
TYPE Original Research

PUBLISHED 18 January 2023

DOI 10.3389/fneur.2022.1078147

OPEN ACCESS

EDITED BY

Siti Balqis Samdin,

Xiamen University, Malaysia

REVIEWED BY

Sim Kuan Goh,

Xiamen University, Malaysia

Fuad Noman,

Monash University Malaysia, Malaysia

Jose Manuel Ferrandez,

Universidad Politécnica de Cartagena, Spain

*CORRESPONDENCE

Xiaoan Zhang

zxa@zzu.edu.cn

SPECIALTY SECTION

This article was submitted to

Neurological Biomarkers,

a section of the journal

Frontiers in Neurology

RECEIVED 24 October 2022

ACCEPTED 30 December 2022

PUBLISHED 18 January 2023

CITATION

He X, Zhao X, Sun Y, Geng P and Zhang X

(2023) Application of TBSS-based machine

learning models in the diagnosis of pediatric

autism. Front. Neurol. 13:1078147.

doi: 10.3389/fneur.2022.1078147

COPYRIGHT

© 2023 He, Zhao, Sun, Geng and Zhang. This is

an open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Application of TBSS-based machine
learning models in the diagnosis of
pediatric autism

Xiongpeng He1,2, Xin Zhao1,2, Yongbing Sun3, Pengfei Geng1,2 and

Xiaoan Zhang1,2*

1Department of Imaging, Third A�liated Hospital of Zhengzhou University, Zhengzhou, China, 2Henan
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Objective: To explore the microstructural changes of white matter in children with

pediatric autism by using di�usion kurtosis imaging (DKI), and evaluate whether the

combination of tract-based spatial statistics (TBSS) and back-propagation neural

network (BPNN)/support vector machine (SVM)/logistic regression (LR) was feasible

for the classification of pediatric autism.

Methods: DKI data were retrospectively collected from 32 children with autism

and 27 healthy controls (HCs). Kurtosis fractional anisotropy (FAK), mean kurtosis

(MK), axial kurtosis (KA), radial kurtosis (RK), fractional anisotropy (FA), axial di�usivity

(DA), mean di�usivity (MD) and Radial di�usivity (DR) were generated by iQuant

workstation. TBSS was used to detect the regions of parameters values abnormalities

and for the comparison between these two groups. In addition, we also introduced

the lateralization indices (LI) to study brain lateralization in children with pediatric

autism, using TBSS for additional analysis. The parameters values of the di�erentiated

regions from TBSS were then calculated for each participant and used as the features

in SVM/BPNN/LR. All models were trained and tested with leave-one-out cross

validation (LOOCV).

Results: Compared to the HCs group, the FAK, DA, and KA values of multi-fibers [such

as the bilateral superior longitudinal fasciculus (SLF), corticospinal tract (CST) and

anterior thalamic radiation (ATR)] were lower in pediatric autism group (p< 0.05, TFCE

corrected). And we also found DA lateralization abnormality in Superior longitudinal

fasciculus (SLF) (the LI in HCs group was higher than that in pediatric autism group).

However, there were no significant di�erences in FA, MD, MK, DR, and KR values

between HCs and pediatric autism group (P > 0.05, TFCE corrected). After performing

LOOCV to train and test threemodel (SVM/BPNN/LR), we found the accuracy of BPNN

(accuracy = 86.44%) was higher than that of LR (accuracy = 76.27%), but no di�erent

from SVM (RBF, accuracy = 81.36%; linear, accuracy = 84.75%).

Conclusion: Our proposed method combining TBSS findings with machine learning

(LR/SVM/BPNN), was applicable in the classification of pediatric autism with high

accuracy. Furthermore, the FAK, DA, and KA values and Lateralization index (LI) value

could be used as neuroimaging biomarkers to discriminate the children with pediatric

autism or not.

KEYWORDS
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1. Introduction

Autism spectrum disorder (ASD) is a specific type of pervasive

developmental disorder characterized by deficits in social and verbal

communication skills, and restricted repetitive behaviors (1). Some

evidence demonstrates that the disrupted functional and structural

connectivity will lead to these behavior features in ASD (2).

Disrupted functional connectivity during language comprehension

(3) and emotion recognition (4) had been reported in some ASD

studies. Recently, more and more researches find there is association

between abnormal functional connectivity and disrupted structural

connectivity (5). Therefore, some cognitive dysfunction in ASD may

be associated with disruption of whitemattermicrostructure. In some

cases, we can see deficiency in interhemispheric information transfer

(6) and interhemispheric functional connectivity. To some extent,

the impaired connectivity and abnormal lateralization of growth in

the right and left brain may be related to the abnormal social and

cognitive symptoms in ASD.

Nowadays, the early diagnosis of ASD is mainly based on the

clinical symptoms, but most children with ASD have no typical

clinical manifestations, which makes early diagnosis very difficult.

However, some researches have reported appropriate systematic

rehabilitation interventions in the early stages of autism could

improve the symptoms of most patients (7, 8). It is widely accepted in

the medical community that the earlier rehabilitation interventions

are provided to children with ASD, the better prognosis will be.

Therefore, it is particularly important for clinicians to make early and

accurate diagnosis of pediatric autism.

Diffusion kurtosis imaging (DKI) is one of the state-of-the-art

sequences that could be utilized to describe and sensitively detect

microstructural changes of the complex brain tissues based on non-

Gaussian water molecule theory (9). Tract-based spatial statistics

(TBSS) is a statistical method to calculate the differences of diffusion

images between patients and healthy children. The method enables

objective spatial localization of group differences in DKI data, and

its use of non-linear registration and full exploitation of the spatial

determinants of major white matter bundles minimizes registration

errors and biases and eliminates the need for arbitrary smoothing

(10). Regarding disorders like ASD, TBSS can accurately locate the

brain regions. A previous study combining DKI and TBSS to explore

white matter abnormalities in the brain of adults with ASD confirmed

that DKI could sensitively detect white matter abnormalities in the

brain of patients with ASD and that a decrease in KA values reflected

the severity of the patient, which was consistent with the findings of

this study (11).

Machine learning methods, like support vector machine (SVM),

have been applied to distinguish the children with mesial temporal

lobe epilepsy with hippocampal sclerosis and healthy children (12).

Recently, deep neural network, one new machine learning method

has been attracting more and more attention in different fields, and

it has been put into practice for classification of the brain disorders

such as Alzheimer’s disease (13, 14). Here, we try to use back-

propagation neural network (BPNN) to do classification. BPNN has

Abbreviations: ATR, Anterior thalamic radiation; IFOF, Inferior fronto-occipital

fasciculus; ILF, Inferior longitudinal fasciculus; CG, cingulate gyrus; HIP,

hippocampus; SLF, Superior longitudinal fasciculus; UF, Uncinate fasciculus;

FMA, Forceps major; FMI, Forceps minor.

been widely used in different fields of scientific research (15) and has

been demonstrated in several small sample studies (16, 17).

We hypothesize that there is one DKI parameter-based machine

learning model can efficiently make a distinction whether a child

has ASD or not. Firstly, we employed TBSS to explore the

abnormalities of brain regions, and secondly, we combined the

abnormal parameters of DKI and BPNN to make classification.

Unlike the previous analysis using predefined ROI (18, 19), this study

used TBSS for global analysis on DKI, and for the first time, the

differences analyzed by TBSS were used as features for neural network

training. To compare the performance of BPNN and traditional

classifiers, we also employed the SVM (linear), SVM (RBF), logistic

regression (LR) in python.

2. Materials and methods

2.1. Subject

All participants in our study were recruited in the Third Affiliated

Hospital of Zhengzhou University between May 2020 and May

2021. Fifty-nine participants were retrospectively included into the

study, including 32 children who were first diagnosed as ASD in the

hospital and 27 healthy children. All patients were included based

on the follow criteria: (1) 36–60 month old, right-handedness, (2)

gestational age ≥37 weeks, (3) all patients met the ASD criteria

of DSM-V (Diagnostic and Statistical Manual of Mental disorders-

V), (4) the score of CARS (childhood autism rating scale) ≥30

points, (5) no history of head trauma and convulsion, no history

of other mental diseases, no family history of neurological diseases,

no history of psychotropic drug treatment, (6) no focal or diffuse

lesions on imaging. All healthy controls (27 in total with matched

age and gender) did not have any seizure and other developmental or

neurological disorders.

2.2. MRI protocol

MRI acquisition was performed on 3T MR scanner (GE Signa

Pioneer 3.0T). Thirty minutes before examination, all participants

were given chloral hydrate (0.5 ml/kg) enemas. For stable image

quality, earplugs with cotton balls were used to keep them from

noise from the machine. After routine sequences scan, axial DKI was

performed on all participants. The scanning parameters were: TR/TE

= 8,200 ms/2.3ms, FOV = 200 mm×200mm, acquisition matrix =

256 × 256, NEX = 1, slices thickness = 4mm, number of slices =

27; gradient values b: 0, 1,000 and 2,000 s/mm2; scanning time =

7min 23 s. All subjects had no apparent structural damage, who were

examined by two radiologists based on conventional MRI images.

2.3. Imaging preprocessing

All raw DKI image were processed on the iQuant workstation

(GE Healthcare, Beijing, China). This workstation is an upgraded

version of the commercial version of the software Horos (https://

horosproject.org/). The latest AW4.7 version no longer supported

the previous DKI processing platform, so GE’s development team

transferred the algorithms that included DKI image processing
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algorithm from the AW4.6 FuncTool platform to Horos and

called it iQuant. After importing the images in the workstation,

FA/MD/Da/DR and FAK/MK/KA/KR maps could be obtained

automatically. We then exported the parameter images to a

workstation on a VMware Linux virtual machine with FMRIB

Software Library V5.0 (FSL, University of Oxford, UK) installed.

FMRIB’s Diffusion Toolbox (FDT), one tool of FSL, was employed to

correct image distortions. Then, we used another tool of FSL named

the Brain Extraction Tool (BET) to removed non-brain structure

from the images.

2.4. TBSS analysis

Voxel-wise statistical analysis of FA/MD/DA/DR or

FAK/MK/KR/KA maps were performed using TBSS (20), which was

performed on FSL (21). Steps of TBSS analysis were as follows. First,

each participant’s FA image was registered with all other people’s FA

images, resulting in a study-specific template (i.e., tbss_2_reg-n).

The found image that best represented the participants (i.e., the

target image) was then affine-aligned into MNI152 standard space.

All FA images were non-linearly transformed to the target image,

and then the target image was affine transformed to MNI152 space,

which finally made all FA images registered to MNI152 space. Then,

the mean FA image of all participants was produced for the white

matter skeleton with the FA threshold set to 0.2. Finally, this white

matter skeleton was used as a binary mask. The FA/MD/DR/DA and

FAK/MK/KR/KA images of each participant were projected onto

the skeleton respectively, and subsequently exported to do voxel

statistical analysis.

2.5. White matter lateralization indices

The DKI lateralization indices of each participant were

generated from the original skeleton (asymmetric) and the

symmetric skeleton that flipped the left side of the original

skeleton to the right side. Their 4D prealigned data (all_FA

or non-FA) was projected onto the symmetrized skeleton to

generate the 4D file (all_FA_symmetrised_skeletonised or non-

FA symmetrised_skeletonised). Next, we used the command

(fslswapdim) to complete left-right switching of the 4D file to

generate the flipped 4D file. The lateralization indices (LI) were

calculated based on a formula as follows (22):

LI = (symmetrised_skeletonised– flipped) ÷ (symmetrised_

skeletonised+ flipped).

2.6. Statistical analysis

We used the FSL randomize tool for statistical analysis, using

5,000 random permutations per test. Two contrasts were estimated:

ASD greater than healthy controls and healthy controls greater than

ASD. Considering that FA or other parameter maps might also be

influenced by age or sex, we included age and sex as covariates

for statistical analysis, trying to make the observed differences in

parameters of DKI between groups independent. Threshold-free

cluster enhancement (TFCE) (23) was used to calculate the significant

differences between 2 groups with an initial threshold set at p < 0.05,

after accounting for multiple comparisons by using family-wise error

(FWE). Finally, wemapped the FWE-corrected statistical maps of p<

0.05 onto the JHU-WM Tractography Atlas in MNI space to localize

and anatomically label the skeletal regions that showed significant

differences in TBSS. Then we extracted the clusters detected in

TBSS analysis and calculated their DKI parameter values as the raw

features. Thereafter, principal component analysis (PCA) was used to

select valid features from 59 participants, where 90% of the original

information of the original features is retained.

The statistical analysis on baseline data was performed on IBM

SPSS Statistics 25.0 (IBM Corporation, Armonk, NY, USA). We

used independent t-test to compare the differences in continuous

values (age). The Chi-square test was employed to compare the

differences in counting values. The Kruskal-Wallis test was used

for the comparison of Ordinal rank variables. p < 0.05 indicated

statistical significance, and all statistical tests were two sided.

2.6.1. Back-propagation neural network
The Back-propagation network were conducted in python

(version 3) using TensorFlow (version 1.2.1). In our case, the network

was four-layer back-propagation (BP) neural network. The numbers

of neurons in input layer and two hidden layers were 10, 16, and 8,

while the numbers of neurons in output layer was 1. We adopted the

hyperbolic tangent function (tanh) function as the activation function

in hidden layer, and the Sigmoid function was adopted as activation

function in output layer. For the loss function, binary cross entropy

loss was adopted, which was

Loss = −
1

N

N
∑

i=1

yi · log
(

p
(

yi
))

+
(

1− yi
)

· log
(

1− p
(

yi
))

where p(y) was the predicted value from network, whose range was 0

to 1. y was a label of the input subjects (y= 0 and y= 1) indicated the

subjects belong to the Healthy control group (HC) and ASD group

respectively, and the subscript i of y referred to the ordinal number

of subjects (i = 1, 2, 3. . . .., 59 in our research). Therefore, the loss

value would be large if the subject belonged to ASD group (y = 1)

and its prediction values [p(y)] was approaching 0, otherwise the loss

value would be small. N was the total number of samples, and in

our study, N = 59. Before the network was trained, the weights of

the network are initialized from a Gaussian distribution with µ =

0, σ = 0.01 (µ was the mean value and σ was the standard deviation)

and biases were initialized to 0. The batch size was 3, and then we

trained the model for minimizing the values of loss function by Adam

optimizer, of which the learning rate was setting at 0.001. To avoid

the overfitting of the network, the L2 regularization was adopted, of

which the parameter was setting at 0.01. L2 regularization enabled

smaller values in the model and reduced model complexity; and we

reduced the probability of overfitting by adding a dropout layer after

each hidden layer; the dropout layer increased network diversity by

randomly decreasing the number of neurons during training to avoid

model overfitting, and in our study, the dropout layer parameter was

set to 0.4 (40% of neurons were randomly deactivated in the hidden

layers). The network structure is shown in Figure 1. The backward

propagation neural network was trained by usingmultiple sets of data

and continuously adjusting the weights of each link until the error of

the network output reached the expected range. the process of BP
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FIGURE 1

Structure diagram of four-layer BPNN. BPNN, back propagation neural network.

FIGURE 2

The workflow of backward propagation neural network (BPNN).
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FIGURE 3

The flowchart of leave-one-out cross validation. PCA, principal

component analysis; SVM, support vector machine; LR, logistic

regression; TBSS, tract-based spatial statistics.

neural network was divided into two main stages, the first stage was

the forward propagation of the data, the input feature data passed

from the input layer to the hidden layers and finally to the output

layer, in this stage, the weights, bias values and activation functions

were calculated, and the initial predicted values could be obtained.

The second stage was the backward propagation of the error, from the

output layer to the hidden layers and finally to the input layer; in this

process, the error between the obtained initial prediction value and

the target value was calculated, and then the gradient descent method

was used to reduce the error and the weights and bias values would

be updated. The workflow of BPNN is shown in Figure 2.

2.6.2. Prediction and evaluation
To make full use of the subjects, leave-one-out cross validation

(LOOCV) was adopted to estimate the classifier performance. In

training steps, 58 subjects were used to training the network. And in

testing steps, 1 subject would be used to evaluate the trained model.

Finally, a total of 59 repetitions of the above loop were required to

predict the participants’ labels. The accuracy, specificity, sensitivity

and F1-score of models were used to quantify the performance of the

model, which were calculated as:

Accuracy =
TP + TN

TP + FP + TN + FN

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1− Score = 2 ∗
Precision ∗ Recall

Precision+ Recall

where TP, TN, FP, and FN meant true positive, true negative, false

positive, and false negative respectively.

2.6.3. Comparison with traditional classifiers
For comparing the BPNN against traditional classifiers, the

support vector machine (SVM) with radial basis function (RBF) and

linear kernel and Logistic Regression (LR) model were performed

in python.

2.6.3.1. Support vector machine

Support vector machines are model-based learning algorithms

that perform classification mainly by employing a hyperplane. The

hyperplane can be constructed using kernel functions such as linear,

radial basis functions (RBF), etc. In our research, we mainly used

linear as well as RBF. In SVM, there is an important parameter C

(the penalty coefficient); the higher the C, the more unacceptable

appears the error, meaning easy to overfit; and the smaller the C,

easy to underfit. For the RBF, there is another important parameter

g (gamma), which determines the distribution of the data after

mapping to the new feature space.

2.6.3.2. Logistic regression

Logistic regression is a widely used model for data classification,

and it is often used in binary classification. It builds a probabilistic

model that calculates the probability that the output variable y will

be 0 or 1 given the input variable x. In this model, there is an

important parameter C′ (regularization coefficient). It is inversely

proportional to the penalty coefficient, which means that the smaller

the value of C′, the stronger the regularization effect and the greater

the penalty effect on the parameters. And in our experiments, we

also experimented with the four solvers (liblinear, lbfgs, newton-

cg, and sag) to find the best combination of parameters using

grid search.

In order to optimize the classifier parameters, we performed

a grid search for all the hyperparameters of the all models

(BPNN/LR/SVM). For SVM and LR, there are two parameters

to optimize (SVM: C and g; LR: C′ and solvers). And for

BPNN, there are six parameters to be optimized (the numbers

of neurons, epochs, batch size, learning rate, L2 value, and

the values of drop-out layers). The hyperparameters and their

values are shown in Supplementary Table 8. The LOOCV is used

to select the combination of hyperparameters with the highest

model accuracy.

The training steps of the traditional models were identical to

the BPNN. Then, the LOOCV in traditional models would repeat

59 times (n = 59) to evaluate the performance of the models. We

also calculated the receiver operating characteristic (ROC) curve for

all models and compared the area under the ROC curve (AUC) of

all models by using Delong’s test (24) to evaluate the performance

of different models. The McNemar’s test was used to compare

the differences of their accuracy, sensitivity and specificity. The

platforms of the SVM (linear or RBF) and LR were python using

Scikit-learn library (version 0.24.2), while BP neural network was

performed using TensorFlow (1.2.1). The flowchart of leave-one-out

cross validation (LOOCV) was shown in Figure 3.
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TABLE 1 Two groups demographic characteristics.

Characteristics ASD
patients

HC p

Age (mean± STD)

(weeks)

34.12± 9.15 29.96± 11.52 0.128a

Gender (males/females) 23M/9F 19M/8F 0.899b

Birth way

(eutocia/abdominal

delivery)

38.44± 1.56 37.56± 2.04 0.060b

Educational background

(mom)

① = 0% ① = 7% 0.938c

② = 53.1% ② = 41%

③ = 46.9% ③ = 52%

Educational background

(father)

① = 0% ① = 3.5% 0.440c

② = 37.5% ② = 44.5%

③ = 62.5% ③ = 52%

Feeding pattern A= 53% A= 29.6% 0.358c

B= 12.5% B= 25.4%

C= 34.5% C= 45%

aIndependent sample t-test.
bChi-square test.
cKruskal-Wallis test.

Feeding pattern: A = breast feeding, B = formula feeding, C = mixed feeding (breast milk

and formula).

Educational background (mother/father): ① = Elementary school degree and below; ② =

Middle School–High School Degree; ③ = Bachelor degree and above.

3. Result

3.1. Demographic characteristics

At baseline, there were no statistical difference in gender, age,

their birth way, their parents’ educational background, and their

feeding pattern (p > 0.05, Table 1).

3.2. TBSS analysis results

The significant clusters of subjects in Kurtosis fractional

anisotropy are summarized in Table 2. Reduced Kurtosis fractional

anisotropy (FAK) was observed in the bilateral CST, ATR, CG, HIP,

IFOF, ILF, SLF, and UF, the temporal part of SLF as well as the FMA

and FMI in ASD group in contrast to the healthy control group. We

also found the ASD group showed significant axial kurtosis (KA)

decrease in the bilateral CST, ATR, IFOF and the left SLF, ILF, UF as

well as the left temporal part of SLF relative to the healthy control

group (Supplementary Table 1). Compared to the healthy controls,

the ASD group showed significant axial diffusivity (DA) decrease in

FMA and the right ILF, IFOF, SLF, ATR as well as the right temporal

part of SLF (Supplementary Table 2). In addition, the lateralization

index (LI) of ASD group in the left SLF showed significant increase

compared with healthy control group (Supplementary Table 3). No

significant between group differences were observed in fractional

anisotropy (Fa), radial diffusivity (RD), mean diffusivity (MD) and

mean kurtosis (MK), radial kurtosis (KR). Figure 4 illustrated the

group differences for the three parameters.

TABLE 2 Between-group di�erences in Kurtosis fractional anisotropy.

Comparison
(FAK)

Cluster no. Anatomical
regions

Number
of

voxels

HC > ASD 1 Left ATR 18

Left IFOF

2 Right CG 22

3 Left HIP 23

4 Left SLF 27

5 Left ATR 160

Left IFOF

Left SLF

Left UF

6 Right ILF 472

Right SLF

Right SLF

(temporal part)

7 Left ATR 4,503

Right ATR

Left CST

Right CST

Left Cingulum

(CG)

Right Cingulum

(CG)

Left Cingulum

(HIP)

Right Cingulum

(HIP)

FMA

FMI

Left IFOF

Right IFOF

Left ILF

Right ILF

Left SLF

Right SLF

Left UF

Right UF

Left SLF (temporal

part)

Right SLF

(temporal part)

3.3. Prediction performance

The performance of all models were shown in Table 3. In LOOCV

experiment, the accuracy, sensitivity and specificity of BPNN were

86.44%, 96.88%, and 74.07% respectively. The AUC reached 0.81,

indicating that BPNN had good classification performance (Table 3).
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FIGURE 4

Group di�erences of TBSS in FAK, KA, and DA. Tract-based spatial statistics shows white matter regions with significant (p < 0.05, threshold-free cluster

enhancement corrected) di�erences in FAK, KA, and DA values between ASD children and HCs. Green represents mean FA skeleton of all participants; red

denotes parameters reduction in ASD children. DKI, di�usion kurtosis imaging; HCs, healthy controls; KFA, kurtosis FA; DA, axial di�usivity; KA, axial

kurtosis.

Then, there was no difference between the different models in

the comparison of specificity and sensitivity, but we can find that

there is a significant difference between BPNN and LR in accuracy

(McNemar’s test, p < 0.05) (Supplementary Table 5). In addition,

there was no significant difference between BPNN and SVM in

accuracy (McNemar’s test, p > 0.05). We also performed Delong’ test

to do comparison on different models’ AUC values, which shown no

statistical differences in AUC between different models (Delong’s test,

p > 0.05) (Supplementary Table 4). The ROC curves were shown in

Figure 5. And we could find that in the F1 score, BPNN had the best

result, reaching 88.89%, while the F1 score of LR was lowest, which

was only 79.41%.

4. Discussion

In clinical practice, most routine MRI findings are negative,

which is detrimental to the early diagnosis of autism (25, 26).

However, DKI, a kind of diffusion-weighted imaging, can provide

abundant physiologic information about brain tissues (27). Different

with conventional diffusion-weighted imaging, DKI imaging is a

recently developed method that has power to measure the non-

Gaussian diffusion, which makes DKI suitable to investigate the

micro-structure changes (28).

4.1. Major altered parameters and their
clinical significance

In our study, TBSS, an automated analysis based on tract, was

adopted to study micro-structure changes of white matter fiber

tracts in children with ASD. Decreased FAK, KA, and DA in

extensive fiber bundles were observed in ASD group compared to

healthy control group, indicating widespread white matter damage

in children with ASD. We also found that the children with ASD

show increased LI in DA in SLF compared to healthy control group,

indicating developmental abnormalities of brain lateralization in

children with ASD.

FAK is like FA to some extent measuring anisotropy but adopts

the kurtosis tensor for calculation, which leads to less errors from

complex whitematter fiber arrangements (29).When the bulk density

of fiber bundles and axons increases, it can also provide the necessary

supplement for poor FA performance (30). Notwithstanding, lots

of studies did not adopt the FAK parameter to evaluate the micro-

structure changes. However, we found decreased FAK in extensive

fiber tracts of children with ASD in our study. Previous studies

also proved FAK might be a significant parameter evaluating white

matter micro-structure changes (31, 32). Compared to FAK, FA

parameter was widely used in assessing white matter with coherent

fiber arrangements, such as CST. But for the crossing fibers, such as

ILF, FA has limited evaluation value. In our results, multiple complex

fiber alignment changes were found, whichmay explain why FA is not

sensitive in detecting white matter damage, but FAK is. The decrease

in FAK in multiple fiber tracts shows clear signs of white matter

axonal damage, which suggests those regions are indeed involved

in ASD.

The KA and DA parameters of DKI are also commonly used

kurtosis and diffusion metrics. KA is a directional kurtosis parameter

parallel to the long axis of the diffusion tensor, which reflects the

integrity of the axon. DA is a metric of diffusion along the axis, which

was proved to be a biomarker of axon damage (33). In our findings,

we found a decreased in DA in the right side of IFOF, ILF and SLF,
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TABLE 3 The evaluation indicators of SVM (linear), SVM (RBF), BPNN and LR.

Indicators Models

SVM (RBF) SVM (linear) LR BPNN

Accuracy 81.36% 84.75% 76.27% 86.44%

Sensitivity 93.75% 90.36% 84.38% 96.88%

Specificity 66.67% 77.78% 66.67% 74.07%

AUC 0.86 0.88 0.84 0.81

F1-score 84.51% 86.57% 79.41% 88.89%

SVM, support vector machine; RBF, radial basis function; BPNN, back-propagation neural network; LR, logistic regression; AUC, area under the curve.

FIGURE 5

The receiver operating characteristic (ROC) curves of di�erent models. The orange curves, blue curves, green curves, and red curves represented the roc

curve of SVM (RBF Kernel), SVM (linear Kernel), logistic regression (LR) model and back-propagation neural network (BPNN) model, respectively.

while decrease in KA was observed in more regions. In addition,

the cluster sizes of altered KA were larger than those of DA values.

Some regions such as CST and UF showed KA alteration but without

DA alterations. To some extent, it shows that the kurtosis parameter

is more sensitive than the diffusion parameter. The destruction of

myelin integrity, nerve fiber density and parallelism and disorder of a

microstructure may contribute directly to the decreased KA and DA.

And our results are consistent with previous studies in terms of the

trend of KA changes (31).

Previous studies have shown that children with ASD have

thalamic-frontal connectivity disorders (34). In addition, previous

studies have reported a reduction in thalamic volume in patients with

ASD (35) and a loss of linear relationship between thalamic volume

and whole brain volume (36), which also indirectly confirmed the

presence of cortico-thalamic connectivity damage in children with

ASD. Decreased FAK, DA, and KA were observed in bilateral ATR,

which is consistent with previous studies. Besides, we also found

the changes of DKI parameters in bilateral ILF and IFOF, with the

IFOF being associated with language processing (37) and the ILF

being associated with reading ability (38). This also explains the

symptoms of reading as well as verbal communication difficulties in

children with ASD in our case. UF is a bundle of medial white matter

fibers that connects the temporal lobe (including the amygdala and

HIP) to the insula and orbitofrontal cortex. And it mediates ventral

limbic connections and facilitates integration between structures that

process emotional and cognitive information (39). The impairment

of UF may be associated with deficits in social-emotional processing

in ASD, resulting in a lack of empathy in children with ASD.

Currently, our study is the first to use DKI to study brain

lateralization in children with ASD. Because of its ability to assess

human growth and development, the lateralization index is widely

used in different fields, such as behavioral assessment (40). In

our results, the DA lateralization index was significantly higher

in children with ASD than in children with normal development;

furthermore, we found that the reduction of DA parameters in

children with ASD occurred only in the right side of the brain
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during the differential comparison, while the DA parameters in

the left side of the brain were not dissimilar to those of normal

children. This suggests that the increase in DA lateralization index

in children with ASD might be due to the decrease in DA values in

the right side of the brain. As we know, the central nervous system

(from the brain) crosses into two bundles at the cervical vertebrae

(neck) to govern the left and right limbs, so there is a directional

crossover between the cerebral hemispheres and limb behavior, for

example, the right brain mainly governs the left limb movement.

Also, according to previous reports, there is an increased rate of

left-handedness in children with ASD (41). Catani et al. (42) used

the DTI technique to demonstrate that the SLF is the link between

anterolateral, posterior and lateral language areas of the white matter

pathway. In terms of language function, the superior longitudinal

tract transfers the brain’s understanding to the dominant hemisphere

for expression (also known as “language transfer”) (43, 44). Some

studies have reported that lesions of the superior longitudinal tract

could also cause conduction aphasia (45). However, most of the

children with ASD in our case would have problems with language

impairment, our results explained this symptom to some extent.

Overall, the DA lateralization index may be a suggestive indicator

of altered language skills as well as motor skills in children with

early ASD.

4.2. Performance of di�erent models

Our results of TBSS on DKI image might provide efficient

diffusion and kurtosis features as a possible biomarker for

classification models based on machine learning methods. Most

previous brain science research on classification has focused on

the predefined ROI changes (18, 19). However, the performance

of predefined features within the classifier is often too subjective,

resulting in unreliable performance. In our study, our features were

based on a whole-brain differential comparison and the differential

parameters were consistent with the patients’ clinical symptoms.

Thus, the features we provide to the classifier are objective, and the

features have better performance in sensitivity and specificity.

We tried to use BPNN for classification, which was better than

LR in terms of accuracy, although not much different from SVM

accuracy. We also compared the specificity and sensitivity as well as

the AUC values of the four models, and although the differences were

not statistically significant (Supplementary Tables 6, 7), the sensitivity

of BPNN was quite high, with outstanding performance in the

detection of cases. We found that although BPNN did not perform

well in terms of AUC values, BPNN was basically higher than the

rest of the traditional classifiers in terms of F1 scores; we suspected

that this is due to the unbalanced data (There were more subjects in

the ASD group than in the HC group.); previous study had shown

that F1 scores better reflected the actual performance of classifiers

under the premise of unbalanced data (46), and this further confirms

that BPNN combined with the TBSS classifier could produce better

classification performance. Due to our relatively small sample size, we

used SVM, LR and BPNN models that were relatively robust to the

overfitting phenomenon (47), and one previous study showed that

LR and SVM were suitable for small samples size research. Secondly,

we introduced LOOCV, which avoided overfitting to some extent by

bias-variance trade-off. Therefore, in combination with LOOCV and

the corresponding model, the reliability of our results was confirmed.

4.3. Limitation

There are some potential limitations in our study. First, this

study had a small sample size and lacked validation with independent

datasets. More large multi-center datasets need to be assessed in the

future to confirm the results. Second, the imaging data is single,

and the mechanism behind it can be more effectively elucidated if

multiple imaging modalities are combined, including fMRI such as

resting-state functional MRI. However, for children, the acquisition

of imaging data is still a challenge. Although our method achieves

an acceptable level of accuracy, it is still not a substitute for

traditional diagnosticmethods, and the future combination of clinical

indicators as well as the combination of multidisciplinary indicators

will facilitate further confirmation of our study.

5. Conclusion

Our study shows that the combination of TBSS of DKI and

machine learning methods might be effective in discriminating

the children with ASD or not. Furthermore, FAK, KA, and DA

parameters and LI values have the potential to be used as biomarkers

to differentiate children with early ASD from those with normal

development. Future studies with large and multi-center samples

may be helpful to further elucidate the DKI parameters and the

underlying neurobiological mechanisms, and our proposed method

may be useful for future multidisciplinary diagnosis of early ASD.
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