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Background and purpose: Post-thrombectomy intracranial hemorrhages

(PTIH) are dangerous complications of acute ischemic stroke (AIS) following

mechanical thrombectomy. We aimed to investigate if S100b levels in AIS clots

removed by mechanical thrombectomy correlated to increased risk of PTIH.

Methods: We analyzed 122 thrombi from 80 AIS patients in the RESTORE

Registry of AIS clots, selecting an equal number of patients having been

pre-treated or not with rtPA (40 each group). Within each subgroup, 20

patients had developed PTIH and 20 patients showed no signs of hemorrhage.

Gross photos of each clot were taken and extracted clot area (ECA) was

measured using ImageJ. Immunohistochemistry for S100b was performed and

Orbit Image Analysis was used for quantification. Immunofluorescence was

performed to investigate co-localization between S100b and T-lymphocytes,

neutrophils and macrophages. Chi-square or Kruskal-Wallis test were used for

statistical analysis.

Results: PTIH was associated with higher S100b levels in clots (0.33 [0.08–

0.85] vs. 0.07 [0.02–0.27] mm2, H1 = 6.021, P = 0.014∗), but S100b levels

were not significantly a�ected by acute thrombolytic treatment (P = 0.386).

PTIH was also associated with patients having higher NIHSS at admission (20.0

[17.0–23.0] vs. 14.0 [10.5–19.0], H1 = 8.006, P = 0.005) and higher number of

passes during thrombectomy (2 [1–4] vs. 1 [1–2.5], H1 = 5.995, P = 0.014∗).
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S100b co-localized with neutrophils, macrophages and with T-lymphocytes in

the clots.

Conclusions: Higher S100b expression in AIS clots, higher NIHSS at admission

and higher number of passes during thrombectomy are all associated with

PTIH. Further investigation of S100b expression in AIS clots by neutrophils,

macrophages and T-lymphocytes could provide insight into the role of S100b

in thromboinflammation.

KEYWORDS

S100b, stroke biomarkers, thrombus, acute ischemic stroke, post-thrombectomy

intracranial hemorrhages

Introduction

Post-thrombectomy intracranial hemorrhages (PTIH) are

the most serious complication of endovascular procedures

following acute ischemic stroke (AIS). Intracranial hemorrhage

can take a wide range of different forms, including

extraparenchymal (subdural hematoma and subarachnoid

hemorrhage) and intraparenchymal (1). Intracranial

hemorrhage occurs when the blood-brain barrier (BBB)

is sufficiently damaged to permit extravasation of blood

components into the brain parenchyma, increasing stroke

morbidity and mortality (2). There are several factors

associated with increased risk of PTIH, such as stroke

severity (3), recanalization therapy (both thrombolysis and

thrombectomy) (4), hypertension (5), hyperglycemia (3, 5) and

age (6).

In the last few years, there have been several efforts to

predict intracranial hemorrhage after AIS (3, 6–9). Also, many

studies looking for novel biomarkers for stroke diagnosis and

prognosis have converged on the crucial role of inflammation

(8), focusing on a panel of proteins potentially useful for

this purpose (10–12). Several proteins have been explored

as potential biomarkers of hemorrhagic transformation after

acute ischemic stroke, including matrix metalloproteinase-9

(MMP9), neuron-specific enolase (NSE), cellular-fibronectin

(c-Fn), plasminogen activator inhibitor (PAI-1), thrombin-

activated fibrinolysis inhibitor (TAFI) and S100b (10), which was

themain focus of this manuscript. The glial protein S100b can be

produced by several peripheral cell subtypes (13) including T-

lymphocytes (14, 15) and it is not a specific indicator for stroke,

as its levels are increased also in other neurological conditions

(16). However, it is among the most interesting candidates that

have been investigated as stroke biomarkers, showing potential

in discriminating between ischemic and hemorrhagic stroke

(17, 18). Nonetheless, there is evidence that increased levels of

S100b in blood of AIS patients are associated with increased

intracranial hemorrhage rate following thrombolytic therapy

(19). However, the involvement of S100b in stroke has not yet

been fully investigated.

We evaluated the expression of S100b in 122 thrombi

retrieved from 80 AIS patients, with equal numbers with or

without acute thrombolytic administration. In this study, we

investigated if there was a difference in S100b expression in AIS

clots extracted from patients with or without PTIH, to further

explore the role of S100b as a possible biomarker for PTIH.

Furthermore, the possibility that white blood cell subtypes are

the source of S100b in AIS clots was investigated.

Materials and methods

Patient cohort

Eighty acute ischemic stroke cases from the RESTORE

registry of AIS clots were included in this study. The

RESTORE registry is registry of thrombotic material extracted

via mechanical thrombectomy from 1,000 AIS patients during

the period February 2018 to December 2019 from four

stroke centers in Europe (20). Two of the four participating

hospitals (Sahlgrenska University Hospital, Gothenburg and

Metropolitan Hospital, Athens) provided information on PTIH

(472 patients). Of these, 81 patients developed PTIH, i.e.,

17%. In this study, we analyzed clot samples from an

equal number of cases in the two subgroups PTIH yes

and PTIH no, closely matched for factors such as age, sex,

etiology, and thrombolysis yes/no. PTIH was identified by

two experienced radiologists at each clinical site on a CT

scan 24-36h after thrombectomy and classified according to

the European Cooperative Acute Stroke Study II (ECASS II)

classification system (21). The experimental plan is illustrated

in Figure 1. This study was conducted in accordance with

the ethical standards of the Declaration of Helsinki and its

amendments (22), by approval of the regional hospital ethics

committees and National University of Ireland Galway research

ethics committees (16-SEPT-08). We included only patients

>18 years, having been treated with mechanical thrombectomy

for AIS whose thrombus material was available for analysis

and having information whether the patients suffered (or not)

PTIH. For each patient we collected an anonymized data
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abstraction form containing pertinent procedural data, such

as rtPA administration, NIHSS score at admission, occlusion

location, stroke etiology, number of passes for clot removal,

final mTICI score and hemorrhagic transformation incidence.

Suspected stroke etiology was reported according to the

TOAST classification system (23). As it has been reported

that rtPA administration may be associated with a higher risk

of hemorrhagic transformation following AIS, therefore we

included equal numbers (n = 40) of patients treated with

bridging-therapy (rtPA and mechanical thrombectomy) and 40

patients treated with mechanical thrombectomy alone. For each

subgroup we included equal numbers (n = 20) of patients with

PTIH after mechanical thrombectomy and 20 closely matched

controls without PTIH. Controls were AIS patients treated with

mechanical thrombectomy but with no sign of hemorrhage and

matched as closely as possible to the PTIH yes subgroup for age,

sex, etiology and thrombolysis yes/no.

Thrombi collection, size measurement
and processing

Thrombotic material extracted via mechanical

thrombectomy was collected per pass at the hospital venue

in separate pots containing 10% formalin and shipped to

NUI Galway. A gross photo of each thrombus was taken with a

Canon EOS 1300D Camera and the relevant Extracted Clot Area

(ECA) was measured and used as an estimate of the extracted

clot size, by drawing around each fragment with a specific tool

using ImageJ software, as previously reported (24–27). In brief,

to measure the Extracted Clot Area (ECA), the gross photo

of the extracted clot was opened using ImageJ software, the

scale was set and the Polygon tool was used to draw a region

of interest around each clot fragment in the gross photo, and

summed to give overall ECA for the sample. Following gross

photos, thrombi were placed in histological cassettes for tissue

processing and paraffin embedding. We analyzed a total of 122

thrombi, collected per pass from the 80 cases in this study.

Immunohistochemistry staining

After paraffin embedding, 3µm sections were cut from each

block with a microtome and S100b staining was performed by

Immunohistochemistry (IHC) on a Leica Bond-III autostainer

using a BOND Polymer Refine Red Detection kit (Leica

Biosystems #DS9390). Antigen retrieval with tris-EDTA (Leica

Biosystems #AR9640) was performed for 10min. Primary

antibody rabbit anti-S100b (abcam, ab41548, 1:100 dilution)

incubation time was 15min, followed by 30min of incubation

with an anti-rabbit secondary antibody. Counterstaining of

tissue using haematoxylin was performed for 5min. Sections

were then washed with a washing solution (Leica Biosystems

#AR9590) and rinsed in distilled water. Sections were then

dehydrated in alcohol, cleared in xylene, and mounted with

DPX. Negative controls were performed by omission of the

primary antibody step. Entorhinal cortical brain tissue (BioIVT)

was used as positive control tissue for S100b expression.

Slide scanning and quantification

Immunohistochemically stained slides were scanned on an

Olympus vs120 slide scanner at 20× magnification and digital

whole slide scan images were generated. Quantification was

performed on the digital slides using Orbit Image Analysis

Software (www.orbit.bio) (28), as previously described (29). In

brief, we created exclusion and inclusion models to distinguish

regions to be excluded (e.g., background and artifact) and

regions containing the component of interest, S100b, enabling

its quantitative assessment within each clot.

We quantified the expression of S100b in each case as area

(in mm2) by multiplying the component percent by the relevant

ECA. For cases involving multiple passes, we summed the values

of S100bXECA for all passes.

Immunofluorescence

Immunofluorescence staining was performed on a subset

of samples in order to evaluate co-localization of S100b

and three WBC markers, respectively CD3 staining for T-

lymphocytes, CD68 staining for macrophages and CD66b

staining for neutrophils. We used inflamed tonsil tissue

(BioIVT), as positive control tissue for CD3, CD68, and

CD66b. The primary antibodies used were the following:

rabbit anti-S100b (abcam ab41548, 1:100 dilution); mouse

anti-CD3 (abcam ab17143, 1:10); mouse anti-CD68 (abcam

ab955, 1:50) mouse anti-CD66b (Novus biological NB100-

77808, 1:100). Secondary antibodies were: Goat anti-mouse

IgG H&L (Alexa Fluor 594, abcam ab150116, 1:200)

and Goat anti-rabbit IgG H&L, (Alexa Fluor 488, abcam

ab150077, 1:200).

After deparaffinization with xylene and following

rehydration with 100, 95, 70 and 50% alcohol, 3µm sections

of thrombus tissue were incubated for 20min with Tris-

EDTA buffer in a microwave at 98◦C. Sections were washed

with phosphate-buffered saline (PBS) followed by PBS

containing 0.2% Tween 20 (PBS-Tx) and incubated with

blocking buffer (3% normal goat serum, NGS, in PBS-Tx)

for 1 h at room temperature under agitation. Incubation

with S100b and one of the WBC primary antibodies per

slide followed for 1 h at 37◦C, then over night at 4◦C. After

washing, sections were incubated with secondary antibodies
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FIGURE 1

Experimental plan of the study.

for 1 h at 37◦C and then cover slipped with 4’,6-diamidino-

2-phenylindole (DAPI) mounting medium for nucleic

acid staining.

Immunostaining images were captured by using

the objective of 60× in a FV3000 Confocal Laser

Scanning microscope (Olympus) and analyzed with FIJI

software (ImageJ).

Statistical analysis

Statistical analysis was performed with IBM SPSS-25

software and graphs were created with GraphPad Prism

9.2.0. Quantitative variables did not follow a standard

normal distribution as indicated by Kolmogorov-Smirnov

test. Therefore, the Chi square test or Kruskal-Wallis

test were used to assess statistically significant differences

among the groups, respectively for nominal or continuous

variables. Correlation analysis was also performed

(Spearman’s Rho). The level of statistical significance

was set at p < 0.05 (two-sided). Results are reported

as median [IQ1–IQ3] or number and percentage (%)

of cases.

Results

Baseline characteristics of the patients

Baseline clinical and procedural characteristics of the 80

patients selected are reported in Table 1, for the overall

population analyzed and according to whether PTIH occurred

or not. Main types of PTIH defined according to ECASS II

classification are the following: small petechial haemorrhagic

infarction (HI1), confluent petechial haemorrhagic infarction

(HI2), small parenchymal hemorrhage (PH1) (<30% of infarct,

mild mass effect), and large parenchymal hemorrhage (PH2,

>30% of infarct, marked mass effect). In our cohort we found 14

cases of HI1 (35% ofHT), 7 cases of HI2 (17.5% ofHT), 7 cases of

PH1 (17.5%) and 7 cases of PH2 (17.5%). We also found 4 cases

(10%) of subarachnoid hemorrhage (SAH) and 1 case (2.5%) of

subdural hematoma (SDH). There was no significant difference

between the two subgroups in terms of sex (P= 0.822), age (P=

8.885), stroke etiology (P = 0.966) and occlusion location (P =

0.461). Also, no difference was found in terms of onset to groin

puncture time (P = 0.787), onset to recanalization time (P =

0.953) and final mTICI score (P= 0.086). However, patients with

no signs of hemorrhage had lower rate of mTICI 2b (17.5 vs.

32.5%) and higher rate of mTICI 3 (52.5 vs. 30%) compared to

PTIH yes subgroup. NIHSS at admission was significantly higher

for PTIH yes subgroup (P= 0.005∗). The total number of passes

for clot removal was also significantly higher for the PTIH yes

subgroup (P = 0.014∗); Table 1.

S100b expression in AIS clots is
associated with WBC

We distinguished clots with different expression of S100b

(Figure 2). Interestingly, as depicted in panels A–B, we noticed

that S100b was closely associated with nucleated cells in the clots,

leading us to perform further analysis with immunofluorescence

co-staining to assess sub-types of WBC associated with

S100b expression.

S100b expression in AIS clots is higher in
clots from patients with PTIH regardless
of rtPA administration preceding
mechanical thrombectomy, NIHSS on
admission and age

S100b expression in clots from patients with PTIH was

statistically significantly higher than those from patients without
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TABLE 1 Baseline clinical and procedural characteristics of the overall cohort of patients and divided according whether they had or not

post-thrombectomy intracranial hemorrhage (PTIH).

Sex Overall cohort of
patients
(N = 80)

PTIH YES
(N = 40)

PTIH NO
(N = 40)

Statistical analysis

Male 45 (56.3%) 23 (57.5%) 22 (55.0%)
X1

= 0.051, P = 0.822
Female 35 (43.8%) 17 (42.5%) 18 (45.0%)

Age (years) 75.0 [64.5–83.0] 75.0 [63.0–82.0] 74.5 [65.5–83.0] H1= 0.021, P = 0.885

Stroke etiology

Patients with cardioembolic etiology 32 (40%) 15 (37.5%) 17 (42.5%)

X3
= 0.268, P = 0.966

Patients with large artery atherosclerosis
etiology

16 (20%) 8 (20.0%) 8 (20.0%)

Patients with other etiologya 4 (5%) 2 (5.0%) 2 (5.0%)

Patients with cryptogenic etiology 28 (35%) 15 (37.5%) 13 (32.5%)

NIHSS admission 18.0 [11.0–21.5] 20.0 [17.0–23.0] 14.0 [10.5–19.0] H1= 8.006, P = 0.005∗

Occluded vessel (s)b

MCA, M1 31 (38.8%) 14 (35.0%) 17 (42.5%)

H1= 0.543, P = 0.461

MCA, M2 8 (10.0%) 4 (10.0%) 4 (10.0%)

MCA, M3 1 (1.3%) 0 (0.0%) 1 (2.5%)

MCA (multiple branches/segments) 6 (7.5%) 3 (7.5%) 3 (7.5%)

ICA&ICA terminus 14 (17.5%) 7 (17.5%) 7 (17.5%)

ACA 1 (1.3%) 1 (2.5%) 0 (0.0%)

VB 6 (7.5%) 4 (10.0%) 2 (5.0%)

PCA 1 (1.3%) 0 (0.0%) 1 (2.5%)

Tandem occlusion 6 (7.5%) 4 (10.0%) 2 (5.0%)

Other dual 1 (1.3%) 1 (2.5%) 0 (0.0%)

3 or more occluded vessels 5 (6.3%) 2 (5.0%) 3 (7.5%)

Median number of passes performed during
the endovascular procedure

2 [1–3] 2 [1–4] 1 [1–2.5] H1 = 5.995, P = 0.014∗

Onset to groin puncture time (minutes) 145 [53–265] 145 [45–300] 142.5 [54.5–262.5] H1= 0.073, P = 0.787

Onset to recanalization time (minutes) 236 [88–345] 235 [99–355] 258 [88–328] H1= 0.003, P = 0.953

Final mTICI score

mTICI 0 4 (5.0%) 2 (5.0%) 2 (5.0%)

H1= 2.948, P = 0.086

mTICI 1 1 (1.3%) 0 (0.0%) 1 (2.5%)

mTICI 2a 8 (10.0%) 5 (12.5%) 3 (7.5%)

mTICI 2b 20 (25.0%) 13 (32.5%) 7 (17.5%)

mTICI 2c 14 (17.5%) 8 (20.0%) 6 (15.0%)

mTICI 3 33 (41.3%) 12 (30.0%) 21 (52.5%)

aOther etiology included arterial dissection.
bMCA, Middle Cerebral Artery; ICA, Internal Carotid Artery; ACA, Anterior Cerebral Artery; VB, Vertebro-basilar; PCA, Posterior Cerebral Artery.

Data given as N (%) of cases or median [IQ1, IQ3].
∗Statistically significant.
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FIGURE 2

(A, B) examples of S100b (red immunostaining) in clots, respectively from a patient with (A) and without (B) Post-thrombectomy Intracranial
Hemorrhage are shown. In (C) a negative control is shown, while in (D) positive control tissue (human entorhinal brain cortex) is shown. Nuclei
are stained blue (counterstaining with haematoxylin). All images were captured using the 20× objective (scale bar 20µm).

FIGURE 3

Violin plot showing that S100b expression in clots from patients
with PTIH is significantly higher than patients without signs of
hemorrhage. Dashed lines represent the median while dotted
lines represent the interquartile ranges, Q1 (lower dotted lines)

and Q3 (upper dotted lines). *Statistically significant.

HT (0.33 [0.08–0.85] vs. 0.07 [0.02–0.27] mm2, P= 0.014, when

expressed as area, Figure 3. A similar trend was apparent when

S100b was expressed as overall percentage (0.53 [0.21–1.48]%

for PTIH yes vs. 0.32 [0.09–0.80]% for PTIH no, although not

statistically different (P = 0.100).

We did not find any significant difference between

expression of S100b in clots from patients pre-treated with rtPA

and those of patients treated with mechanical thrombectomy

alone (P = 0.386). Additionally, we did not find any significant

correlation between S100b levels and NIHSS on admission

(Spearman’s rho = 0.213, P = 0.058), or age (Spearman’s rho

= −0.120, P = 0.290). The different types of hemorrhagic

transformation observed and S100b expression in extracted

thrombus material is described in Supplementary Table 1. We

did not find any statistically significant difference in terms of

S100b expression among the several types of PTIH, although we

acknowledge that S100b expression in PHwas higher than in HI.

This could be worthy of further future investigation.

S100b expression is associated with
macrophages, neutrophils and
T-lymphocytes in clots

Immunofluorescence staining revealed association of S100b

with the three WBC subtypes we studied, i.e., T-lymphocytes

(CD3), Figure 4A, neutrophils (CD66b), Figure 4B and with

macrophages (CD68), Figure 4C.

Discussion

Emergent reperfusion therapy is the cornerstone of

treatment in AIS, aiming to restore cerebral blood flow to

salvageable ischemic tissue to reduce patient disability. However,

PTIH is the most feared complication following endovascular

procedures (30). Hemorrhagic infarction following arterial

thrombosis and embolism has been suggested as a natural

progression of ischemic stroke (31–34). The incidence of this

phenomenon greatly varies depending on several risk factors

(3–6) and has been reported to range from 0 to 85% in different

studies (35).
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FIGURE 4

(A) Co-localization analysis of S100b and CD3 in clot with the three channels together (i) and separately (ii–iv). (B) Co-localization analysis of
S100b and CD66b in clot with the three channels together (i) and separately (ii–iv). (C) Co-localization analysis of S100b and CD68 in clot with
the three channels together (i) and separately (ii–iv). All images were captured using the 60× objective (scale bar 5µm).

Severe stroke, expressed as high NIHSS score at admission,

is generally associated with a higher probability of intracranial

hemorrhage (3, 8), which is in line with the findings

in the present study. Both thrombolysis and mechanical

thrombectomy have been associated with increased risk of

intracranial hemorrhage (4). According to some studies,

intracranial hemorrhage following thrombolytic administration

can be directly linked to rtPA activity, resulting from reperfusion

of cerebral vessels whose integrity has been disrupted by

severe ischemia (36, 37). It has been also suggested that

alteplase may promote intracranial hemorrhage through non-

fibrinolytic mechanisms, such as activation of the immune

system (38), neutrophil degranulation and release of matrix

metalloproteinase-9 (MMP-9) (39) favoring BBB disruption

(40). Mechanical thrombectomy may increase intracranial

hemorrhage rate due to direct vessel wall damage during

endovascular procedures. The degree of damage has been shown

to be proportional to the number of passes required for clot

retrieval (41). Our results support these findings, as we observed

a significantly higher number of passes during mechanical

thrombectomy in the cases with PTIH.

Due to the high morbidity and mortality associated with

PTIH, many efforts have been made to find new biomarkers

and predictors of intracranial hemorrhage following AIS (3, 6–

9). In this regard, S100b might have some potential. S100b

is a calcium-binding protein belonging to the S100 family,

which comprises more than 20 family members (13). At

nanomolar concentrations, S100b has been shown to promote

neurite outgrowth in cerebral cortex neurons in vitro and

to enhance survival of neurons during development (42),

neuronal maturation and to stimulate glial cell proliferation

(43). Furthermore, S100b reduces cell death and protects

against mitochondrial loss of function resulting from glucose

deprivation (42, 44). However, at micromolar concentrations,

S100b can cause deleterious effects. At these concentrations, it

has been shown that extracellular S100b promotes its neurotoxic

effects by stimulating the expression of proinflammatory

cytokines and inducing apoptosis in vitro (44). Inflammation

is a common characteristic of many neurological disorders.

Elevated levels of S100b protein in biological fluids are observed

in several neurological disorders, such as multiple sclerosis (45),

Alzheimer’s disease (46), Parkinson’s disease (47), amyotrophic

lateral sclerosis (48) and stroke (49).

S100b has been investigated as a possible biomarker to

distinguish hemorrhagic stroke from ischemic stroke and some

studies have shown that S100b concentrations in blood were

higher for hemorrhagic stroke compared to ischemic stroke

(50, 51). Also, a previous study highlighted how increased

S100b levels in serum of AIS patients treated with thrombolysis

might be a predictor of further hemorrhagic transformation

(19). These results are in line with the findings of the

present study. We have shown higher S100b expression in
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AIS thrombi from patients with PTIH compared to those

from the non-PTIH group. We also demonstrated that S100b

expression in clots is not significantly affected by acute

thrombolytic administration.

Whether the original source of S100b in the clots is

peripheral or of central origin is still unclear, but worthy of

further study.

In this study, immunohistochemistry and

Immunofluorescence staining revealed that S100b expression

in clots was associated with WBC nuclei, CD68+, CD66b+,

and CD3+. The association of S100b with phagocytic cells

such as macrophages and neutrophils is interesting, since S100

proteins can work as Damage-Associated Molecular Pattern

(DAMP) molecules (52). DAMPs are biomolecules that are

released from damaged or stressed cells and could act as

endogenous danger signals to induce a rapid inflammatory

response (53). Furthermore, S100 proteins play an important

role as regulators of macrophage-mediated inflammation (54).

In particular, S100b can up-regulate macrophage production

of pro-inflammatory cytokines and worsen severity of

inflammation (55), therefore, we could hypothesize a similar

role also in stroke inflammation. Association between S100b

and neutrophils has also been observed since it is known that

S100b induces neutrophil migration to sites of inflammation

(56, 57). It has been shown that neutrophils can induce

damage in the ischemic area by causing neuronal death,

destruction of the BBB, and brain edema (58, 59). Neutrophil

extracellular traps can further activate platelets and thrombotic

processes (60).

Presence of S100b in T-lymphocytes was first detected by

Kanamori et al. (61) in 1984. Further studies proved that

a cytotoxic T subtype (CD3+ CD8+ CD16-) and a natural

killer subtype (CD3- CD8- CD16+) of lymphocytes is able to

produce S100b upon stimulation (14, 15). Our results are in

line with these studies. The association of S100b with CD3+

lymphocyte subtypes suggests that this protein acts as an

interface to immunological processes in various physiological

and pathological conditions although further studies are

necessary to better clarify its function. The connection between

inflammation and thrombosis in cardiovascular diseases is

becoming more and more evident. Immunothrombosis is

activated in the setting of bacterial and viral infection. Targeting

inflammation to prevent cardiovascular events is an emerging

concept as it is known that inflammation increases thrombotic

tendency. Main cellular drivers of this process are platelets

and innate immune cells, primarily neutrophils and monocytes

which interplay with platelets and flanked by the activation

of the complement system promote coagulation (62). T-

lymphocytes play a major role in the initiation and perpetuation

of inflammatory cascades as well, involving crosstalk with other

immune cells, especially by modulating macrophage response

(63), although their specific role in thrombus formation is still

unclear (64).

Study limitations

Our study design focused on comparing two closely matched

cohorts, respectively having, or not having experienced PTIH.

We are aware that our cohort design approach may be prone to

biases. A further study with a retrospective case control design,

group comparisons adjusted for multiple testing and calculation

of odds ratios would be useful. We did not assess S100b levels

in serum in this study. S100b serum levels are known to be

higher in stroke cases with larger lesion volumes (65, 66). It

would be of interest to assess if clot S100b content reflects

serum levels in future work. Also, as S100b levels can increase

in cases of pre-stroke trauma or very recent surgery and this

should be considered in further studies. Furthermore, it would

be of interest to probe further if the source of S100b in the

clots is astroglial or entirely extracerebral by using a second glial

marker such as Glial Fibrillary Acidic Protein (GFAP) in future

work. Finally, we did not take into account other factors that

might influence occurrence of PTIH, such as pre-treatment with

antiplatelet or anticoagulant medications and elevated blood

pressure during and after the endovascular procedure. Also,

because of the extensive thrombus heterogeneity, it is possible

that thrombus composition might affect S100b expression. It

would be of interest to consider these factors in further studies.

Conclusion

From our observations, we can conclude that a higher

expression of S100b in the retrieved clots is associated with

PTIH regardless of thrombolytic administration. We also

found other factors directly correlating with PTIH, such as

higher NIHSS score at admission and higher number of

passes during mechanical thrombectomy. Furthermore, from

co-localization studies we observed that S100b in retrieved AIS

clots was associated with macrophages, neutrophils and some

T-lymphocytes, suggesting it may have an effect on thrombo-

inflammatory activity, although we acknowledge that further

investigation is necessary to confirm our results.
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