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Peripheral nerve diseases are significantly correlated with severe fractures or

trauma and surgeries, leading to poor life quality and impairment of physical

andmental health. Human dental pulp stem cells (DPSCs) are neural crest stem

cells with a strong multi-directional di�erentiation potential and proliferation

capacity that provide a novel cell source for nerve regeneration. DPSCs are

easily extracted from dental pulp tissue of human permanent or deciduous

teeth. DPSCs can express neurotrophic and immunomodulatory factors

and, subsequently, induce blood vessel formation and nerve regeneration.

Therefore, DPSCs yield valuable therapeutic potential in the management

of peripheral neuropathies. With the purpose of summarizing the advances

in DPSCs and their potential applications in peripheral neuropathies, this

article reviews the biological characteristics of DPSCs in association with the

mechanisms of peripheral nerve regeneration.

KEYWORDS

dental pulp stemcells, neuron, Schwann cells, peripheral nerve diseases, neurotrophic

factors

1. Introduction

Peripheral neuron degeneration, inflammation, and necroptosis caused by trauma,

diabetes, and neurodegenerative disorders may cause motor-sensory dysfunctions (1–3).

Therefore, the current therapeutic regimen mainly focuses on neuron regeneration and

function restoration in post-traumatic events.

Conventional therapies have limited efficacy in restoring nerve function since the

regeneration of neurons, and glial cells require sufficient neuronal precursor cells, which

are absent or lacking in the mature nervous system (4). Stem cell-based therapies bring

new insight into the biotherapy of peripheral neuropathies, providing adequate cell
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sources capable of self-renewal and multi-directional

differentiation (4–8). However, challenges remain in the

mass production of autografts or autologous cells for sufficient

nerve regeneration (5–8).

Derived from the neural crest, DPSCs yield great

potential in differentiation into neurons, expression of

various neurotrophic factors for axonal regeneration, and

functions of immunomodulation, indicating that DPSCs are

an ideal cell source for peripheral nerve regeneration (5–7). In

this review, we will summarize the biological characteristics

of DPSCs and their respective application in animal models

of peripheral neuropathies, with a focus on their regenerative

mechanisms for future application.

1.1. Biological characteristics of DPSCs

Dental pulp, identified as a typical soft tissue, is rich in

blood vessels, nerves, and mesenchymal tissue. Dental pulp has

a central role in the development of primary and secondary

teeth and further maintenance throughout life (7, 9, 10).

Gronthos et al. (11) first described that DPSCs were initially

discovered from the thirdmolar dental pulp, which is later found

in other dental pulps including deciduous teeth, permanent

teeth, and supernumerary teeth. DPSCs display fibroblast-like

morphology with higher proliferation capacity but lack specific

surface biomarkers (Table 1) (12–20). While highly express

MSC-like phenotypic biomarkers including CD29, CD90, and

CD73 (12, 13), DPSCs are also found to express stemness-

related markers such as Oct-4, Nanog, and Sox-2 (14, 15), and

cytoskeleton-related markers such as Nestin and Vimentin (15).

Moreover, several studies have demonstrated the expression

of cranial neural crest cell-related neural markers by DPSCs,

including glial fibrillary acidic protein (GFAP), β-III tubulin,

and microtubule-associated protein-2 (MAP-2) (15, 16, 21).

Recently, several special markers are proposed to distinguish

DPSCs from gingiva-derived mesenchymal stem cells (GMSCs)

including Calreticulin, Annexin A5, and Rho GDP dissociation

inhibitor alpha (17). Furthermore, a recent study by Lei et al.

(18) demonstrated that the CD271 is the most effective stem

TABLE 1 The features of DPSCs.

Type Surface markers expression

MSC-like phenotypic markers CD27, CD29, CD44, CD73, CD90,

CD105, CD146, CD166, CD271, and

STRO-1

Stemness-related markers Oct-4, Nanog, and Sox-2

Cytoskeleton-related markers Nestin and Vimentin

Neural crest cell-related

markers

GFAP, β-III tubulin, and MAP-2

DPSC Specific markers Calreticulin and CD271

cell surface marker for dental mesenchymal stem cells (DMSCs),

which display high odontogenic potential.

2. The potential mechanisms of
DPSCs in neural regeneration

DPSCs have shown the potential of multiple differentiations,

with promising therapeutic value as bioengineered autografts

for different tissue repair (Figure 1). Therefore, DPSCs can

be applied in the biotherapy for a variety of peripheral

neuropathies (5–7, 19, 20, 22–26). Studies show that DPSCs

could induce restoration in peripheral nerves via three

mechanisms, which include neuronal differentiation, paracrine

and immunomodulatory effects (Figure 2) (5–7, 19, 20, 22–26).

2.1. Neuronal di�erentiation

DPSCs can directly differentiate into neuron-like cells

and express early neural markers (such as Nestin) (15).

These neuron-like cells could migrate to the lesion sites and

subsequently participate in the nerve regeneration process

(5–7). Some studies have also shown that during migration,

the transplanted DPSCs can recruit endogenous neural stem

cells for tissue reconstruction (20). In addition, Kiraly et al.

(15) revealed that the induction and differentiation of DPSCs

are promoted by activating the intracellular cyclic adenosine

phosphate signaling pathway. Chen et al. (27) proposed that the

elevated intracellular cyclic adenosine phosphate can activate

protein kinase A (PKA), which then up-regulate regeneration-

related genes, such as arginase I, and promotes peptide synthesis.

On the other hand, PKA also inhibits the Rho protein activation

induced by myelin and induce nerve regeneration. Heng

et al. (28) suggest that EphrinB2 signaling can modulate the

neural differentiation of DPSCs, while EphB4 -inhibition in

DPSCs could significantly up-regulate expression of the neural

markers microtubule-associated protein 2, Musashi1, NGN2,

and neuron-specific enolase. In 2018 Urraca et al. (29) described

DPSC-derived neurons expressing GABAA and MAP2 genes,

which is previously absent in undifferentiated DPSC and may

provide future neurogenetic research with a useful tool.

2.2. Paracrine e�ects

Several studies have indicated that DPSCs could participate

in the process of nerve repair in a paracrine manner (10,

20, 30). DPSCs can express brain-derived neurotrophic factor

(BDNF), glia cell-line derived neurotrophic factor (GDNF),

NGF, and neurotrophin-3 (NT3) at a substantial level, and exert

neuroprotective functions in the process of peripheral nerve

regeneration (10). Some researchers propose that the effects
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FIGURE 1

Multiple di�erentiation potential of DPSCs into various cell types.

FIGURE 2

Four main mechanisms of peripheral nerve regeneration by DPSCs.
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of these neurotrophic factors on neural cells are achieved via

the intervention of PI3K/AKT signaling pathway. Even in the

presence of neurotrophic factors such as NGF and GDNF,

inhibition of PI3K or AKT activation can result in neuron

apoptosis or necroptosis (31). The Erk signaling pathway plays

a essential role in axonal growth stimulation by modulating

neurotrophic factors (32). Additionally, the neurotrophin

expression in DPSCs isenhanced in certain neural inductive

conditions (33). The conditioned medium of DPSCs has been

shown to increase Schwann cell proliferation rate while inducing

neurite growth in vitro (31, 32). Previous studies revealed that

the DPSC-derived secretome or DPSC conditional medium,

which includes soluble factors and extracellular vesicles,

proved to be therapeutically relevant in the management

of neurodegenerative disorders and nerve injuries via the

regulation of several processes, including neuroprotection, anti-

inflammation, anti-apoptosis, and angiogenesis (34).

2.3. Immunomodulatory properties

The immunomodulatory properties of DPSCsmay also exert

crucial functions during the neural repair mechanism (35–38).

Several studies have shown not only CD4+T cells co-cultured

with DPSCs can highly express regulatory T cells (Treg), but

DPSCs implanted in vivo could reverse the decrease in Treg

expression induced by transforming growth factor β1 (TGFβ1)

and interleukin-10 signaling pathways inhibition, suggesting

that DPSCs could interfere with immunoregulation during

nerve regeneration (35, 36). On the other hand, it has been

discovered that DPSCs may inhibit TNF-α, and thus up-regulate

anti-inflammation cytokines and promote nerve regeneration

(37). furthermore, DPSCs can induce inhibition in cytotoxic T

cell proliferation and activation via CD73, a central enzyme in

the crosstalk of immunosuppressive adenosine and extracellular

pro-inflammatory ATP, which is highly expressed in

DPSCs (38).

3. The treatment of transplanted
DPSCs in peripheral nerve disease

3.1. Peripheral nerve injuries

Peripheral nerve injuries lead to notable functional

impairments and decreased quality of life (39). Despite

advances in microscopic techniques for neurosurgery, clinicians

always desire to improve postoperative nerve regeneration

and rehabilitation for better functional restoration via

various methods including biotherapy (40, 41). Currently,

the transplanted DPSCs alone or in combination with several

novel nerve conduits are promising therapy for patients

suffering from peripheral nerve injury (42, 43). Takaoka et al.

(44) transplanted DPSCs into a rat model with a 10-mm

sciatic nerve defect and found improvement in axon growth,

remyelination, electrophysiological activities, and alleviated

muscle atrophy at 12 weeks post-transplantation. DPSC-

embedded polymeric biomaterial based on ethyl acrylate and

hydroxy ethyl acrylate copolymer shows sufficient bioactivity

to promote regeneration of the injured sciatic nerve (45). A

similar study has shown that preloading collagen conduits

with Schwann cell-like cells (SCLCs) induced from DPSCs

could enhance sciatic nerve repair (46). In addition, collagen

scaffolds preloaded with DPSCs post-differentiation could

exhibit certain traits of SCLC that promote the outgrowth of

axons and myelination in 2-dimensional or 3-dimensional

culture conditions (47). These results demonstrate that DPSCs

are excellent stem cell sources for peripheral nerve regeneration

(Figure 3).

3.2. Diabetic neuropathy

Diabetic neuropathy, the most common complication of

type 1 and type 2 Diabetes Mellitus (DM), and has become

a substantial health concern worldwide, especially for the

elderly. It has been estimated that over 50% of long-term

DM patients will eventually develop neuropathy, which could

lead to diabetic foot ulcers associated with serious disabilities

(48). The COVID milieu since 2019 has driven healthcare

professionals to emphasize the matter of management and

nursing of patients suffering from diabetic neuropathy since

DM patients are prone to have compromised immunity and

disturbed microenvironment (49). Typically, patients suffering

from diabetic neuropathy show decreased peripheral nerve

vascularity and a deficiency of angiogenic and neurotrophic

factors, which may account for the pathogenesis of neuropathies

(50, 51). Recently, the therapeutic effects of DPSCs in diabetic

neuropathy have become recognized by many researchers,

which raised controversies regarding the optimal application

method of DPSCs. Makino et al. suggested that DPSCs

transplantation can significantly improve the blood flow, nerve

conduction velocity, capillary density, and intra-epidermal

nerve fiber density of the damaged nerves while up-regulating

the expression levels of angiogenic and neurotrophic factor

genes (52). Another study proved that transplanted-DPSCs can

significantly reduce the number of macrophages in the diabetic

peripheral nerve microenvironment and specifically inhibit M1

macrophage expression while up-regulating M2 macrophage

expression, eventually decreasing the M1/M2 macrophage ratio

(19). Apart from regulating macrophage expression, DPSCs

could also exert anti-inflammatory effects via inhibiting tumor

necrosis factor α (TNFα) and interleukin-6 (IL-6) expression

while up-regulating TGF-β expression. These findings provide

some perspectives on possible future applications of DPSCs in

diabetic neuropathy management.
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FIGURE 3

Transplantation of DPSCs in management of various peripheral neuropathies.

3.3. Retina injury

Neurons in the retina and optic nerve share a mutual

origin from the embryonic diencephalon. After neuroepithelium

formation of the retina, neurons lose the ability to divide,

rendering neuronal renewal in the retina impossible (53).

Therefore, blindness caused by retinal injuries remains a major

cause of disability worldwide. Retinal ganglion cells express

a large number of neurotrophic factor receptors, which may

enhance retinal ganglion cell survival and axonal regeneration

(54). Mead et al. found that DPSCs secreted a large number

of neurofibrillary tangles (NTF), which enhanced neural βIII-

tubulin+ retinal cell proliferation and lengthened the neuritis

(55). In addition, transplantation of DPSCs into the vitreous

humor of mice after optic nerve injury promoted Brn-3a+

retinal ganglion cell survival and axonal regeneration (55). It

has been reported that 44% of DPSCs expressed a photoreceptor

marker rhodopsin in a conditioned medium from the damaged

retina (56). This promising novel mechanism should be further

explored for clinical applications.

4. Conclusions

4.1. Current research and challenges

Dental pulp tissue yields great reproductive ability and is rich

in varying categories of stem cells with unique differentiation

potentials. It has been concluded that DPSCs may be isolated

from both postnatal teeth and extremely rare natal teeth (11).

Immortalized DPSCs are also an excellent source of pluripotent

stem cells with high molecular, morphological and genetic

resemblance with non-immortalized DPSCs, which introduces

the possibility of building a reservoir with immortalized DPSCs

from patients suffering from a wide spectrum of neurogenetic

disorders (57). On the other hand, Wilson et al. (58) have

assessed the tumorigenic potential of immortalized DPSC

in vitro and in mice and observed no tumor formation,

indicating the probable safety of immortalized DPSC in future

clinical applications.

As presented in Table 2, current research on the application

of DPSC in the management of central and peripheral

neuropathies is majorly concentrated on differentiation induced

in vitro and implantation either via nerve conduit scaffold

or direct injections. However, for such a therapeutic regimen

to be carried out clinically, further clinical and lab research

are required to achieve large-scale DPSC manufacture, storage,

and transportation with minimum possibility of contamination.

Concerns have been raised about the compromised quality of

DPSC culture possibly in association with poor oral hygiene and

long-distance transportation (57).

4.2. Future prospects

Stem cell-based therapies shed light on the biotherapies

of peripheral nerve disease. DPSCs may enhance peripheral

nerve regeneration via the induction of neuronal differentiation

and the up-regulation of various neurotrophic factors. DPSCs

in combination with biomaterials could be the prospect

of neural tissue repair. Furthermore, DPSCs have a wide
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TABLE 2 Several current studies involving the application of DPSCs in nerve regeneration.

No. Method/treatment of
DPSCs

Study type (in
vitro versus in
vivo)

Biomarkers
expressed by
DPSCs

Outcome Reference

1 Nerve conduit preloaded with

DPSCs

In vivo rat sciatic

nerve

GFAP and β-tubulin

III

Promote functional repair of peripheral

nerve injuries

(59)

2. Hypoxia-treated DPSCs

transplantation into damaged

rat spinal cord

In vivo rat spinal cord CD13+, N-cadherin

and bFGF

Increase vascularization and

oxygenation of the injured spinal cord

(60)

3. 5-Aza pre-condition to induce

myogenic commitment;

injection into rat urethral

sphincter post pudendal nerve

transection

In vitro and in vivo rat

urethral sphincter

HLA-ABC In vitro: DPSCs committed toward

myogenic lineage; In vivo: promoted

vascularization, recovered sphincter

thickness and detected within the nerve

(61)

4. DPSC auto-transplantation in

unilateral hindlimb of diabetic

rats

In vivo in diabetic rat

sciatic nerve

CD29, CD34, CD49d,

CD45 and CD90

Improved blood flow, nerve

conduction velocity, capillary number,

and intra-dermal nerve fiber density

(62)

5. Exposure of DPSCs to midbrain

cues

In vitro CD73, CD90, CD105,

CD34, and HLADR

Midbrain cues could dictate DPSCs to

dopaminergic cell-type

(63)

6. DPSCs pre-labeled with PKH 26

is cultured and injected

intravenously in PD rat model

In vivo in PD rat

model

CD34, CD45, CD73,

CD90, CD166, and

HLA-DR

Amelioration of degenerated neurons,

and enhancement to impaired

behavioral performances

(64)

GFAP, glial fibrillary acidic protein; bFGF, basic fibroblast growth factors; HLA-ABC, Human Leukocyte Antigen–A, B, and C isotype; HLA-DR, Human Leukocyte Antigen –DR isotype;

PD, Parkinson’s disease.

range of application prospects in peripheral nerve diseases,

such as peripheral nerve injury, diabetic neuropathy, and

retina injury. While DPSCs transplantation shows promising

therapeutic potential in the management of peripheral nerve

diseases, further research is required to establish a therapeutic

approach and a regimen of dosage, efficacy, and safety. In

conclusion, DPSCs yield great potential in peripheral neural

tissue regeneration and repair, yet various issues remain to be

solved through further assessment and experimentation.
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