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Background and objective: The purpose of this study was to eliminate

the interferences of electrical impedance tomography (EIT) on synchronous

recording electroencephalography (EEG) for seizure detection.

Methods: The simulated EIT signal generated by COMSOL Multiphysics

was superimposed on the clinical EEG signal obtained from the CHB-MIT

Scalp EEG Database, and then the spectrum features of superimposed mixed

signals were analyzed. According to the spectrum analysis, in addition to

high-frequency interference at 51.2 kHz related to the drive current, there was

also low-frequency interference caused by switching of electrode pairs, which

were used to inject drive current. A low pass filter and a comb filter were used

to suppress the high-frequency interference and low-frequency interference,

respectively. Simulation results suggested the low-pass filter and comb filter

working together e�ectively filtered out the interference of EIT on EEG in the

process of synchronous monitoring.

Results: As a result, the normal EEG and epileptic EEG could be recognized

e�ectively. Pearson correlation analysis further confirmed the interference of

EIT on EEG was e�ectively suppressed.

Conclusions: This study provides a simple and e�ective interference

suppression method for the synchronous monitoring of EIT and EEG, which

could be served as a reference for the synchronous monitoring of EEG and

other medical electromagnetic devices.

KEYWORDS

epilepsy, electrical impedance tomography, EEG signal, low-frequency interference,

comb filter

Introduction

Epilepsy is a nervous system disease closely related to changes in cerebral blood flow.

Regional cerebral blood flow (rCBF) that occurs during seizure evolution has indicated

a significant clinical value (1, 2). About one-third of epileptic patients suffering from

drug-resistant (or medically intractable) epilepsy (3) have their daily lives disrupted
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by the occurrence of sudden seizures (4); thus, information

about rCBF is extremely important. This is because surgery is

an optimal treatment for patients with drug-resistant epilepsy

(5, 6), and the effectiveness of surgery depends heavily on

the accuracy of localization (7). However, the epileptogenic

zone (EZ) is a theoretical construct, and to date, there is

no established marker that definitively determines its location

and extent (8, 9). Many surgical candidates undergo invasive

intracranial electroencephalography (EEG) recording, but this

technique has several limitations, in that it is invasive,

high-cost, and offers limited spatial sampling that may lead

to misleading conclusions (10, 11). Given the lack of an

unambiguous marker for the EZ and the limitations of invasive

intracranial EEG, the presurgical delineation of the EZ is

complicated and often unsuccessful. As a result, a large

proportion of patients who undergo epilepsy surgical resection

for epilepsy treatment continue to have seizures after the

surgery (12–14).

Techniques based on functional imaging, such as functional

magnetic resonance imaging (fMRI) (15, 16), single-photon-

emission CT (SPECT) (17) and positron emission tomography

(PET) (18), have been developed to evaluate the location

of the EZ as part of the pre-surgical work-up of epilepsy

patients by assessesing hemodynamics of the brain such as

cerebral blood volume and cerebral blood flow.However, SPECT

and PET are nuclear imaging procedures that acquire images

based on radiopharmaceuticals. Although MRI does not emit

ionizing radiation, it does employ a strong magnetic field

that extends beyond the machine and exerts very powerful

forces on objects made of iron, some types of steel, and other

magnetizable objects. All of these techniques are impractical

for continuous monitoring. Moreover, these techniques have a

long detection time, high cost (19) and locating area beyond

the EZ (20), all of which are limitations to locating the EZ.

Therefore, 25–33% of patients still “fail” surgical resection

(21), and ∼40% of patients continue their anti-epileptic

medications even after surgery (22). To improve the safety and

efficacy of surgical treatment for epilepsy, it is necessary to

identify and validate reliable biomarkers that can determine

the extent and location of the EZ with high precision and

accuracy (23).

Electrical impedance tomography (EIT) is a functional

imaging technique that can reconstruct images of electrical

impedance within the body associated with functional changes

in tissues or organs (24). Compared with CT, MRI, and other

traditional medical imaging technologies, the advantages of

EIT are that it is safer, non-invasive, and does not produce

radiation. Plus, it is portable, which enables continuous bedside

monitoring of various physiological and pathological process.

EIT has already been used successfully in breast cancer detection

(25, 26) and lung (27, 28), gastric (29), brain function imaging

(30, 31), and in many other medical areas. It could also

be used to image impedance changes related to blood flow

(32). Impedance changes due to blood flow during rest and

hyperemia could be measured by EIT in venous occlusion

experiments. It was worthwhile to investigate EIT for the

study of disease detection or pathological monitoring related to

blood flow.

In light of the above, the following question arises: Is it

possible to locate the EZ based on the impedance changes

caused by epileptic seizures associated with rCBF by EIT? A

group of researchers has been working on this problem since

1994. EIT has previously been proposed as a complementary

tool to the existing EEG recording equipment for improving

the preoperative localization foci, with no additional risks for

patients (33–37). Three-dimensional (3D) EIT developed in

recent years (38–40) has the potential to improve localized

distinguishability of EZ by adding volumetric resolution. EIT

can be used in presurgical assessment simultaneously with

EEG to provide more changes related to epileptic seizures

and facilitate localization of the EZ. However, each impedance

measurement in EIT is obtained by injecting current at about

a few milliamps at tens of kilohertz, which is well above

the EEG band and generate artifacts in the EEG. Therefore,

the EEG signal is completely obscured by simultaneous EIT

recording and the epileptic EEG waves cannot be recognized.

Some efforts have been made to remove the artifact induced

in the EEG by simultaneous EIT recording by using dedicated

hardware filter and software filter and separate EIT and EEG

electrodes (24, 36, 41). This method requires advanced EEG

recording to establish the noise template. However, due to

differences between the template and actual artifact waveforms,

the robustness of this method is not satisfactory. Furthermore,

for better location of the EZ, EIT and EEG should use the

same electrodes rather than separate electrodes. Multi-frequency

electrical impedance tomography (MFEIT) has been used to

avoid interference of EIT to EEG without switching injection

electrode pairs (42–44), but the greater complexity of the

current source hardware, signal processing, stray capacitance

and reduced EIT protocol could reduce the measurement

accuracy and speed (43).

This study investigated the spectral feature of the

interference of EIT in EEG to remove this interference when

using the same electrodes for EIT and EEG. The simulated EIT

signal generated by COMSOL Multiphysics was superimposed

on the clinical EEG signal obtained from the CHB-MIT Scalp

EEG Database, and then the spectral features of superimposed

mixed signals were analyzed. According to the spectral analysis,

in addition to a high-frequency interference at 51.2 kHz related

to the drive current, there was also a low-frequency interference

caused by switching electrode pairs, which was used to inject

drive current. A low pass filter and a comb filter were used

to suppress high-frequency interference and low-frequency

interference, respectively. Finally, the filtering effect was verified

by Pearson correlation between the filtered EEG and the

raw EEG.
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FIGURE 1

A 3D finite element head model including scalp, skull, CSF, brain

parenchyma, and ventricle tissues generated by COMSOL

Multiphysics. The circumference, length, and width of the head

model are, respectively 56.2, 18.4, and 15.4 cm. The 16

electrodes were numbered counterclockwise.

Method

Simulated EIT recording

A 3D finite element (FE) head model (45) established

by COMSOL Multiphysics 4.4 (Comsol Group, Sweden)

was used in our simulation experiments. It consisted of

brain tissues including scalp, skull, cerebrospinal fluid (CSF),

brain parenchyma, and ventricle tissues (Figure 1). The

circumference, length, and width of the head model were,

respectively 56.2, 18.4, and 15.4 cm. A total of 16 electrodes were

evenly placed on the model and numbered in counterclockwise

order. A sinusoidal current of 1mA, 51.2 kHz was injected

into the model through a pair of excitation electrodes.

The conductivity parameters of the scalp, skull, CSF, brain

parenchyma, and ventricle tissues are set. According to the

electromagnetic field boundary conditions in the positive

problem of electrical impedance imaging, the potential

distribution of the entire head region is solved, and the potential

values of all the remaining measured electrodes on the head

are obtained.

Under certain measurement accuracy of the EIT system,

the impedance information, signal-to-noise ratio, and imaging

quality measured under different drive patterns will be different

(46, 47), and the interference to EEG signals will change

accordingly. Thus, it is necessary to develop a method suitable

for removing the interference from EIT systems with different

drive patterns. Drive pattern refers to the way in which EIT

excitation current is injected. Polar drive pattern, adjacent

drive pattern, and Avis-Barber cross drive pattern are the three

commonly used patterns to inject excitation current in EIT. In

the polar drive pattern, a pair of electrodes with an angle of

180◦ are used for injecting excitation current. In the adjacent

drive pattern, a pair of adjacent electrodes are used for injecting

excitation current. In the Avis-Barber cross drive pattern, a

pair of electrodes with an angle of 90 degrees are used for

injecting excitation current. The boundary voltages between all

the remaining adjacent electrode pairs are measured for the

three drive patterns. In light of this, the spectral features of EIT

under these three common drive patterns were analyzed.

Clinical EEG data

Clinical EEG data were obtained from the CHB-MIT Scalp

EEG Database (48). This database consists of EEG recordings

taken at Children’s Hospital Boston from pediatric subjects with

intractable seizures. In the development of this database, subjects

were monitored for up to several days following withdrawal

of anti-seizure medication to characterize their seizures and

assess their candidacy for surgical intervention. All of the signals

were sampled at 256 samples per second with 16-bit resolution.

Randomly selected 10 s normal EEG and epileptic EEG were

shown in Figures 2A,B, from which obvious difference can be

seen in the EEG waves between normal and epileptic state.

The International 10–20 system of EEG electrode positions and

nomenclature was used for these recordings (Figure 2). Bipolar

arrangements were used in EEG recording. The numbers “10”

and “20” refer to the fact that the distances between adjacent

electrodes are either 10% or 20% of the total front- back or right-

left distance of the skull. Each site has a letter to identify the lobe

and a number to identify the hemisphere location. (https://www.

diytdcs.com/2012/07/1020-system-electrode-distances/).

Spectral feature analysis of mixed signal

The EIT signal simulated by COMSOL Multiphysics was

superimposed on the EEG signal obtained from the CHB-MIT

Scalp EEG Database. The superimposed signal was used to

simulate the EEG signals interfered by EIT when EIT and EEG

were recorded simultaneously. It can be seen from Figures 1,

2 that the number and locations of electrodes in EIT are

inconsistent with those in the EEG system. Fp2 and F8 in EEG

are close to the number 2 and 3 electrodes in EIT. Data collected

by these electrodes are superposed in this simulation study.

Electrode location differences between the two systems might

not change the results in the simulation study. Figure 3 showed

a randomly selected 10 s raw epileptic EEG and its waveform

interfered by EIT. The EEG signal was completely lost within the

high-frequency interference from simultaneously recorded EIT.

Spectrums of EIT was analyzed to suppress the interference

of EIT on EEG. There was a high frequency component

at 51.2 kHz, which consistent with the carrier frequency of
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FIGURE 2

Typical EEG fragments obtained from the CHB-MIT Scalp EEG Database and the electrode positions used for these recordings. (A) 10 s Normal

EEG; (B) 10 s Epileptic EEG; (C) The International 10–20 system used for recording EEGs in the CHB-MIT Scalp EEG Database seen from left and

above the head.

FIGURE 3

(A) Randomly selected 10 s raw epileptic EEG from the CHB-MIT Scalp EEG Database, and (B) its waveform interfered by simultaneously

recorded EIT under polar drive pattern with one frame per second.

51.2 kHz applied in EIT (Figure 4A). A periodic low–frequency

component with a period of about the duration of electrode

switching [62.5ms, 16Hz, under a polar drive pattern with one

frame per second (1 fps)] was also found in the EIT signal

(Figure 4B). A low–pass filter with a cutoff frequency of 100Hz

was selected to filter out high–frequency interference at 51.2 kHz

(Fs = 800,000, Fc = 100Hz, Order N = 2, Butterworth filter).

The reason why 100Hz was chosen as the cut-off frequency
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FIGURE 4

Spectrum diagram of EIT and interfered EEG signals. (A) High–frequency component at 51.2 kHz of EIT; (B) Low–frequency component with a

period of about the duration of electrode switching (62.5ms, 16Hz, under a polar drive pattern with one frame per second (1 fps)); (C)

Frequency spectrum of the interfered EEG signals suppressed after low–pass filtering; (D) Time domain of the interfered EEG signals suppressed

after low–pass filtering.

was that EEG signals of clinical significance are mostly in the

frequency range of 0.5–100Hz (49), including typical epileptic

EEG such as spike waves, sharp waves, spike (or sharp) and slow

waves. However, the low–frequency interference (LFI) of EIT

on EEG could not be suppressed after low–pass filtering. The

interference of low-frequency components still can be seen in

the frequency domain (Figure 4C) and time domain (Figure 4D)

of the interfered EEG signals.

Since the low–frequency component is related to the

duration of electrode switching, which might be correlated with

the drive pattern and acquisition frame rate of the EIT system,

the spectral characteristics of the low–frequency component

generated at different acquisition frame rates (1, 2, 5, 10 fps) in

three commonly used drive patterns, namely the adjacent, polar,

and Avis-barber cross drive patterns, were analyzed. As shown in

Figure 5, the acquisition frame rate affects the periodic frequency

of the low-frequency component, and the drive pattern affects

the pulse waveform and spectrum distribution in each frequency

period. When the acquisition frame rate was 1 fps, 2 fps, 5 fps

and 10 fps, the frequency period was 16Hz, 32Hz (2∗16Hz),

80Hz (5∗16Hz) and 160Hz (10∗16Hz), respectively. In each

period of the low–frequency component, the pulse number

was largest with adjacent drive pattern, and least with polar

drive pattern.

Comb filter design

The low–pass filter with a cutoff frequency of 100Hz, which

can suppress the high–frequency interference at 51.2 kHz of

EIT on EEG, but not suppress the low–frequency interference

lower than 100Hz. Upon close inspection of Figure 5, it can

be seen that the low–frequency component resembles teeth in

a comb, so it might be attenuated with the narrow and deep

notches of comb filtering (50). A comb filter can be used to

filter a periodic noise buried in signal, provided the teeth of the

comb coincide with the periodic harmonics (51). As a physical

tool, it has been used to improve the signal-to-noise ratio in

biological signal detection (51, 52). To study the effectiveness

of the comb filter, parameters of the comb filter were designed

for four acquisition frame rates (1, 2, 5, 10 fps) under three

drive patterns (Table 1). Frequency of sample, order, bandwidth

and attenuation pass (Apass) are the key parameters that affect

the filtering effect of comb filter. Theoretically, the larger these

parameters are, the better the filtering effect will be. However,

in practice, the filter design should take the filtering effect into

account, and also avoid the signal distortion and signal delay.

The sampling frequency was set at 300Hz, similar to the EEG

sampling rate, to balance the noise and signal delay. The order N

of the comb filter defines the number of notches. In this study, N
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FIGURE 5

Frequency spectrum of low–frequency component of EIT under di�erent drive patterns and acquisition frame rates. From left to right are the

low–frequency spectra under the polar, adjacent, and Avis–Barber cross drive patterns. From top to bottom are the low–frequency spectra with

acquisition frame rate of 1, 2, 5 and 10 frame.

depends on the acquisition frame rate of EIT so that the notches

of the comb filter coincide with the harmonics of the low–

frequency interference. Bandwidth and Apass determine the

ability of the comb filter to separate and attenuate the specified

frequencies. Too large bandwidth and Apass will not only filter

the interference but also cause the loss of EEG signal. On the

contrary, too small bandwidth and Apass will not completely

filter the interference. So the optimal bandwidth and Apass were

determined by the actual filtering effect in this study.

Results

Low–pass filtering e�ect

After low–pass filtering, the high–frequency interference

from EIT was completely suppressed, but periodic low–

frequency interference still exists and the EEG waves cannot

be identified (Figures 6, 7). The faster the acquisition frame

rate, the shorter the low–frequency interference period, and the

more difficult to distinguish EEG signal. Therefore, an additional

filtering method was necessary.

Comb filtering e�ect

Randomly selected EEG signals from the CHB-MIT Scalp

EEG Database were superimposed with EIT signal under

different drive patterns and acquisition frame rate to simulate

interfered EEG by EIT. Then the interfered EEG were filtered

by low–pass filtering and comb filtering. The filtering results

were shown in Figures 8, 9. The raw normal EEG and epileptic

EEG were used to compare with the filtered EEG to verify the

effectiveness of the two filters. As Figures 8, 9 shown, although

there were slight differences between filtered EEG and raw EEG

at some time points, there was a strong agreement between

the filtered EEG and the raw EEG on the whole, both in the

amplitude of the EEG and the trend of the EEG over time.

Epileptic waves are the gold standard for an epilepsy diagnosis.
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TABLE 1 Design of comb filter under di�erent drive patterns and acquisition frame rates.

Drive Pattern Acquisition

frame rate (fps)

Frequency of

sample (Fs/Hz)

Order (N) Bandwidth

(Bw/dB)

Attenuation pass

(Apass/dB)

Polar 1 300 300 0.1 0.1

2 300 150 0.1 0.1

5 300 60 0.15 0.1

10 300 30 0.3 0.05

Adjacent 1 300 300 0.1 0.1

2 300 150 0.1 0.1

5 300 60 0.15 0.1

10 300 30 0.3 0.05

Avis-Barber Cross 1 300 300 0.1 0.1

2 300 150 0.1 0.1

5 300 60 0.15 0.1

10 300 30 0.3 0.05

FIGURE 6

Low-pass filtered EEG after interfered by EIT with di�erent drive patterns and acquisition frame rates. From left to right are the low-pass filtered

EEG after interfered by EIT with the polar, adjacent, and Avis–Barber cross drive patterns. From top to bottom are the low-pass filtered EEG after

interfered by EIT with acquisition frame rate of 1, 2, 5 and 10 frame.
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FIGURE 7

Frequency spectrum of low-pass filtered EEG after interfered by EIT with di�erent drive patterns and acquisition frame rates. From left to right

are the low-pass filtered EEG after interfered by EIT with the polar, adjacent, and Avis–Barber cross drive patterns. From top to bottom are the

low-pass filtered EEG after interfered by EIT with acquisition frame rate of 1, 2, 5 and 10 frame.

The amplitude and duration of EEG waves are important

indicators to judge epileptic waves. After low-pass filtering

and comb filtering, both high-frequency and low-frequency

interference were effectively suppressed, and the epileptic EEG

waves could be recognized.

Correlation analysis

Pearson correlation was used for quantitative analysis of

the similarity between raw EEG and filtered EEG. The Pearson

correlation coefficient (PCC) is often used as a measure of

similarity. The value of PCC is between −1 and 1. The larger

the magnitude, the greater the similarity (53). PCCs were given

in Table 2. Under the same drive pattern of EIT, the PCC

increased slightly with the increase of the acquisition frame

rate. At the same acquisition frame rate, different drive patterns

had little influence on the similarity. In general, the value of

PCC was >0.95, indicating a high degree of similarity between

the raw EEG and the filtered EEG, which also proves that the

interference of EIT on EEG can be suppressed effectively and

the raw EEG can be restored.

Discussion

The interference of EIT in EEG during synchronous

monitoring was analyzed in this study. It was found that in

addition to high frequency interference of 51.2 kHz, there was

also periodic low–frequency interference caused by switching

of electrode pairs used to inject drive current. The causes

and spectral characteristics of low–frequency interference with

different drive patterns and acquisition frame rates of EIT

were studied for the first time. According to the spectral

characteristics of low–frequency interference generated with

different drive patterns and acquisition frame rates of EIT,

a comb filter was proposed to filter out the low–frequency

interference. Our simulation results suggested that a low-pass

filter and a comb filter working together could effectively
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FIGURE 8

Raw normal EEG signals and its waveform filtered by low–pass filtering and comb filtering after interfered by EIT. (A) Raw normal EEG segment.

(B) Low–pass and comb filtered EEG after interfered by EIT with the polar drive pattern and di�erent acquisition frame rates; (C) Low–pass and

comb filtered EEG after interfered by EIT with the adjacent drive pattern and di�erent acquisition frame rates; (D) Low–pass and comb filtered

EEG after interfered by EIT with the Avis–barber cross drive pattern and di�erent acquisition frame rates.
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FIGURE 9

Raw epileptic EEG signals and its waveform filtered by low–pass filtering and comb filtering after interfered by EIT. (A) Raw epileptic EEG

segment; (B) Low–pass and comb filtered epileptic EEG after interfered by EIT with the polar drive pattern and di�erent acquisition frame rates;

(C) Low–pass and comb filtered epileptic EEG after interfered by EIT with the adjacent drive pattern and di�erent acquisition frame rates; (D)

Low–pass and comb filtered epileptic EEG after interfered by EIT with the Avis–barber cross drive pattern and di�erent acquisition frame rates.
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TABLE 2 Pearson correlation coe�cient between original and filtered EEG.

Drive pattern Acquisition frame rate (f/s) Correlation in time domain Correlation in frequency domain

Normal EEG Epileptic EEG Normal EEG Epileptic EEG

Polar 1 0.9792 0.9552 0.9904 0.9948

2 0.988 0.9573 0.9929 0.9964

5 0.9948 0.9592 0.9975 0.998

10 0.9954 0.9592 0.998 0.998

Avis-Barber Cross 1 0.9791 0.9552 0.9903 0.9948

2 0.9872 0.9574 0.9924 0.9965

5 0.9948 0.9592 0.9975 0.998

10 0.9951 0.9591 0.9981 0.998

Adjacent 1 0.9793 0.9552 0.9905 0.9948

2 0.9871 0.9574 0.9927 0.9965

5 0.9947 0.9592 0.9975 0.998

10 0.9951 0.9592 0.998 0.998

filter out the interference of EIT on EEG in the process of

synchronous monitoring. Furthermore, this method was robust

for different drive patterns and acquisition frame rates of EIT.

Low-frequency interference analysis

EIT measurements were obtained by injecting current

through an independent current injecting electrode pair and

recording the resulting boundary voltages from all remaining

electrodes (54). In this study, 16 electrodes were used to

inject current and record the boundary voltages. For every

independent impedance measurement, a pair of electrodes

injected a constant sinusoidal current, and measurements were

taken by all remaining electrodes. The sinusoidal current was

injected with different sequences of 16 electrodes pairs: [(i0,

i8), (i1, i9),. . . , (i15, i7)] for the polar drive pattern, [(i0, i1),

(i1, i2),. . . , (i15, i0)] for the adjacent drive pattern, and [(i0,

i4), (i1, i5),. . . , (i15, i3)] for the Avis–barber cross drive pattern.

After the measurements were taken from all 16 combinations of

electrodes during T seconds, a single frame data set was formed.

In each frame, the current injection electrodes were switched 16

times. As a result, the frequency period of the low–frequency

components due to switching of injection current between 16

electrodes pairs was 16 × 1/THz. As presented in Figure 5, the

frequencies of low–frequency interference were 16, 32, 80, and

160Hz with acquisition frame rate of 1, 2, 5, 10 fps, respectively.

With the acquisition frame rate n, eight spectral peaks within

a low–frequency period appeared at the frequency of n × (2 ×

m – 1) (m= 1, 2, 3,. . . ) under the polar drive pattern, 15 spectral

peaks within a low–frequency period appeared at the frequency

of n × m (m = 1, 2, 3,. . . and m 6= 16) under the adjacent drive

pattern, and 12 spectral peaks within a low–frequency period

appeared at the frequency of n × m (m = 1, 2, 3,. . . and m 6=

4) under the Avis–barber cross drive pattern. It should be noted

that the frequency corresponding to each spectral peak was an

integer multiple of the acquisition frame rate.

Comb filter

The comb filter is a multi–band filter that removes certain

frequencies at band nulls from the obtained feature map

(55). It should be able to suppress the harmonics associated

with the periodic signal and, simultaneously, preserve the

signal required by the application. In the field of biomedical

signal processing, comb filtering plays an important role in

the elimination or extraction of periodic waveforms, such as

electrocardiography signal and EEG signals, for improving

diagnostic accuracy. Comb filtering has been proven to be

useful for suppressing of the gradient artifact from the EEG

signal recorded simultaneously with fMRI data (56). The

gradient artifact produced by temporally varying magnetic fields

associated with the switched gradient waveforms used in MRI

(57) is similar to the low–frequency interference produced by

the switched excitation electrodes used in EIT. Moreover, simple

calculation and computational efficiency make the comb filter

suitable for real-time data analysis and filtering in real-time

synchronous EIT and EEG monitoring.

In this work, we have demonstrated the effectiveness

and robustness of comb filtering in the suppression of low–

frequency interference from EIT (Figures 8, 9; Table 2). EEG

was restored after low–pass filtering and comb filtering. From

the time domain diagram, there was no significant difference

between the raw EEG and filtered EEG, and the normal EEG

and epileptic EEG could be recognized effectively. Pearson

correlation analysis further confirmed the interference of EIT on

EEG was effectively suppressed. Furthermore, the design of the

Frontiers inNeurology 11 frontiersin.org

https://doi.org/10.3389/fneur.2022.1070124
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Wang et al. 10.3389/fneur.2022.1070124

comb filter was determined by the acquisition frame rate of EIT,

so there was no need to establish the noise template in advance.

This avoided the differences between the template and actual

artifact waveforms, which is practical to clinical application.

Influences of drive pattern and
acquisition frame rate on filtering e�ect

In this study, the influences of drive pattern and acquisition

frame rate of EIT on the filtering effect were analyzed. The

results suggested that when the same acquisition frame rate was

used in EIT, different driven patterns had almost no influence

on the low–frequency interference filtering effects of the comb

filter (the difference was <0.08 % as shown in Table 2). Low–

frequency interference was determined by the acquisition frame

rate of EIT. In our simulation analysis, different EIT protocols

involving 16 electrodes were used in different drive patterns.

When the acquisition frame rate was unchanged, regardless of

which drive pattern was used, the spectrum peaks appeared at

the frequency points of an integer multiple of the acquisition

frame rate. The comb filter was designed based on the amplitude

frequency characteristics of low–frequency interference, so the

drive pattern had little influence on the filtering effect when the

acquisition frame rate remained the same.

In contrast, when the drive pattern remained constant,

the filtering effect improved slightly with the increase of the

acquisition frame rate. It can be seen from Figures 6, 7 that when

the acquisition frame rate decreased, the time required for the

16 electrode pairs to complete switching in a single acquisition

increased correspondingly, resulting in the increase of spectrum

pulses within the same frequency range. Accordingly, the filter

order N of the comb filter, which defines the number of notches

(or peaks) in the filter, should be increased to get more notches

(Figure 10). Although properly increasing the filter order can

improve the filtering effect, a too large order will lead to

waveform distortion and complicated calculation.

In addition to the better filtering effect, the higher

acquisition frame rate could improve the temporal resolution

of the EIT. Epilepsy is a disorder of the nervous system

characterized by sudden recurrent loss of consciousness

and convulsions. Higher temporal resolution means more

information about electrical impedance changes associated with

seizures is likely to be displayed. This helps to track electrical

impedance changes during epileptic seizures in real time via EIT,

thereby improving the feasibility of seizure prediction.

Conclusion

In this study, we found that the combination of a low–

pass filter and a comb filter could suppress the interference

of EIT on EEG, and the calculation was simple and efficient,

FIGURE 10

Amplitude response of comb filter with di�erent order N (Bw =

0.3, Apass = 0.05).

as such, this method would be suitable for clinical real-time

monitoring of seizures. In addition, this method would be

valuable for synchronous monitoring of EEG and other medical

electromagnetic devices that work the way EIT does.

In our future work, we will integrate EIT and EEG into

a single system to synchronously record EEG and electrical

impedance during seizures of animal models. A low–pass filter

and a comb filter will be used to attenuate the interference of EIT

on EEG in real time. Then filtering parameters will be adjusted

to improve the filtering effect.
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