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Introduction: To investigate the e�ect of exercise on the walking economy

(WE) of patients with chronic neurological conditions (CNCs) and to determine

the type of physical activity that best improves the WE of patients with CNCs.

Methods: Four electronic databaseswere searched until December 2022 (Web

of Science, PubMed, Cochrane, and CINAHL). Studies were screened using

the following inclusion criteria: 1. randomized controlled or non-randomized

controlled trials; 2. exercise interventions >4 weeks in duration; 3. patients

aged ≥18 years with a diagnosis of CNCs. 4. walking economy of patients

measured before and after the intervention. The PEDro scale was used to

assess the methodological quality of the included studies.

Results and discussion: Twenty-two studies met the inclusion criteria.

Meta-analysis results showed that exercise significantly improved WE (g =

−0.352, 95% CI, −0.625 to −0.078, P = 0.012). Subgroup analysis revealed that

patients who received exercise showed better WE compared with those who

underwent no control intervention (g = −0.474, 95% CI, −0.636 to −0.311,

P < 0.001). However, exercise therapy did not show a significant improvement

of WE compared with control groups (g = −0.192, 95% CI, −0.451 to 0.067,

P = 0.146). In addition, we found that endurance combined with resistance,

high-intensity intermittent, and other training modalities resulted in better WE

compared with the pre-intervention. Of these, interval training has the greatest

e�ect on improving WE. In conclusion, exercise can improve WE in patients

with CNCs. More randomized controlled trials are necessary for the future.

Systematic review registration: https://www.crd.york.ac.uk/prospero/

display_record.php?ID=CRD42022361455, identifier: CRD42022361455.
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1. Introduction

Globally, approximately 1 billion people suffer from chronic

neurological conditions (CNCs), which have been becoming

the main cause of death and disability in the world (1).

Epidemiological studies have shown that the prevalence of

CNCs has continued to increase over the years (2). The

ability to exercise is considered an essential challenge in

patients with CNCs. Lower exercise ability usually leads to

health deterioration and worse quality of life for patients

with CNCs (3–6).

For patients with CNCs, the interventionmay be lifelong (7).

In some patients, internal surgery is expensive and risky, and the

use of other medications is associated with side effects and some

of them do not efficiently restore body functions and improve

daily activities (8). Therefore, exercise training is increasingly

being used in the field of rehabilitation of exercise ability for

patients with CNCs. It can improve various exercise functions

such as balance, walking performance, and gait parameters in

patients with CNCs such as stroke, Parkinson’s disease (PD),

and multiple sclerosis (MS) (9–14). Exercise for patients with

CNCs can be broadly classified as endurance training (ET),

resistance training (RT), endurance combined with resistance

training (ERT), intermittent training (IT), or other training

modalities (OTM). OTM is used to target specific functional

impairments, for example, using the treadmill or ground-based

walking exercises to improve walking ability in patients with

stroke (15). Compared with usual care, exercise training exists

for more intense physical activity and, more significantly, they

are more economical and lifelong participation. A recent meta-

analysis showed that exercise improved motor participation in

patients with multiple sclerosis (15). It can, therefore, provide

sustainable patient recovery.

Walking economy (WE) was defined as the steady-state

aerobic demand at a given submaximal speed or distance, which

usually was used to measure the energy cost while walking (16–

18). A higher WE indicates that a patient can walk further per

unit of time and distance. WE is influenced by age, and a meta-

analysis reported a 17% increase in net metabolic cost in older

adults compared with healthy younger adults (19). Disorders

caused by neurological disorders increase energy expenditure

during walking (16, 20, 21), making patients more prone to

fatigue when walking (16, 22). Patients with stroke (22), PD

(16), Alzheimer’s disease (AD) (23), MS (24), and spinal cord

injury (SCI) (25) exhibit higher oxygen consumption compared

with healthy individuals. The mechanisms underlying the high

energy cost in patients with CNCs may include tremors (16),

walking biomechanics (26), and neural mechanisms (27). A

poor WE may increase the risk of fatigue in patients with

CNCs, which in turn causes functional limitations and reduces

their quality of life and social participation (28–30). Therefore,

strategies meant to improve WE have been explored to improve

the recovery of motor ability in patients. However, to date, no

high-quality studies have systematically reviewed the effects of

exercise on WE. Several studies have explored whether exercise

therapy can improve cardiopulmonary function in patients with

CNCs. However, such studies did not test the value of peak

oxygen consumption (VO2peak) improvement as a potential

physiological indicator of cardiopulmonary function (10, 12, 14,

31–33), and this aspect has not been sufficiently reviewed as a

primary outcome.

Given the importance of WE in the daily life of patients with

CNCs, we think a review and analysis of the current literature

is necessary. Therefore, the main objectives of this meta-analysis

were (1) to assess the impact of using exercise onWE in patients

with CNCs and (2) to different exercise modalities in an attempt

to find an intervention that improves WE optimally.

2. Methods

The meta-analysis is based on the Preferred Reporting Items

for Systematic Reviews and Meta-Analyses (PRISMA).

The systematic evaluation program is registered in

PROSPERO (CRD42022361455).

2.1. Literature search

A search was performed on the following electronic

databases: PubMed, Web of Science, Cochrane, and CINAHL.

The search was conducted from the earliest record to December

2022 using the following terms: (Central nervous system

condition OR Central nervous system disease OR Stroke

OR Multiple sclerosis OR Parkinson∗ disease OR Incomplete

spinal cord injury OR Alzheimer∗ disease) AND (Exercise

OR Training OR Physical activity OR Rehabilitation) AND

[(Walking OR Gait OR Locomotor) AND (Speed OR Velocity

OR Economy OR Expenditure OR Energy or Oxygen)].

All published peer-reviewed articles written in English were

retrieved. In addition, reference lists of the retrieved studies

were also reviewed. All articles identified were screened

by two researchers by reading the title and abstract and

evaluated against the eligibility criteria mentioned in the

subsequent section.

2.2. Inclusion and exclusion criteria

2.2.1. Inclusion criteria

The inclusion criteria were as follows: (1) Participants

with a diagnosis of chronic neurological diseases, such as

stroke, MS, PD, SCI, and AD. Participants were able to walk

alone or with appropriate assistance. (2) Included studies

were longitudinal interventional studies, whether randomized

controlled trials (RCT), non-randomized controlled trials
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(N-RCT). (3) Intervention group was based on exercise training,

which lasted at least 4 weeks. (4) Walking at self-selected

speed (SSS) or absolute speed tested walking economy and

standardized for weight or speed. (5) Articles are written

in English.

2.2.2. Exclusion criteria

The inclusion criteria were as follows: (1) We excluded

studies on exercise combined with other non-physical

training on intervention, such as the combination of electrical

stimulation, virtual reality, and robot-assisted training. (2)

Conference abstracts and posters were excluded.

2.3. Data extraction and quality
assessment

The search results were downloaded and imported into

EndNote software. Duplicates were removed, as well as

filter titles, abstracts, and full-text articles. Two authors

independently screened the titles, abstracts, and full-text

articles. A third author was consulted if there was any

discrepancy between the results obtained by the two authors

to achieve consensus. The data were independently extracted

by two researchers: extraction study design; participant

characteristics; intervention description; and oxygen uptake

outcome indicators. For the selection of WE, if some studies

performed multiple speed measurements simultaneously,

for example, 80, 100, and 120% self-selected speed, we

included only the 100% group of selected speeds that were

most comfortable and closest to life for the participants to

ensure homogeneity of results. The article’s corresponding

author was contacted to clarify or obtain incomplete or

missing data.

The methodological quality of the studies was assessed

using the original PEDro scale (34). This scale has 11

entries that can be used to assess the methodological

quality of physiotherapy. Overall, PEDro has been found

to be a valid measure of the methodological quality of

clinical trials (35). The evaluation criteria were as follows:

eligibility criteria, randomization, concealed allocation, baseline

equivalence, blinding of participants, blinding of instructors,

blinding of assessors, retention rate of 85%, missing data

management (intent-to-treat analysis), between-group analysis,

and measures of variability. If the aforementioned information

was clear in the study, 1 point was awarded; if not, 0

points were awarded. The maximum score for each study

was 11 points. According to the scores, the quality of

these studies was divided into four grades: excellent (>9

points), good (6 to 8 points), fair (4 to 5 points), and poor

(<4 points) quality.

2.4. Exercise definition

The type of exercises was classified into five categories

according to the following definitions: (1) ET is defined by

the ACSM guideline as a continuous and rhythmic exercise

sustained for a period that requires a substantial activation

of large skeletal muscles (36), such as treadmill walking or

running, and stationary cycling training. (2) RT is defined as a

few dynamic muscle contractions against external loads, with

sufficient progression (36). (3) ERT is defined as training that

includes both endurance and resistance exercises. (4) IT involves

repeated high-intensity exercise interspersed with periods of

active or inactive recovery (37). (5) OTM is defined as being

used to target specific functional disorders. In this study, OTM

focuses on the participant’s gait at a lower intensity and is

designed to restore the patient’s ability to walk.

2.5. Data synthesis and analysis

Statistical analyses were performed using Comprehensive

Meta-Analysis, version 3.0 (Englewood, NJ, USA), with the

level of statistical significance set at p < 0.05. ES values were

calculated from the mean and standard deviation data before

and after the exercise intervention or between the experimental

and control groups. The effect size was calculated using two

methods: (I) For controlled trials, we calculated effect size as

the change in the mean of the exercise group before and after

the intervention minus the change in the mean of the control

group, divided by the combined standard deviation before the

intervention, and adjusted for sample size. For studies that

included a control group and multiple intervention groups, the

sample size of the control group was proportionally reduced. (II)

For before-and-after controlled clinical studies without a control

group, the effect size was calculated as the mean change before

and after the intervention divided by the standard deviation

before the intervention, which was presented as Hedges’ g and

95% confidence interval (CI).

The type of control group and different exercise types

were classified. Subgroup analyses were performed based on

each classification, which contained studies larger than two

articles. We divided the exercise intervention into pre-exercise

and control groups compared with exercise according to the

study design. In addition, we also addressed the compliance

of the included studies with the published Physical Activity

Guidelines (PAG) (38). For studies to meet the PAG, the

following conditions had to be met: 150 min/week of moderate-

intensity exercise or 75 min/week of vigorous exercise, or

roughly a combination of moderate and vigorous exercises. For

studies that met the PAG, exercise intensity and duration had

to be reported. Moderate intensity was defined as maximum

heart rate= 55–70%, maximum oxygen uptake= 40–60%, heart
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rate reserve = 40–60%, or ratings of perceived exertion (RPE)

of 11–13 on the Borg scale. Vigorous intensity was defined as

the maximum heart rate of >70%, maximum oxygen uptake

of >60%, heart rate reserve of >59%, RPE of >13 on the

Borg scale (39).

The magnitude of Hedges’ g was interpreted using Cohen’s

(1988) (40) convention as small (0.2–0.5), medium (0.5–

0.8), and large (>0.8). We used the I-squared (I2) test to

assess the statistical heterogeneity of treatment effects between

studies, with I2 of > 50% considered heterogeneous. Since

the participants included in the study were from different

groups of diseases. Therefore, the summary results of the

hypotheses are based on the random effects model. The effect

of the categorical moderators was based on the significance

of the QB statistic. The QB statistic indicated the statistical

significance of the difference between the levels of the moderator

variables. The effect of publication bias on the primary meta-

analyses was addressed by combining a funnel plot assessment

with Duval and Tweedie’s trim and fill correction (41).

Sensitivity analysis uses an exclusion-by-exclusion approach

FIGURE 1

Flowchart of literature search and screening.
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TABLE 1 Summary characteristics of the 22 included studies.

References Participant characteristics Intervention characteristics Walking economy

Participants Sample

(male)

Age Disease
duration
(years)

Intervention
mothed

Experimental
group intensity

Total
time

Frequent Unit Speed

Pedrinolla et al. (43) AD EG: 16 80± 7 NR EG: Exercise Training 70% HRmax

85% 1 RM ∗12∗3 groups
90 3 days a

week/24 weeks
J/kg/m Self-selected

CG: 16 79± 6 NR CG: Cognitive treatment

Munari et al. (44) Stroke EG1: 8(7) 61± 5.57 5.2± 2.93 EG1: High-intensity treadmill
training

Intensity: 85 and 95%
VO2peak

Recovery: 50% VO2peak

walking

50–60 3 days a
week/12 weeks

ml/kg/m Self-selected

EG2: 7(7) 62± 11.27 6.4± 3.76 EG2: Low-intensity treadmill
training

60% VO2peak

Gollie et al. (45) SCI EG: 6 19 to 67 2 to 5 EG: Overground Locomotor
Training

NR 90 2 days a
week/15 weeks

ml/kg/min Self-selected

Leddy et al. (46) Stroke EG: 12(9) EG: 55± 12 0.478 EG: High-Intensity Dynamic
Stepping Training

70–80%HRR 40 4 days a
week/10 weeks

ml/kg/m Self-selected

CG: 12(8) CG: 61± 10 0.244 CG: Low-intensity physical
therapy that includes exercise

30–40%HRR

Braendvik et al. (48) MS EG1: 13(4) 46.6± 6.2 8.3± 6.4 EG1: Treadmill Training ≤70%HRmax 30 3 days a
week/8weeks

ml/kg/min 0.83 m/s

EG2: 15(5) 49.1± 7.4 6.2± 6.6 EG2: Progressive Strength
Training

Five exercises
80% 1 RM∗6R∗2G

DiPiro et al. (47) SCI EG: 10 57.9± 9.3 11.1± 9.6 EG: Aerobic exercise 40%VO2R, increased by
5%. Last week
60–70%VO2R

20 2 days a
week/6 weeks

ml/kg/min Self-selected

Boyne et al. (49) Stroke EG1: 11(7) 59± 9 3.8± 2.9 EG1: High-intensity interval
training

Start: 30–50%HRR
increased by 0.1 mph
every 5 seconds
Recovery: 40± 10 HRR

25 3 days a
week/4 weeks

ml/kg/m Self-selected

EG2: 5(2) 57± 12 6.3± 2 EG2: Continuous aerobic
training

45± 5% HRR, Two
weeks later: 50± 5%
HRR

(Continued)
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TABLE 1 (Continued)

References Participant characteristics Intervention characteristics Walking economy

Participants Sample

(male)

Age Disease
duration
(years)

Intervention
mothed

Experimental
group intensity

Total
time

Frequent Unit Speed

Awad et al. (50) Stroke EG1:
17(43%)

55.3± 5.8 1.73± 2.47 EG1: Selected speeds walking NR 36 3 days a
week/12 weeks

ml/kg/m Comfortable

EG2:
16(44%)

63.25± 5.4 2.68± 2.27 EG2: Fast speeds walking NR

Holleran et al. (51) Stroke EG1: 6 55± 8.2 2.92± 1.75 EG1: High-intensity
locomotor training

70–80% HRR 40 12
sessions/4–5
weeks

ml/kg/m Self-selected

EG2: 6 EG2: Low-intensity
locomotor training

30–40% HRR

Fernández-Del-
Olmo et al.
(52)

PD EG1: 11(6) 59.45± 11.32 4.82± 3.28 EG1: Treadmill training NR 25-45 3 days a
week/5 weeks

ml/kg/m Self-selected

EG2: 11(6) 58± 9.38 4.95± 2.59 EG2: Overground training NR

Kressler et al. (53) SCI EG1: 15 NR NR EG1: Overground training ≤13 borge NR 12 weeks ml/kg/m Self-selected

EG2: 17 NR NR EG2: Treadmill training ≤13 borge

Ivar Gjellesvik et al.
(54)

Stroke EG: 8(4) 48.9± 10.6 7.2± 7.5 EG: High Aerobic Intensity
Interval Treadmill Walking

85 and 95% VO2peak

Interval: 50% HRmax

walking

90 2 days a
week/12–15
weeks

ml/kg/min 0.83 m/s

Hill et al. (55) Stroke EG: 11(6) 22 to 61 0.8 to 21 EG: Maximal Strength
Training

85–95% 1 RM∗4∗4 NR 3 days a
week/8 weeks

ml/kg/min 0.83m/s (n =

9)
0.75m/s (n=

3)

Schenkman et al.
(64)

PD EG1: 41 63.4± 11.2 4.9± 3.7 EG1: Aerobic exercise 65–80% HRmax 45–50 3 days a
week/64 weeks

ml/kg/min 0.36–1.79 m/s

EG2: 39 64.5± 10 3.9± 4.2 EG2:
Flexibility/balance/function
exercise

NR

CG: 41 66.3± 10.1 4.5± 3.8 CG: Home-based exercise NR

Moore et al. (56) Stroke EG: 20(14) 50± 15 1.08± 0.67 EG1: Immediate LT 80–85% HRmax NR 2–5 days a
week/4 weeks

ml/kg/km fastest-possible
velocity

EG2: Delayed LT

(Continued)
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TABLE 1 (Continued)

References Participant characteristics Intervention characteristics Walking economy

Participants Sample

(male)

Age Disease
duration
(years)

Intervention
mothed

Experimental
group intensity

Total
time

Frequent Unit Speed

Pelosin et al. (57) PD EG: 10 69± 5.08 7.8± 2.14 EG: Treadmill training Start: 2 km/h, increased
by 0.5 km/h 3 days

30 3days a week/4
weeks

ml/kg/min 0.56, 0.69,
0.83, 0.97,
1.11, and 1.25
m/s

Lee et al. (58) Stroke EG1: 12(8) 62.6± 9.3 3.68± 5.33 EG1: Progressive Strength
Training

1 Week: 50% 1 RM
2Week: 80% 1 RM
With a 3% increase

60 3 days a
week/10–12
weeks

ml/kg/m Self-selected

EG2: 12(6) 67.2± 10.6 4.52± 0.18 EG2: Aerobic Cycle Training 40 rev/min
50–70% HRmax

EG3: 12(8) 60.5± 10.6 5.27± 0.88 EG3: Aerobic cycling plus
Progressive Strength

Ditto

CG: 12(6) 65.3± 6 5.48± 3.53 CG: Sham Exercise N/A

Newman et al. (59) MS EG: 15 53.6± 8.67 17.3± 8.3 EG: Aerobic treadmill
training

55–85% HRmax 30 12 session/4
weeks

ml/kg/m Self-selected

Mead et al. (60) Stroke EG: 32(18) 72± 10.4 0.15 to 0.79 EG: Progressive endurance
and resistance training

13–16 on borge 75 3 days a
week/12 weeks

ml/kg/m Self-selected

CG: 34(18) 71.7± 9.6 0.25 to 0.66 CG: Relaxation intervention N/A

Macko et al. (61) Stroke EG: 32(22) 63± 10 2.91± 2.42 EG: Treadmill Exercise 60–70% HRR 40 3 days a
week/24 weeks

ml/kg/min 0.22 m/s

CG: 29(21) 64± 8 3.25± 4.92 CG: Low-intensity
conventional therapy that
includes exercise

30–40% HRR

Macko et al. (62) Stroke EG: 23(19) 67± 8 >6 months EG: Treadmill training 60% HRR 40 3 days a
week/24 weeks

ml/kg/min 0.22 m/s

Macko et al. (63) Stroke EG: 9 67± 2.28 3± 0.8 EG: Treadmill Aerobic
Exercise Training

50–60% HRR 40 3 days a
week/24 weeks

ml/kg/min 0.22 m/s

AD, Alzheimer’s disease; MS, multiple sclerosis; PD, Parkinson’s disease; SCI, spinal cord injury EG, experimental group; CG, control group; NR, not reported; HRmax , maximum heart rate; HRR, heart rate reserve; VO2R, VO2 reserve; VO2peak, peak

oxygen consumption; RM, repetition maximum.

F
ro
n
tie

rs
in

N
e
u
ro
lo
g
y

0
7

fro
n
tie

rsin
.o
rg

https://doi.org/10.3389/fneur.2022.1074521
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Liu et al. 10.3389/fneur.2022.1074521

to observe whether there is a significant change in the

outcome results.

3. Result

3.1. Study characteristics

Analysis of the four databases yielded 11,808 results. Among

others, 8,632 titles and abstracts were screened to remove

duplicates. Figure 1 illustrates the number of articles screened

and those thatmet the inclusion criteria. One study was excluded

by consensus due to high variability within the participants’

group (42). Finally, 22 studies were included in the meta-

analysis, yielding a total of 30 interventions (43–64) (Figure 1).

3.2. Participants

A total of 612 participants with chronic neurological

disorders were included for quantitative analysis, with a

mean age of 60.76 ± 8.62. Table 1 presents the participants’

characteristics of all included studies. Studies involving patients

with stroke (n = 13), AD (n = 1), PD (n = 3), MS (65),

and SCI (n = 3) were determined. The sample size for each

study ranged from 6 to 66. All included studies were supervised,

non-home-based clinical intervention trials (Table 1).

3.3. Interventions

Table 1 shows the exercise details for each study. Among the

studies included in themeta-analysis, the interventions recorded

included IT (n = 3), RT (n = 3), ET (n = 11), ERT (n = 3),

and OIMT (n = 11). The length of intervention ranged from 4

to 64 weeks. The intervention groups in all experiments were

based on supervised, non-home exercise. The control group in

the six RCT studies used cognitive rehabilitation or usual care

(43, 46, 58, 60, 61, 64). Four RCT studies used a usual care

control group that contained exercise intervention (46). Table 1

shows the specific intervention intensity and details.

Adverse events were reported in four of the 22 studies

(46, 48, 60, 64). They included non-injurious falls, joint pain, and

abrasions, but no serious adverse time was recorded. Moreover,

these effects were not significantly different between the control

and experimental groups. One study reported a fall that occurred

outside of the session.

3.4. Measurements

The WE measurement primarily involved relative intensity

(n = 14) and absolute intensity (n = 8). All incorporated

energy costs or WE were collected using oxygen uptake

data obtained directly from indirect thermometry and further

processed using body weight or speed. WEmeasurements under

relative intensity measurements were based on self-selected or

subject-perceived comfortable speeds, and WE under absolute

intensity measurements was in the range of 0.22–1.25 m/s. Most

studies were allowed to allow participants to use handrails while

walking, or to use other assistance, with one study using 40%

weight support in the intervention (56).

3.5. Quality assessment

The mean methodological quality score of the 22 included

studies was 6.62 ± 1.46. Most studies were of moderate quality,

and no studies were rated as low quality (<4). Because most

studies used a before-and-after control design, a significant

portion of the sample could not meet the requirements for

concealed allocation and blinding. No studies were excluded

because of methodological quality (Table 2).

3.6. Meta-analysis

A total of 22 studies were included in the meta-

analysis. Analysis of the overall pooled results revealed small

heterogeneity, with a small but beneficial effect of exercise on

WE (g = −0.352, 95% CI: −0.625 to −0.078, P = 0.012,

I2 = 43.301%) (Figure 1). Subgroup analyses were conducted

according to the type of intervention in the control group.

Pooled results from N-RCTs without controls showed a small

effect size improvement in WE after the exercise intervention

compared with before intervention (g=−0.474, 95%CI:−0.636

to−0.311, P < 0.001, I2 = 26.009%). Ten interventions from six

RCT studies showed no significant beneficial effect of exercise

training on WE compared with controls (g = −0.192, 95% CI:

−0.451 to 0.067, P = 0.146, I2 = 59.349%) (Figure 2).

Subgroup analyses based on the training type revealed that

among the included N-RCT studies, nine interventions from

seven studies investigating ET (n = 7) intervention programs

(g = −0.584, 95% CI = −852 to −0.316, P < 0.001) and IT (n

= 3) programs (g = −0.730, 95% CI = −1.169 to −0.292, P =

0.001) had moderate effects on WE. OTM (g = −0.361, 95% CI

= −0.560 to −0.162, P < 0.001) showed a small but beneficial

effect on WE.

Three RCTs used ERT as an intervention and five RCTs used

ET, none of which resulted in a significant beneficial effect on

WE. Other RCTs with exercise interventions were not analyzed

in subgroups because the number of aggregates was less than 2

(Table 3). In addition, studies that achieved PAG showed greater

improvement in WE compared with pre-exercise, but there was

no significant difference between studies that achieved and did

not achieve it. In addition, studies that achieved PAG did not

show improvement in WE compared with controls.
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TABLE 2 Physiotherapy evidence database (PEDro) scores of the 22 included studies.

ID References #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 Score

1 Pedrinolla et al. (43) 1 1 0 1 0 0 0 1 1 1 1 7

2 Munari et al. (44) 1 1 1 0 0 0 0 1 1 1 1 7

3 Gollie et al. (45) 1 0 0 0 0 0 0 1 1 1 1 5

4 Braendvik et al. (48) 1 1 0 1 0 0 0 0 1 1 1 6

5 DiPiro et al. (47) 1 0 0 0 0 0 0 1 1 1 1 5

6 Leddy et al. (46) 1 1 1 1 0 0 1 0 1 1 1 7

7 Boyne et al. (49) 1 1 1 1 0 0 0 0 1 1 1 7

8 Awad et al. (50) 1 1 0 1 0 1 0 1 1 1 1 8

9 Holleran et al. (51) 1 1 0 1 0 0 0 1 1 1 1 7

10 Fernandez et al. (52) 1 1 0 1 0 0 0 1 1 1 1 7

11 Kressler et al. (53) 1 1 0 1 0 0 0 1 1 1 1 7

12 Ivar Gjellesvik et al. (54) 1 0 0 0 0 0 0 1 1 1 1 5

13 Schenkman et al. (64) 1 1 1 1 0 1 0 1 1 1 1 9

14 Hill et al. (55) 1 0 0 0 0 0 0 1 1 1 1 5

15 Moore et al. (56) 1 1 0 1 1 1 0 1 1 1 1 9

16 Pelosin et al. (57) 1 0 0 0 0 0 0 1 1 1 1 5

17 Lee et al. (58) 1 1 1 1 0 0 0 1 1 1 1 8

18 Newman et al. (59) 1 0 0 0 0 0 1 0 1 1 1 5

19 Mead et al. (60) 1 1 1 1 0 0 0 1 1 1 1 8

20 Macko et al. (61) 1 1 1 1 0 0 1 1 1 1 1 9

21 Macko et al. (62) 1 0 0 0 0 0 0 1 1 1 1 5

22 Macko et al. (63) 1 0 0 0 0 0 0 1 1 1 1 5

#1, eligibility; #2, randomized allocation; #3, concealed allocation; #4, similarity between groups at baseline; #5, Blinding of subjects; #6, Blinding of therapists; #7, blinding of assessors; #8,

outcome measures obtained from at least 85% of initially allocated subjects; #9, all received treatment or key outcome was analyzed by “intention-to-treat”; #10, between-group statistical

comparisons; #11, both point and variability measures provided.

3.7. Publication bias and sensitivity
analysis

To identify likely publication bias, funnel plots were

generated for effect size and standard error. The funnel

plots showed that the funnel plots were largely symmetric

among the included N-RCT studies. However, studies with

disproportionality in RCTs with control groups as a control

group were generally located to the right of the variance. One

study required adjustments using Duval and Tweedie’s trim and

fill correction to produce a symmetrical funnel plot around

Hedge’s g. The correction shifted the overall effect size in the

left direction but did not change the main results, although it

exhibited a significant trend (Figure 3).

Sensitivity analysis conducted by excluding any of all cohorts

from the meta-analysis showed that the estimated effects were

within the 95% CI of the mean ES in outcomes. This suggested

that the results of the meta-analysis did not significantly change

after the removal of any one cohort.

4. Discussion

The main objective of this systematic evaluation was to

determine the exercise therapies that are used to improve WE

in patients with CNCs. We found that exercise improved WE

compared with either pre-exercise or non-exercise patients.

However, exercise was not more beneficial for WE compared

with the control group.

Exercise improves the oxygen cost while walking

compared with pre-intervention or no-exercise controls.

Several mechanisms may explain the observed results from

biomechanics and neuroscience perspectives. In some patients,

the improvement in WE is likely related to the biomechanical
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FIGURE 2

Forest plots of e�ect sizes and 95% CIs for changes in walking economy after exercise intervention. The superscript numbers refer to di�erent
exercise programs assessed in the same study. CI, confidence interval.

factors of walking gait because many studies have found

an increase in stride length, step length, and a decrease in

asymmetrical rows in the affected limb (66). This demonstrates

an improvement in the functional capacity of the patient

(61). Meanwhile, exercise has been shown to improve the

pull reflex in the hamstrings of the lower limbs, and the

adaptive responses resulting from these exercises may enhance

locomotion, especially the biomechanical efficiency of gait (62).

In previous studies, improvements in neurological function in

patients with motor stroke were reported, following exercise

intervention. Promoting brain plasticity and compensatory

activation through high-intensity step training may be a neural

mechanism for improving walking gait by stimulating the

activation of the subcortical and cortical networks in post-

stroke patients (67, 68). For some patients with AD, there is

evidence that exercise enhances neuronal and vascular plasticity

and improves their pathophysiology (69).

The results of the meta-analysis also showed that higher-

intensity exercise did not significantly improve WE compared

with the control group. Through a review, we hypothesize

that the non-improved outcome may be related to the exercise

pattern and the duration of the intervention. Some studies

have used usual care in a control group with an exercise

intensity of 30–40% heart rate reserve or walking on a treadmill

(46, 61). Two of these studies observed significant temporal

changes in WE in both the control and intervention groups that

lasted for 10 weeks under supervision, that is, the intervention

significantly improved WE in the exercise and control groups

(46, 61). This result suggests that treadmill-based gait training

may improve WE. The previous meta-analysis showed that

low-intensity, prolonged treadmill exercise had the greatest

benefit on functional impairment in patients with stroke (70).

Shulman et al. compared three different intensities of physical

activity in patients with PD and found significant differences

in fitness and muscle strengthening between the groups, not

in gait function. Even lower intensities were superior to higher

intensities in some respects (71). It has been suggested that

gait training interventions may preferentially increase the

oxygen cost of transport instead of enhancing maximal oxygen

consumption or lactate thresholds (18). A study by Macko

et al. found significantly higher VO2peak in the intervention

group compared with the usual care. This is consistent with a

previous review that found that high-intensity exercise improves

patients’ VO2peak (72). Prioritizing WE improvement is an

important approach because patients with CNCs have higher

energy costs than healthy individuals. In addition, the duration
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of the intervention was found to affect outcomes. The only study

that yielded beneficial effects administered the intervention

for up to 16 months. In conclusion, we hypothesize that

both higher-intensity and lower-intensity treadmill training can

improveWE, but this would take longer. Notably, relaxation and

cognitive interventions were used in the control groups of both

studies. The results showed a significant improvement in WE

in the exercise group compared with the control group (43, 60).

This further strengthens our point.

In the study by Lee et al., passive leg cycling resistance

training did not significantly improve either VO2peak or

WE (58). Therefore, differences in exercise modality were

considered. Previous studies have found no significant difference

in VO2peak between cycling and treadmill exercise in patients

with stroke (73). Moreover, they reported that the choice of

exercise modality depended on individual ability and preference.

However, the application of cycling to improve gait should be

applied with caution because gait is a complex sensorimotor

function, and walking and strength-oriented lower extremity

therapies are more beneficial to walking ability than cycling

(74). A meta-regression based on walking ability in patients

with stroke also showed that traditional seated aerobic exercise

was unlikely to cause meaningful improvements in walking

function (75).

In further analyses, we performed a subgroup analysis

to determine the effect of different training types on WE.

For ET, pooled results from the N-RCT trials showed a

moderate effect on WE. However, it did not have significant

benefits compared with conventional rehabilitation (46, 61,

64). About the reviewed results, it does not appear that these

two types of training had better effects on WE compared

with conventional rehabilitation. Therefore, the effect of ET

on WE should be viewed with caution. Compared with other

types of exercises, high-intensity IT intervention had the

most significant improvement on WE. Unfortunately, there

are no higher-quality randomized controlled trials to validate

this result. One study found that high-intensity IT had a

greater effect on patients’ cardiorespiratory fitness than high-

intensity exercise alone and sustained aerobic training (10,

12, 76). Due to the increased demand for oxygen during

exercise training, the reserves are increased VO2, allowing

patients to reach higher intensities or greater VO2 after

training (44). A meta-analysis showed that high-intensity

IT induced good adaptations in older adults in terms of

cardiorespiratory fitness, body mass, muscle strength, cardiac

contractility, mitochondrial citrate, enzyme activity, and lower

blood triglyceride and glucose levels (31). Currently, it is not

known which type of exercise is more effective in improving

WE. However, high-intensity IT has been recognized in many

reviews for promoting other physical functions in patients

with CNCs (10, 12, 31, 32, 77).

The ERT and OTM interventions showed a small-to-

moderate effect on WE. In comparison, previous reviews found
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FIGURE 3

Funnel plots of publication bias. (A, B) Funnel plots (A, B) represent the publication bias of the N-RCT and the RCT, respectively.

that ERT could be the most effective among these interventions

in improving cardiopulmonary function in patients with stroke

(14). The ASCM guidelines also state that aerobic and resistance

exercise is more effective than either form of training in

counteracting the adverse effects of a sedentary lifestyle on

a healthy cardiovascular system and skeletal muscle function

(78). However, the pooled results of the only two RCTs do not

confirm that ERT is best for improving WE. Previous systematic

evaluations and meta-analyses reported that resistance exercise

training had positive effects on overall muscle strength, fatigue,

balance, and quality of life in patients with CNCs (11,

79, 80). However, our pooled results only showed a trend
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of improvement in WE with RT. The confounding effects

of our outcome variables make the interpretation difficult.

The current evidence only weakly supports the benefit of

exercise on WE. In future, continued high-quality randomized

controlled trials should be performed to provide more

compelling evidence.

Overall, most previous investigations used walking speed,

distance, and VO2peak as indicators of cardiorespiratory

fitness. This is the first systematic evaluation and meta-

analysis that focused on WE and provides valuable ideas

for strengthening the cardiorespiratory capacity of patients

with CNCs.

4.1. Limitations

Some limitations exist in this study. First, a few high-

quality RCTs were included. Moreover, most of them were

single-arm studies based on before-and-after controls, which

may lead to type II errors (e.g., false-negative results) in

subgroup analyses. There was some publication bias in

the included RCTs, with the pooled results moving in the

direction of being more beneficial to WE, although still not

constituting significance, which also suggests that there may

still be better interventions than traditional rehabilitation.

Second, several exploratory preliminary studies with small

sample sizes (some below 10 cases) were included in the

analysis. Third, while the evidence base was overall of good

quality with most studies being of moderate-to-low risk of

bias, future research should seek to improve certain points.

Of the included studies, most did not use blinding of

participants and experimenters based on limitations of the

study design. Blinded assignment and assessment of outcomes

could limit bias associated with self-report measures in exercise

interventions. Finally, the presence of confounding variables

in the studies prevented more detailed subgroup analyses, and

some results with high heterogeneity could not be interpreted.

Therefore, the results of our study should be referred to

with caution.

5. Conclusion

This systematic review and meta-analysis showed that

exercise training improved WE. Notably, the effect of exercise

interventions on WE may be the same as usual care appeared

to be. Gait-based low-intensity usual care also improved WE.

However, it remains to be determined whether there is a

more effective means of training that will result in a higher

improvement in WE. The prevailing limited evidence suggests

that high-intensity IT may be more beneficial for WE compared

with other forms of exercise. There is an urgent need for

future larger and high-quality studies to find an optimal training

modality to improve the cost of walking ability.
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