile proinflammatory signal could be relayed centrally

from infected microvascular endothelia or olfactory epithelial

cells, to be intercepted primarily by microglia (7, 11, 57).

Aside from aSyn specifically, interactions between SARS-CoV-2

proteins and other proteopathic seeds. Notably, as per a previous

model proposed by Vavougios et al. (15), the neuroanatomical

premise of this concept is supported by imaging data indicating

tandem degeneration of entorhinal cortex and hippocampi

(25) and murine models of intranasal administration of

SARS-CoV-2 that develop late onset proteinopathy, even

after viral clearance (57, 59). Furthermore, our model’s main

premise, i.e. the capability of SARS-CoV-2 protein fragments to

induce amyloidogenesis and subsequent neuroinflammation is

confirmed in at least one in vitromodel (64).

Lytic replication or multiple infected sites may not

be required for cognitive impairment to manifest, along

with molecular events similar to those of neurodegenerative

dementias. Successful restriction via IFN-I and feed-forward

signaling is still impacting the CNS, fully capable of establishing

neuroinflammation, proteinopathy, and microgliosis in the

absence of a pathogen (57, 59, 64) building up to synapse

loss (34, 49). From an immune perspective, however, this
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destruction proximal to an infected site successfully walls off

an invading pathogen, being informed by both IFN-I and

exosomal tau, here functioning as evidence of viral latency

(16, 20, 21). Of note, once initiated, the overproduction of

beta amyloid was shown to enhance the capability of native

molecules to activate microglia and initiate IFN-I cascades (49).

This notion indicates that both different pathogens targeting

IFN-I (55), Danger-associated molecular signals (DAMPs) (32)

and self-DAMPs (34, 49), accumulated by failing organelles

and defects in proteostasis and mitochondrial homeostasis, may

readily activate this pathogenetic mechanism in the absence of

an exogenous immune challenge. Considering that IFN-I may

be targeted by the viral lifecycle and successfully suppressed,

second-order or non-canonical as described herein activation

of IFN-I by the very same “captured” molecules (i.e. aSyn, tau,

Aβ) would serve as a failsafe. Notably, the sterile enhancement

of microglial IFN-I cascades has been previously shown (34,

49, 62, 63) indicating that their enhancement in the setting

of SARS-CoV-2 (61, 65) infections may require proteins or

DAMPs rather than a complete virion—a concept that would

account for the persistence of neuroinflammation past virus

clearance (59).

Conclusions

The SARS-CoV-2 pandemic has provided a forum to

better understand the contributions of recurrent and agnostic

immunity in response to some pathogen exposure rather than

specific exposure and its relationship to AD-specific biology

(22). AD is a complex disease, and likely has a number of factors

that contribute to later life risk. There are many outstanding

questions and in future studies, SAND-related contributions

should be considered within the potential limitations.

As a standalone syndrome, the SARS-CoV-2 associated

neurocognitive disorder (SAND) poses an interesting question:

is the salience of COVID-19, increased population exposure, and

potent induction of IFN-I the true culprit? Prior to SARS-CoV-

2, HIV-1 and its Tat protein had been shown to intersect with

both tau and beta-amyloid and potentially engage with the AD

molecular pathology (20), and a correspondingHIV-1 associated

neurocognitive dysfunction (HAND) associated with infection.

SAND, much like HAND before it, indicates the long-standing

impact of a pathogen may be as impactful for the individual as

the native infection, when inflammation is either unmitigated,

self-propagating, or both.

While these emerging links between neuroinflammation,

neurodegeneration, and COVID-19 represent a growing body of

literature, it is important to underscore that the natural history

of cognitive, functional, and behavioral defects in individuals

experiencing long-term neurological sequelae is unknown.

There are many unanswered questions about the linkage, and

it is important to understand whether translational models

and clinical radiological entities represent a clear, mechanistic

continuum. Furthermore, it is not yet known if COVID-19’s

effects on cognition represent lasting or transient impairments.

It is also not known why some individuals experience long-

term impact on their cognition, function, and behavior, while

others do not. COVID-19’s effect on cognition should also be

consideredmultifactorial, considering its implication in vascular

damage to the brain and sleep-related complaints affecting

survivors (66). Furthermore, the introduction of vaccines may

provide information on how these biological underpinnings

interact with one another.

In this review, we offer a potential model for SAND

following the trail of host-virus interactions and combining it

with the dual roles of proteopathic seeds as DAMPs/PAMPs and

IFN-I signaling and propose a framework to further extend these

findings to linkages with neurodegenerative disease. Building

upon previous works from Vavougios et al. and others, this

manuscript outlines a potential opportunity to formulate a

working, testable hypothesis on SAND with implications on

cognitive impairment and other dementias. Furthermore, as

we have previously indicated, we outline targets that are both

testable and druggable (51), and could serve in the design of

future clinical and translational studies.

The global research and clinical communities must continue

to work together to uncover the answers to these, as well as

other, questions on the intersection of COVID-19, the brain,

and neurodegeneration.
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