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General anesthetics-induced neurotoxicity and cognitive impairment in

developing brains have become one of the current research hotspots in

the medical science community. The underlying mechanisms are complex

and involve various related molecular signaling pathways, cell mediators,

autophagy, and other pathological processes. However, few drugs can be

directly used to treat neurotoxicity and cognitive impairment caused by general

anesthetics in clinical practice. This article reviews the molecular mechanism

of general anesthesia-induced neurotoxicity and cognitive impairment in the

neonatal brain after surgery in the hope of providing critical references for the

treatments of clinical diseases.
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Introduction

There is increasing evidence that exposure to general anesthesia in early life can

lead to apoptosis of developing nerve cells, which may eventually develop into cognitive

dysfunction (1). Infants and young children at critical stages of brain development are

at significantly increased risk of postoperative neurotoxicity and cognitive impairment

when using general anesthetics for surgical procedures. How to reduce and deal with

this risk is an important issue faced by clinicians. The key to solving this problem

is to clarify the related mechanisms of general anesthetics-induced neurotoxicity and

cognitive impairment in the developing brain. This article reviews the research progress

on themolecularmechanisms of general anesthetics-induced neurotoxicity and cognitive

impairment. A summary of relevant evidence studies is presented in Table 1.
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TABLE 1 Related studies on neurotoxicity of common

general anesthetics.

General

anesthetics

Related molecular studies

Inhalation anesthetics

Halothane Increased inflammatory reaction of brain (91)

Nitrous oxide Vitamin B12 deficiency (92, 93)

Sevoflurane Iron overload (94, 95), Decreased number of excitatory

synapses and protein levels (14, 31)

Isoflurane Ferroptosis (96, 97), Neuronal cell cycle activation (98),

Migration of dentate gyrus granule cells (99, 100)

Desflurane Decrease synaptic integrity (101), Decreased

NMDAR-mediated excitatory postsynaptic current (102)

Intravenous anesthetics

Ketamine Iron overload (95), Increased NMDAR at extrasynaptic

sites (103–105)

Propofol Altered synaptic plasticity (106, 107), Mitochondrial

damage in hippocampal neurons (108)

Related signaling pathways

HIPK2/Akt/mTOR signaling pathway

Homeodomain interacting protein kinase 2 (HIPK2),

protein kinase B (PKB/ Akt), mammalian target of rapamycin

(mTOR), are serine-threonine protein kinases, which can

be activated or inhibited by growth factors, cellular energy

status, and nutrients through substrate phosphorylation and

are involved in apoptosis, autophagy, and synaptic plasticity.

Meanwhile, it may be related to the mechanism of neurotoxicity

of the developing brain induced by general anesthetics.

General anesthetics can promote the apoptosis of neural cells

in the newborn brain by activating HIPK2 and promoting

its expression.

It has been reported that upregulation of HIPK2, Akt, and

mTOR signaling can be detected in apoptotic neurons in mice

exposed to sevoflurane, and that inhibition of this signaling

promotes neuronal apoptosis in the hippocampus of newborn

brains, protects developing hippocampal neurons, and reduces

their apoptosis (2). Because HIPK2 itself can promote cell

apoptosis, activating HIPK2 can promote the activation of the

Akt/mTOR signaling pathway that inhibits neuronal apoptosis,

which may be caused by negative feedback regulation of the

body, and this feedback mechanism needs further verification

by researchers. Xu et al. found that the up-regulation of mTOR

is not only found in sevoflurane-induced neuronal cells but

also in the induction of other general anesthetics such as

isoflurane and propofol (3, 4). The mechanisms by which

the HIPK2/Akt/mTOR pathway contributes to neurotoxicity of

developing brains are likely to occur in all commonly used

general anesthetics, and in the last few years, new advances

have been made in the study of their functions and regulatory

mechanisms, but the importance of these signals and the

background mechanisms remain to be confirmed, which points

out the direction for medical research and requires further

exploration of medical research.

PI3K/Akt signaling pathway

As a proto-oncogene, Akt can regulate various cellular

functions, including several processes such as cell metabolism,

growth, proliferation, survival, and transcription. As a factor

capable of activating the amplification of the Akt signaling

cascade, Phosphatidylinositol 3-kinase (PI3K) is an intracellular

phosphoinositide kinase. When the upstream signal comes, it

couples to Akt through the interaction between subunits and

then activates its downstream signaling molecule, mTOR, to

inhibit apoptosis (5). Akt can deregulate cell survival through

pro-apoptotic signals that directly interfere with the production

of transcription factors, such as Forkhead box O (FoxOs).

Studies have shown that the Akt/FoxO1 signaling pathway

mediates sevoflurane-induced neuronal apoptosis in neonatal

mice (6), thereby, activating this pathway can inhibit apoptosis

of neuronal cells in neonatal brains (7, 8). In addition, activation

of the PI3K/Akt/mTOR signaling pathway can improve general

anesthetic-induced neuroinflammation in rats and reduce the

neurotoxic effect of general anesthetics (9, 10). Nowadays,

researches on the early potential treatment of the PI3K/Akt

signaling pathway by general anesthetics for their neurotoxic

effects in the developing brain have been gradually unfolded.

Studies have found that both Panax Notoginseng Saponins

and Hemin can inhibit neuronal apoptosis by activating the

Akt signaling pathway (11, 12), which in turn attenuates the

neurotoxicity and cognitive impairment caused by general

anesthetics. In addition, Atractylenolide III has also been shown

to produce the same benefits in the same way, that is, activated

the PI3K/Akt/mTOR signaling pathway, which can inhibit

neuronal apoptosis (13). It follows that drugs targeting this

signaling pathway could be useful in treating the neurotoxicity

that results from general anesthesia in the newborn brain.

HIPK2/JNKs/c-Jun signaling pathway

c-Jun N-terminal kinases (JNKs) belong to the mitogen-

activated protein kinase family (MAPK) and are involved in

apoptosis. The study found that JNKs and their downstream

c-Jun were involved in the neurotoxicity of sevoflurane in the

neonatal brain; meanwhile, up-regulation of HIPK2, JNK, and

c-Jun was observed in hippocampal neurons of mice exposed

to sevoflurane, continued until adulthood (14), inhibition of

JNK found that mice can restore normal neurodevelopment
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and cognitive function (14, 15), but activation of this signaling

pathway can induce neuronal apoptosis (16), which may be

linked to its upregulation of Connexin-43, and its increase

can lead to cognitive dysfunction (17). And when JNK

antagonists were given to these newborn mice, it was found

that the expression of HIPK2 was not affected (14), so

JNKs/c-Jun signaling pathway may be directly induced by

general anesthetics, but not related to the presence of HIPK2.

That is to say, as a tumor suppressor gene, HIPK2 can

increase independently and lead to neuronal apoptosis when

stimulated by general anesthetics, and play a promoting role

in the JNKs/c-Jun signaling pathway. Therefore, inhibition of

the HIPK2/JNK/c-Jun signaling pathway has specific guiding

significance for treating neonatal brain neurotoxicity and

cognitive impairment, and it can be used as a potential

target to treat general anesthetic-induced neurotoxicity and

cognitive impairment. In addition, this pathway may also

be involved in isoflurane-induced apoptosis of neonatal rat

hippocampal neurons (18, 19). However, whether it is involved

in other mechanisms of general anesthetic neurotoxicity

requires further confirmation.

JAK/STAT signaling pathway

Interferon, interleukin, growth factors, and other chemical

messengers activate Janus Kinase (JAK) and phosphorylate

it, and combine with downstream transcription factor that

is signal transducer and activator of transcription (STAT) to

initiate transcription, which in turn affects cell proliferation,

differentiation, inflammation, and so on. Studies have found that

sevoflurane may induce neurotoxicity, particularly in response

to damage to the astrocytes in the hippocampus of neonatal

rats by inactivating the JAK/STAT signaling pathway (20).

Sevoflurane exposure can lead to an increase in the release of

proinflammatory factors (21), which in turn leads to widespread

inflammation in the brain, and targeting the activation of

the JAK/STAT signaling pathway can effectively inhibit the

occurrence of inflammation in the nervous system (22–24),

thus promoting the expression of this pathway or inhibiting

its inactivation has an important guiding significance for the

treatment of neurotoxicity caused by general anesthetics.

AMPK signaling pathway

Activation of adenylate-activated protein kinase (AMPK)

often appears as a heterotrimeric complex, and its activationmay

be induced by the inhibition of respiration and hemodynamic

effects of general anesthetics, after which it is involved in

regulating processes such as cell proliferation and organismal

metabolism by activating downstream signals (such as FoxO3a,

Nrf2, etc.). Studies have found that AMPK affects the activation

status of microglia and neuronal cell survival in the adult and

developing brain (25), and activation of the AMPK signaling

pathway may inhibit the occurrence of neuroinflammation

(26, 27) and play a neuroprotective role. In addition, Zhang

et al. found that sevoflurane-induced neuronal apoptosis and

hindered proliferation are related to the inactivation of the

AMPK/FoxO3a signaling pathway (28), so up-regulation of

this signaling pathway may attenuate this neurotoxicity and

play a neuroprotective effect. Dai et al. found that sevoflurane-

induced microglial inflammatory injury and neurotoxicity were

alleviated by activating (29). Thus, up-regulation of the AMPK

signaling pathway may become a potential therapeutic approach

for the current treatment of general anesthetics.

In conclusion, the activation of the Akt/mTOR signaling

pathway, MAPK signaling pathway, and JAK/STAT signaling

pathway can inhibit the apoptosis of nerve cells or glial cells.

When general anesthetics act on the newborn brain, their

toxic effects on the brain, including apoptosis of cells in the

nervous system, cerebral ischemia, and hypoxia, will directly or

indirectly activate these signaling pathways in feedback, thereby

reducing brain damage. Although this feedback needs further

scientific proof, many studies have detected the activation of

the above signaling pathways in the newborn brain exposed to

general anesthetics. It seems that although general anesthetics

can cause neurotoxicity in the infant’s brain, the body has a self-

repairing function, which also verifies that long-term exposure

to anesthetics can seriously damage the development of the

infant’s brain. However, a short time of exposure to general

anesthetics will not cause significant damage (30, 31).

Non-coding RNA

MiRNA

MicroRNA (miRNA) is a type of non-coding single stranded

RNA, which can specifically recognize targeted mRNA, degrade

it and inhibit its function. It has been found that many miRNAs

can participate in the process of neuronal proliferation and

apoptosis by regulating the proteins in the signaling pathway,

especially the Akt signaling pathway that can inhibit neuronal

apoptosis. Liu et al. found that miR-204-5p can mediate the

neurotoxicity of the hippocampus of newborn rats caused by

general anesthetics by targeting brain-derived neurotrophic

factor (BDNF), and its down-regulation can inhibit neuronal

apoptosis, thereby reducing cytotoxicity, which may be related

to the up-regulated BDNF/Akt signaling pathway (32). Similarly,

Wang et al. found that in sevoflurane-exposed mice, up-

regulation of miR-1297 expression enhanced the expression

of phosphatase and tensin homolog deleted on chromosome

ten, which in turn stimulated sevoflurane-induced neurotoxicity

through inhibiting the Akt signaling pathway (33), leading

to neuronal apoptosis and cognitive impairment. Therefore,
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inhibiting the expression or promoting the degradation of

miR-204-5p and miR-1297 may be a potential therapeutic

method for treating general anesthetic-induced neurotoxicity

and cognitive impairment in the developing brain by indirectly

upregulating the Akt signaling pathway, which can inhibit

neuronal apoptosis. At present, great progress has been made in

the treatment of neurotoxicity of general anesthetics by targeting

miRNAs. Recent studies have shown that miR-17-5P can

alleviate the neurotoxicity induced by propofol and isoflurane

exposure (34, 35), which may serve as a potential drug direction

for future research and development of general anesthetic

neurotoxicity. Similarly, Chen et al. found that miR-384-3p

can alleviate sevoflurane-induced apoptosis and morphological

changes of hippocampal neurons, and also improve cognitive

impairment, such as the sevoflurane-induced decline in learning

and memory ability (36), which is of great help in relieving

and treating cognitive impairment caused by general anesthesia

and is a potential new therapeutic strategy. Other studies found

that down-regulation of miR-27a-3p (37), miR-494-3p (38), and

miR-183 (39) could protect nerve cells and ameliorate general

anesthetic-induced neurotoxicity and cognitive impairment.

All of them may serve as potential therapeutic targets for

neurotoxicity in the developing brain in the future.

LncRNA

LncRNA belongs to a class of non-coding RNA, most of

which are specific in expression patterns, that is, different

expression patterns are involved in neural cell differentiation,

proliferation, and apoptosis through different pathways. At

present, lncRNA has been proven to be the critical mediator

of neurotoxicity. Similar to miRNAs, the mechanism leading to

neurotoxicity in the developing brain is related to regulation

of signaling pathways involved in neuronal apoptosis. Studies

have found that lncRNA may promote the apoptosis of

hippocampal neurons in the developing brain (40). It was

found that lncRNA Neat1 upregulates Serine-threonine protein

kinase through spongy miR-298-5p, which ultimately leads to

general anesthetic-induced neurotoxicity (41). At the same time,

abnormally expressed lncRNA may mediate the apoptosis of

newborn brain neurons and cognitive dysfunction by general

anesthetics (42). These findings may provide new ideas for the

treatment of general anesthetic neurotoxicity in the developing

brain. There is also long non-coding RNA metastasis-associated

lung adenocarcinoma transcript 1 (lncRNA MALAT1), which

can promote neurogenesis and exert brain protection by

regulating the MAPK signaling pathway. Experiments have

shown that inhibition of MALAT1 can reduce the apoptosis

of hippocampal neurons caused by anesthetics in newborn

mice (43, 44), and improve learning ability and memory

function (45), which may be related to the down-regulation

of MALAT1, which can activate PI3K/Akt signaling pathway

that can inhibit neuronal apoptosis. In addition, Lu et al.

found that the expression of the lncRNA Gadd45a gene

in mouse neurons exposed to sevoflurane increased (46),

which may be related to sevoflurane-induced neurotoxicity,

which revealed a new target for the molecular mechanism of

sevoflurane-induced neurotoxicity point. In summary, lncRNAs

are involved in general anesthetic-induced neurotoxicity and

cognitive impairment through various expression patterns.

However, there is no apparent progress in the treatment of

lncRNA-related targets, and further exploration by researchers

is needed.

CircRNA

Circular RNAs (circRNAs) are vital components in the

regulation of neuronal gene expression in the brain, and the

expression pattern of circRNAs changes stage by stage during the

newborn brain development (47, 48), and dynamic changes in

their expression are critical for brain function and maintenance

of brain physiological homeostasis (49). General anesthetics can

affect the expression of circRNA in the brain and nerve cells.

Studies have found that ketamine can cause abnormal expression

of circRNA in the hippocampus of rats, mainly showing changes

in quantity and folding (50). Then the neurotoxicity induced

by general anesthetics in the developing brain may be related

to circRNA, some studies have shown that circRNA001372

inhibits propofol-induced neurotoxicity through activating

PI3K/Akt signaling pathway in rat brain and neuronal cells

(51). Although not investigated for the developing brain, there

is still some guidance for the study of circRNA promoting

signaling pathways that can inhibit neuronal apoptosis in the

newborn brain. There are currently relatively few studies on the

neurotoxicity and cognitive impairment produced by circRNA

for general anesthetics to induce in the developing brain, which

need further efforts by researchers to explore.

Molecular protein

Klotho protein

Klotho protein is a major component of the endocrine

fibroblast growth factor receptor complex and has important

protective effects on hippocampal neuronal cells. Studies have

found that the Klotho protein is closely related to cell

apoptosis and autophagy. Autophagy may be involved in general

anesthetic-induced neurotoxicity, and studies have found that

Klotho protein may play a protective role in neuronal cells

by regulating autophagy and promoting protective autophagy

by activating the PI3K/Akt signaling pathway, which may

be a potential therapeutic approach for general anesthetic-

induced neurotoxicity (52). Thus, the Klotho protein can protect

neuronal cells through autophagy. Lianet al. found that Klotho

protein can reduce sevoflurane-induced oxidative stress and
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mitochondrial damage in neonatal brain neurons (53). When

sevoflurane is administered to neonatal rats, organismal stress

leads to increased expression of Klotho protein and the mRNA

encoding this protein in the hippocampus of neonatal rats,

thereby alleviating the neurotoxic effects of sevoflurane in the

neonatal brain (53). It has been shown that Klotho protein

activates the transcription of the antioxidant enzymemanganese

superoxide dismutase to relieve oxidative stress and reduce

hippocampal neuronal injury (54), and whether this enzyme

has a correlation with the PI3K/Akt signaling pathway needs

to be further explored. In conclusion, upregulation of Klotho

protein expression of this protein is very helpful for alleviating

neurotoxicity and cognitive impairment in the newborn

brain caused by general anesthetics, and Klotho protein may

serve as a research direction for the treatment of general

anesthetic-induced neurotoxicity and cognitive impairment in

the neonatal brain.

DJ-1

DJ-1 belongs to a member of the peptidase C56 family

of proteins, which can exert neuroprotective effects through

multiple pathways (55). Studies have shown that wild-type

DJ-1 can inhibit sevoflurane-induced apoptosis by regulating

the mitochondrial pathway, thereby protecting neuronal cells

from general anesthetic-induced neurotoxicity. Still, when it

mutates to DJ-1 (L166P), the neuroprotective effect is lost,

and the neurotoxicity is exacerbated (56). Simultaneously

inhibiting the expression of DJ-1 can aggravate isoflurane-

induced neuronal apoptosis by regulating the mitochondria-

dependent apoptosis pathway, and the feedback up-regulation

of DJ-1 can reduce the neurotoxicity and cognitive impairment

induced by isoflurane (57). Gestation is a critical period in

the development of the pediatric brain, especially early in

gestation, when cell numbers increase rapidly. Trophoblast

cells provide nutrients for embryonic development. DJ-1 is

mainly expressed in trophoblast cells in the placenta and its

expression increases during the first trimester. DJ-1 has been

found to maintain trophoblast function, possibly through the

Akt signaling pathway, and to play a protective role in brain

development during pediatric embryogenesis (58). Therefore,

DJ-1 can be used as a potential biomarker for diagnosing

general anesthetic-induced neurotoxicity and as a therapeutic

target for the prevention and intervention of general anesthetic

neurotoxicity and cognitive impairment in the developing brain.

Apolipoprotein E and tau protein

Apolipoprotein E (ApoE) may mediate general anesthetic-

induced neuronal toxicity and cognitive impairment in the

developing brain. Neurotoxicity and cognitive impairment in

mice exposed to sevoflurane may be related to the expression of

ApoE and its toxic fragments. It has been found that ApoE toxic

fragment (18-kDa fragment) promotes sevoflurane-induced

Tau phosphorylation and neuroinflammation in vitro (59).

Therefore, promoting the degradation of its toxic fragments

or inhibiting their expression may be potential strategies for

the treatment of general anesthetics-induced neurotoxicity and

cognitive impairment in the developing brain. In addition, Tau is

a microtubule-associated protein, and the hyperphosphorylated

form of Tau is significantly increased after nerve injury (60),

so it is considered to be an important factor affecting general

anesthetics leading to neurotoxicity and cognitive impairment

in the newborn brain. ApoE toxic fragment may be one of

the potential mechanisms of neuronal Tau phosphorylation in

neonatal mice exposed to sevoflurane (61). Coenzyme Q10

may reduce ApoE and phosphorylated Tau expression, thereby

attenuating sevoflurane-induced neuroinflammation in mouse

hippocampal neurons of newborn mice (62). Thus, targeting

the regulation of Tau phosphorylation levels may also be a

potential therapeutic direction for general anesthetics-induced

neurotoxicity in the neonatal brain.

Histone deacetylase 2

Histone deacetylase 2 (HDAC2) is a protein that regulates

the transcription of memory-related genes. The study found that

rats exposed to sevoflurane impaired cognitive functions such as

learning andmemory in offspringmice by upregulatingHDAC2,

and inhibition of HDAC2 attenuated these impairments

(63). This suggests that HDAC2 may mediate the process

of neurotoxicity and cognitive damage induced by general

anesthetics in newborn brain cells, and it can reduce the

neurotoxicity and cognitive damage induced by general

anesthetics by inhibiting the expression of HDAC2. Lianget

al. found that isoflurane exposure in neonatal mice caused

cognitive impairment during puberty by reducing histone

acetylation in the hippocampal glutamatergic system, which

may be related to the upregulation of HDAC2 (64). However,

administration of sodium butyrate (NaB) not only restored

histone acetylation in hippocampal neurons but also improved

cognitive impairment in vivo so NaB may be a potential

therapeutic drug for isoflurane exposure-induced cognitive

impairment (64). It was found that artemisinin reduced the

expression of HDAC2 and HDAC3 and increased histone

acetylation, and artemisinin could also effectively regulate

isoflurane-induced JNK signal activation and down-regulate

ERK1/2 expression (65). It seems that histone acetylation

may have a negative correlation with JNK signal activation,

but this needs further proof by researchers. Another study

found that the decline of learning and memory ability

caused by repeated exposure to isoflurane in neonatal mice

is related to the dysregulation of histone acetylation in the
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hippocampus, and the promotion of histone acetylation and

histone acetylation-mediated gene expression can improve

this cognitive impairment (66). Therefore, promoting histone

acetylation, inhibiting the production of HDAC2, or promoting

its degradation can be potential strategies for the treatment of

general anesthetic neurotoxicity and cognitive impairment in

the developing brain.

GABAAR and BDNF

Type A gamma-aminobutyric acid receptor (GABAAR) is

the target receptor for sevoflurane (67). It contains two subtypes,

GABAARα2 and GABAARα1. Studies have found that the ratio

of α1/α2 subunits increases under sevoflurane exposure, so

sevoflurane-induced neurotoxicity in the developing brain may

be related to the transmission of GABAARα2 to GABAARα1

(68). From this point of view, by interfering with the transition

between GABAARα2 and GABAARα1, finding an appropriate

ratio between the two subtypes is of great significance for

the prevention and treatment of anesthetic neurotoxicity and

cognitive impairment in newborn children induced by general

anesthetics. In addition, GABAAR has complex bidirectionality

in early brain development. Its hyperactivation leads to the

reduction of BDNF in the hippocampus and frontal cortex

(69), which can cause neurological and cognitive impairment;

Its inhibition can also affect synaptic plasticity and cognitive

function and downregulate BDNF (70, 71). The study found

that BDNF, as a protein with a neurotrophic effect, can

improve sevoflurane anesthesia-mediated cognitive impairment

of hippocampal neurons in aged rats (72), which may be related

to the activation of the Akt signaling pathway (32). The down-

regulation of BDNF may be related to the neurotoxicity induced

by general anesthetics, it was found that multiple inhalations

of sevoflurane in neonatal rats could inhibit the cleavage of

proBDNF by disrupting the balance of the tissue plasminogen

activator (tPA) and plasminogen activator inhibitor type 1 (PAI-

1) fibrinolytic system, resulting in the down-regulation of BDNF,

thereby blocking the activation of the downstream the Akt

signaling pathway promotes hippocampal neuronal apoptosis

and reduces the Hippocampal synaptic plasticity, which in turn

leads to long-term learning and memory dysfunction (73).

Therefore, regulating the level of BDNF has a certain guiding

significance for the treatment of general anesthetic neurotoxicity

and cognitive impairment in the developing brain.

Other potential mechanisms

Endoplasmic reticulum stress

Endoplasmic reticulum (ER) stress is a self-protective

response of the body that induces apoptosis (74). Studies

have found that ER stress mediates sevoflurane-induced

neurotoxicity in the developing brain. Protein tyrosine

phosphatase 1B (PTP1B) present in the ER membrane can

regulate ER stress, and studies have shown that inhibition of

PTP1B can alleviate sevoflurane-induced neurotoxicity in the

developing brain and ultimately improve cognitive impairments

with reduced learning, memory, and other abilities (75),

therefore the development of general anesthetic neurotoxicity

may be mediated by ER stress in the developing brain. And the

regulation of PTP1B may be a potential treatment for general

anesthetic neurotoxicity and cognitive impairment. One study

found that isoflurane can induce neurotoxicity in larvae by

causing ER stress through inhibition of mitochondrial function

(76), and activation of mTOR can inhibit ER stress and the

occurrence of this neurotoxicity (76, 77). Although not involved

in the early brain development of mammals in this study,

it is still instructive for the toxic effects induced by general

anesthetics on developing nerves.

Intracellular Ca2+

Intracellular Ca2+ overload can damage mitochondria

and make them unable to produce ATP normally, eventually

leading to apoptosis. Zhu et al. found that sevoflurane can

increase intracellular Ca2+ to inducemitochondrial damage and

mitochondria-mediated neuronal apoptosis (78). At the same

time, studies have found that ketamine-induced neurotoxicity

is related to N-methyl-D-aspartic acid (79), and Ca2+ influx

also mediates neurotoxicity in the developing brain induced by

isoflurane (80) and propofol (81). To sum up, the neurotoxicity

of the developing brain induced by general anesthetics may

be related to the increase of intracellular Ca2+, so inhibiting

the influx of Ca2+may improve the nerve damage induced by

general anesthetics. However, whether the Ca2+overload in the

developing brain nerve cells caused by general anesthetics is

related to the pathway that affects the apoptosis of nerve cells

is not clear, which requires further exploration by researchers.

DNA methylation

DNA methylation is a form of chemical modification of

DNA that affects the plasticity of hippocampal synapses by

regulating the transcription of related genes, thereby affecting

cognitive function. Studies have found that the cognitive

impairment caused by sevoflurane exposure in neonatal

mice is related to the hypermethylation of hippocampal

synaptic plasticity-related genes (82, 83). Many genes were

hypermethylated in mouse hippocampal cell lines under

isoflurane exposure (84). Cognitive impairment is associated

with methylation modifications of a variety of genes, commonly

including BDNF, the Reelin genes, the serine/threonine protein

phosphatase 1 gene, and many others. The hypermethylated

forms that appeared after these genes were modified all might
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affect the normal of cognitive function by affecting related

signaling pathways such as Akt, leading to the reduction of

dendritic spines in hippocampal neurons. Therefore, inhibiting

the methylation of genes related to synaptic plasticity plays

a vital role in improving the treatment of neurotoxicity

and cognitive function caused by general anesthetics in the

developing brain.

Gut microbiota

The gut microbiota is a key regulator of brain development

and function. Microbes in the gut associated with the brain’s

nervous system can affect the brain’s cognitive function through

the gut-brain axis (85, 86). General anesthetics can lead

to dysbiosis in the gut microbiota of neonatal mice (87),

and studies have shown that the pathogenesis of isoflurane-

induced neurotoxicity in the developing brain may be related

to the altered gut microbiota structure of juvenile rats caused

by exposure (88). Recently, Wang et al. (89) found that

the diversity and composition of their gut microbiota were

significantly altered in juvenile rats prenatally exposed to

isoflurane, and reduced BDNF expression was detected in the

hippocampus. The imbalance of intestinal flora may be related

to the pathogenesis of postpartum cognitive impairment in

neonatal rats caused by maternal isoflurane exposure, which

may be related to changes in immune response and increased

susceptibility to infection. However, it is unknown whether

the Akt signaling pathway is affected by the down-regulation

of BDNF. It has been shown that differential abundances of

cognition related microbial taxa were found in the gut of

young rats exposed to sevoflurane for several times (90). The

abnormal composition of these gut microbiota may be a risk

factor for common general anesthetics induced neurotoxicity

and cognitive impairment in the developing brain, but there

are currently few studies on the causal relationship between

gut microbiota and general anesthetics induced neurotoxicity

and cognitive impairment in the developing brain, and

whether it can mediate such neurotoxicity by inhibiting Akt

related signaling pathways remains undefined and requires

further investigation.

Summary and outlook

The neurotoxicity and cognitive impairment of general

anesthetics in the developing brain involve a variety of

molecular mechanisms and signaling pathways, in which a

variety of RNAs and related proteins directly or indirectly

regulate the signal pathway of neurotoxicity induced by general

anesthetics in the developing brain, and ultimately increase

or reduce the neurotoxicity of this developing brain. By

studying the related pathogenesis, we can further understand

its potential signal transduction pathway, which is helpful

for the selection of related therapeutic targets. Currently,

some progress has been made in drug research on related

targets, but the current drug research mainly focuses on

the level of cells and animals, and there are few drugs

used in clinical practice. Humans and animals differ in their

brain structure and development, and the results of animal

studies on the developing brain cannot be directly extrapolated

to humans. Therefore, more in-depth research and related

clinical trials should be conducted in the future to provide

a new theoretical basis for the treatment of neurotoxicity

and cognitive impairment caused by general anesthetic in the

developing brain.
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