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Background: The anterior (AcomA) and posterior communicating arteries (PcomA) are two of the most frequent sites for intracranial aneurysms. Anatomical variations in the Circle of Willis (COW) are frequently observed in patients with AcomA and PcomA aneurysms. Strong evidence is needed to determine the pooled estimate of the effect of COW variations on the formation and rupture of these aneurysms.

Aim: This systematic review and meta-analysis aimed to establish the effect of COW variations on the formation and rupture of AcomA and PcomA aneurysms using available studies.

Summary of review: PubMed, Embase, and Web of Science databases were systematically searched for studies published in English before September 21, 2022. Studies investigating AcomA aneurysms and the hypoplastic/aplastic A1 segment of the anterior cerebral artery and PcomA aneurysms and hypoplastic/aplastic PcomA or fetal-type posterior cerebral artery (FTP) were included. The heterogeneity of the studies was assessed using Cochran Q-test and I2 statistic. Pooled estimate was assessed using either a random- or fixed-effects model based on the heterogeneity of the studies. Among the 4,932 studies, 21 were eligible and included in the analysis. The presence of hypoplastic/aplastic A1 was significantly correlated with the formation [OR (95% confidence interval [CI]) = 7.97 (5.58, 11.39), P < 0.001] and rupture [OR (95%CI) = 1.87 (1.29, 2.72), P < 0.001] of AcomA aneurysms. Significant associations between FTP and both the formation [OR (95%CI) = 2.15 (1.41, 3.30), P < 0.001] and rupture [OR (95%CI) = 1.72 (1.26, 2.36), P < 0.001] of PcomA aneurysms were observed.

Conclusions: Significant associations were observed between COW variations and both the formation and rupture of AcomA and PcomA aneurysms. This can help in determining interventions for patients with aneurysms.

Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=225149, identifier: CRD42021225149.
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Introduction

Intracranial aneurysms are acquired abnormal vascular dilations that occur in 1–2% of the population (1). The most dangerous complications of intracranial aneurysms are their rupture, which accounts for 80–85% of non-traumatic subarachnoid hemorrhages with high mortality and disability rates (1). Various risk factors have been identified for the rupture of

intracranial aneurysms, including age, aneurysm size, and location (2–4). The anterior (AcomA) and posterior communicating arteries (PcomA) are two of the most frequent sites for intracranial aneurysms (3), where ruptures are more likely to occur than at other sites (5).

Hemodynamics plays an important role in the growth and rupture of intracranial aneurysms (6). The Circle of Willis (COW) is a vascular network located at the base of the brain with a high variation rate (7). COW variations can cause hemodynamic changes by influencing cerebral blood flow; moreover, they are proposed to be contributors to the development of intracranial aneurysms (8, 9).

Hypoplastic/aplastic A1 and fetal-type posterior cerebral artery (FTP) are commonly observed in patients with AcomA and PcomA aneurysms, respectively. A series of studies have assessed the association between hypoplastic/aplastic A1 and the formation of AcomA aneurysms (10–13); meanwhile, the evidence on FTP and the formation of PcomA aneurysms is insufficient (14–16). In addition, there is a lack of consistency in the association between COW variations and rupture of AcomA and PcomA aneurysms (17–20).

Strong evidence is needed to determine the pooled estimate of the effect of COW variations on the formation and rupture of site-specific aneurysms. This will serve as evidence of the effect of hemodynamic factors in the development of intracranial aneurysms and may facilitate the prediction of rupture risk of observed aneurysms. Thus, this systematic review and meta-analysis aimed to establish the effect of COW variations on the formation and rupture of AcomA and PcomA aneurysms using available studies.



Methods

This systematic review and meta-analysis was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The protocol for this meta-analysis was registered at https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=225149.


Search strategy

Relevant studies published before September 21, 2022 were selected by searching PubMed, Embase, and Web of Science databases. A search strategy was developed that combines both free text words and medical subject headings covering, “intracranial aneurysm,” “variation,” and “Circle of Willis.” The detailed search strategy was listed in Supplementary Tables 1–3. The citations of the included reviews and articles were manually searched to obtain additional relevant studies.



Study selection

Studies that satisfied the following criteria were included: (1) investigated the relationship of COW configuration and formation or rupture of AcomA and PcomA aneurysms; (2) were cross-sectional, case-control, or cohort studies; (3) reported odds ratios (ORs) with 95% confidence intervals (CIs) (or reported data that was sufficient to calculate ORs and 95% CIs); and (4) published in English.

The exclusion criteria were as follows: (1) were case reports, editorials, conference abstract, or letters; and (2) were model/computer-generated brain studies. If the study population overlapped in two or more papers by the same authors, only the study with the largest number of participants were included.



Data extraction and study quality evaluation

Two investigators (LF and H-JM) independently reviewed the study titles and abstracts, and studies that satisfied the inclusion criteria underwent full-text assessment. Data were extracted independently by the two authors according to the pre-designed forms. The extracted data of the selected study included: first author, year of publication, country or area, study design, total number of participants, age, sex, COW variation types and definitions, aneurysm size, imaging techniques, and outcome variables. A consensus was reached through discussion when there were any disagreements.

The Newcastle–Ottawa scale (NOS) was used to assess the quality of cohort and case-control studies (21). The version of the scale consists of three categories: selection, comparability, and outcome. A study can be given a score ranging from zero to nine stars (low-quality: 0–3, medium-quality: 4–6, high-quality: 7–9). The Agency for Healthcare Research and Quality (AHRQ) scale was used to assess the quality of cross-sectional studies (22). A study can be given a score ranging from zero to 11 points (low-quality: 0–3, medium-quality: 4–7, high-quality: 8–11).



Statistical analysis

The effect measures of interest were ORs and 95% CIs. The heterogeneity of the studies was assessed using the Cochran Q-test and I2 statistic (23). For the pooling of study results, a random-effects model was used when between-study heterogeneity was statistically significant (P < 0.05 or I2 > 50%), while a fixed-effects model was applied when the heterogeneity was not significant (P > 0.05 and I2 <50%). Subgroup analysis was performed based on the locations and types of study. Sensitivity analysis was performed by removing each study in turn and evaluating whether the pooled estimate was affected significantly (24). The Egger test was used to assess publication bias when the included studies were more than 10, and significant publication bias was defined as p < 0.1 (25). Statistical analysis was performed using Stata 12.0.




Results


Identified studies

A total of 4,932 studies were identified after a literature search (1,773 from PubMed, 2,085 from Embase, and 1,074 from Web of Science) (Figure 1). Among these, 1,844 were replicated, 3,053 were excluded after reviewing the title and abstract, and 35 were selected for full-text assessment. Moreover, among these, 14 were excluded, and 21 studies fulfilled the eligibility criteria and were included in the analysis (10–20, 26–35).


[image: Figure 1]
FIGURE 1
 Study selection process.




Study characteristics and quality

The 21 studies included in this systematic review and meta-analysis were published between 1980 and 2021 and conducted in China, Japan, Korea, Poland, United States of America, and other countries. A total of six cross-sectional studies, three retrospective cohort studies, and 12 case-control studies were included. A summary of the study characteristics is listed in Tables 1, 2.


TABLE 1 Characteristics of the included studies in this meta-analysis.
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TABLE 2 Summary of the case group, control group, and COW variations of the included studies.
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Overall, the included cross-sectional studies that were assessed using the AHRQ scale received 6–9 scores, while the cohort and case-control studies that were assessed using NOS received 6–7 and 5–7 scores, respectively. Five studies were of high quality (15, 19, 20, 26, 29), while the others were of medium quality. A summary of the study quality assessment is provided in Supplementary Tables 4–6.



Hypoplastic/aplastic A1 and AcomA aneurysms

A total of 15 studies investigated the association between hypoplastic/aplastic A1 and the formation and rupture of AcomA aneurysms (Figures 2A, B). Moreover, 11 trials on the formation of AcomA aneurysms showed significant between-study heterogeneity (I2 = 68.7%, P < 0.001). Pooled analysis using random-effects model showed a prominent relationship between hypoplastic/aplastic A1 and the formation of AcomA aneurysms (OR (95% CI) = 7.97 (5.58, 11.39), P < 0.001). All studies showed a significant higher incidence of hypoplastic/aplastic A1 in patients with AcomA aneurysms than in healthy controls. In addition, pooled analysis of five studies showed a higher prevalence of hypoplastic/aplastic A1 in ruptured AcomA aneurysms than in unruptured ones, with no significant between-study heterogeneity (OR (95% CI) = 1.87 (1.29, 2.72), P < 0.001; I2 = 0.0%, P = 0.427).


[image: Figure 2]
FIGURE 2
 Summary odds ratios of hypoplastic/aplastic A1 and anterior communicating artery (AcomA) aneurysms. (A) AcomA aneurysms vs. healthy controls (B) ruptured vs. unruptured AcomA aneurysms.


Significant heterogeneity was seen in studies on the formation of AcomA aneurysms; hence, subgroup analysis was performed to explore potential sources (Table 3). After stratifying the studies by location (Asian or Western) and study design (case-control or cross-sectional study), the significant relationship between hypoplastic/aplastic A1 and the formation of AcomA aneurysms remained. After stratifying by study design, the heterogeneity of each group became non-significant (I2 <50%, P > 0.05), suggesting that the study design was a source of heterogeneity.


TABLE 3 Subgroup analyses of hypoplastic/aplastic A1 and anterior communicating artery (AcomA) aneurysm formation.
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In the sensitivity analysis of both the formation and rupture of AcomA aneurysms, when a named study was removed, the pooled estimates remained significant (P < 0.05), suggesting that none of the studies had a large influence on the overall estimate.

No indication of publication bias for the studies on the formation of AcomA aneurysms was found using the Egger test (p = 0.373). However, due to the limited number of studies, the Egger test was not performed for studies on rupture.



FTP and PcomA aneurysms

There were three and five studies on the relationship between FTP and the formation and rupture of PcomA aneurysms, respectively. No significant heterogeneity was observed (formation: I2 = 0.0%, P = 0.832; rupture: I2 = 0.0%, P = 0.816). Pooled analysis using the fixed-effects model indicated a significant association between FTP and both the formation and rupture of PcomA aneurysms (formation: OR (95% CI) = 2.15 (1.41, 3.30), P < 0.001; rupture: OR (95% CI) = 1.72 (1.26, 2.36), P < 0.001) (Figures 3A, B). The sensitivity analysis of the two groups suggested stable pooled estimates after removing a named study in turn. However, due to the limited number of studies, Egger test was not performed.
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FIGURE 3
 Summary odds ratios of fetal-type posterior cerebral artery (FTP) and posterior communicating artery (PcomA) aneurysms. (A) PcomA aneurysms vs. controls (B) ruptured vs. unruptured PcomA aneurysms.




Hypoplastic/aplastic PcomA and PcomA aneurysms

There were two studies on hypoplastic/aplastic PcomA, in which one focused on the formation of PcomA aneurysms and the other on rupture. The OR for hypoplastic/aplastic PcomA and PcomA aneurysm formation was 8.5 (95% CI = 1.9 to 38.1), and that for PcomA rupture was 0.6 (95% CI = 0.1 to 4.1).




Discussion

This systematic review and meta-analysis investigated the association between COW variations and the formation and rupture of AcomA and PcomA aneurysms. For hypoplastic/aplastic A1 and AcomA aneurysms, a strong association was identified with AcomA aneurysm formation (OR = 7.97), and a moderate association with aneurysm rupture (OR = 1.87). FTP is a risk factor for both the formation and rupture of PcomA aneurysms. However, evidence on hypoplastic/aplastic PcomA and PcomA aneurysms is lacking.


COW variations and aneurysm formation

COW variations play an important role in the formation of intracranial aneurysms, as the incidence of variations was significantly higher in patients with aneurysms than in controls (34). This association arises from hemodynamic changes, because the elevated wall shear stress caused by COW variations may be a predisposition to aneurysm formation (6).

Numerous imaging and cadaver studies described the coincidence of hypoplastic/aplastic A1 and AcomA aneurysms (10–14, 20, 30, 32–35). In this systematic review and meta-analysis, the prevalence of hypoplastic/aplastic A1 ranged from 24.3 to 69.5% in patients with AcomA aneurysms. The difference in prevalence was due to the limited sample size and different definitions of A1 segment hypoplasia and aplasia (26). With one dominant A1 perfusing the bilateral A2s (30), the increased blood flow across the AcomA elevated the hemodynamic stress dramatically at the artery wall, which may contribute to the formation of AcomA aneurysms (8).

The incidence of FTP among patients with PcomA aneurysms ranged from 17.1 to 45.8%. FTP is formed during embryogenesis. After the internal carotid arteries (ICA) give rise to each arterial segment of COW, the blood of the P2-segment of the posterior cerebral artery (PCA-P2) is equally supplied by the P1-segment of the posterior cerebral artery (PCA-P1) and PcomA. Subsequently, when the occipital lobe develops rapidly, either the PCA-P1 or PcomA enlarges to maintain its blood supply. Considering this, FTP refers to the configuration in which the PcomA outsizes the ipsilateral PCA-P1 (36). When the blood supply to the PCA is predominantly from the ICA-PcomA, blood flow increases in the ICA (37), leading to elevated wall shear stress at the ICA-PcomA junction, which may induce the formation of PcomA aneurysms (9).



COW variations and aneurysm rupture

The size and location of intracranial aneurysms were significantly correlated with the risk of rupture. Although the International Study of Unruptured Intracranial Aneurysms indicated that small aneurysms (<7 mm) located in the ICA system had a minimal risk of rupture (2), a pooled analysis of six cohort studies observed that AcomA and PcomA aneurysms were associated with a higher risk of rupture, even those that have sizes <7 mm (4). Therefore, reliable predictors for rupture risk are needed for managing patients with AcomA and PcomA aneurysms.

Given its potential effects on wall shear stress, COW configurations might also potentially increase the risk of aneurysm rupture (6). However, the number of studies is limited, and the conclusions were conflicting. One possible reason is that the sample sizes of most studies were limited to one or two hundred, leading to an insufficient number of patients with those COW variations. In this pooled analysis, we confirmed the association between hypoplastic/aplastic A1 and the rupture status of AcomA aneurysms, and FTP and the rupture of PcomA aneurysms.



Strengths and limitations

First, since the past studies were largely narrative, we chose systematic review and meta-analysis to provide a more comprehensive and unbiased synthesis of relevant studies, and also offered an explicit and exhaustive reporting of the methods used here. By stratifying the variations and site of aneurysms, the localization corresponds to where the hemodynamic stresses were prominently increased, which gives a better understanding of the role of COW configuration on hemodynamics in the development of aneurysms. Second, although there was significant heterogeneity in studies on hypoplastic/aplastic A1 and the formation of AcomA aneurysms, the pooled estimate showed a high correlation strength between the two. In addition, the sensitivity analysis suggested a stable overall estimate. Third, the Egger test performed showed no evidence of publication bias in the meta-analysis, indicating the high credibility of the pooled results.

Nevertheless, this study has several limitations. Only articles published in English were included. Furthermore, the number of studies on aneurysm rupture is limited and are based on small series, which makes it hard to perform subgroup analysis by stratifying the studies by location. Thus, further high-quality research with a large sample size is needed to validate the stability of the results across populations.



Implications for research and clinical practice

Because of the greater availability of non-invasive imaging techniques, including computed tomography angiography and magnetic resonance angiography, a great number of unruptured intracranial aneurysms are observed. According to our findings, AcomA aneurysms with hypoplastic/aplastic A1 and PcomA aneurysms with FTP require close monitoring and can be an indication for treatment in addition to other morphological features of aneurysms.

Since COW configurations can influence aneurysm morphology and endovascular access to aneurysms, the effect of COW variations on the efficacy or complication rate of aneurysm treatment may warrant further investigation (27, 38, 39).




Conclusions

In summary, COW variations and both the formation and rupture of AcomA and PcomA aneurysms were significantly associated. These findings could increase awareness for the need to improve screening among patients with relevant COW variations, and also help with intervention determination for patients with aneurysms. Further studies with high quality and large sample sizes are needed.
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Recruit- Imaging Type of Variants Age, years Size of

ment technique variation definition aneurysm,
time mm
Charbel (31) USA Cces 1976-1988 CA Al <50% of the AcomA-A 51,32/19 49 (17-77) NR
contralateral Al
Non-IA 50,25/25 45 (10-75)
Chen (10) China CSS 2009-2012 MRA Al <1mm or the All 8013, 3660/4353 49.85 (16-89) NR
absence of Al
AcomA-A 138, NR NR NR
Non-IA 7875, NR NR
de Rooij (31) The CCs 2000-2006 CTA A1, FTPR, Al/PcomA: < Ruptured IA 75, 18/57 52 (18-79) NR
Netherlands PcomA, 1 mm or not visible
FTP: PcomA >
110% P1
Unruptured IA 75,17/58 54 (26-81) NR
He (16) China CSS 2013-2016 CTA FTP PComA > P1 All 364,218/146 61.73£13.33 NR
PcomA-A 24,NR NR NR
Other IA 26,NR NR NR
Non-IA 314,NR NR
Horikoshi (32) Japan CCs 1997-2000 MRA, CTA, Al Not visualized or All aneurysm 131, 43/88 69.3 (44-85) NR
DSA only a very thin
segment
AcomA-A 31,NR 69.3 (44-85) NR
Other IA 100, NR 69.3 (44-85) NR
Non-IA 434, NR 65.4 (40-89)
Hu (15) China CCs 2008-2013 DSA FTP Blood supplied by PcomA-A 76, 19/57 583+ 116 NR
ICA
Non-IA 78,23/55 56.5 % 12.1
Huhtakangas (17) Finland Css 2000-2014 CTA FTP Absent or PcomA-A 391,92/299 57 13 (20-92) NR
hypoplastic P1 with
PCA arising directly
from the PComA
Ruptured 256, 53/203 NR 7.9+34
PcomA-A
Unruptured 135, 40/95 NR 52+£35
PcomA-A
Jabbarli (27) Germany RCS 2005-2012 DSA Al NR Ruptured IA 594,220/374 55.2(21-94) NR
Ruptured 228, NR NR NR
AcomA-A
Unruptured 10, NR NR NR
AcomA-A
Kaspera (11) Poland CCs 2007-2013 CTA Al Vascular asymmetry AcomA-A 77,35/42 57 (49-64) NR
coefficient>40%
Non-IA 73,29/44 50 (38-61)
Kayembe (34) Japan Cccs 1976-1982 autopsy Al, PcomA NR All aneurysm 44,21/23 36-81 NR
Non-IA 148, NR NR
Krasny (12) Germany CCs 2002-2010 CA Al <3/4 of the AcomA-A 223, 111/112 54£16 7.30 £3.26/6.3 =
contralateral Al 3.08
Non-IA 204, 105/99 52£20
Krzyzewski (13) Poland Cccs NR CTA Al <Ilmm AcomA-A 50,25/25 53.66 + 14.01 NR
Non-IA 100, 50/50 5347 £ 1448
Kwak (35) Japan ccs 1961-1975 CA Al <50% of the All aneurysm 485, 279/206 18-72 NR
contralateral Al
AcomA-A 213,NR 18-72 NR
Non-IA 76,51/25 4-57
Lv (28) China css 2014-2015 CA FTP PcomA > P2, with PcomA-A 108, 24/84 60 (42-82) 4.36 (1.23-6.84)
atrophic P1
Ruptured 68, 13/55 58 4.50
PcomA-A
Unruptured 40, 11/29 62 3.92
PcomA-A
Matsukawa (29) Japan CSs 2003-2012 MRA, CTA, FTP PcomA > P2, with PcomA-A 134,92/42 66+ 13 4(2.5-6.0)
DSA atrophic P1
Ruptured 39,30/9 61+ 14 5.9 (4.0-7.5)
PcomA-A
Unruptured 95,62/33 68412 3.4(2.0-5.0)
PcomA-A
Park (19) Korea RCS 2016-2020 DSA Al <50% of the AcomA-A 209, 105/104 59.80 + 11.15 5.44 246
contralateral Al
Ruptured 102, 51/51 56.62 £ 11.95 6.10 £2.54
AcomA-A
Unruptured 107, 54/53 62.84 £ 9.42* 4.81£222*
AcomA-A
Rinaldo (26) USA RCS 2003-2013 DSA Al <50% of the AcomA-A 204, 100/104 58.6+13.0 6334
contralateral Al
Ruptured 148, 79/69 56.9412.8 6.1£36
AcomA-A
Unruptured 56,21/35% 62.7 £ 11.5% 65%3.0
AcomA-A
Silva Neto (14) Brazil CCs 2001-2007 CA AL FTP AL:NR All aneurysm 158, 49/109 488 +19.2 NR
FTP: Not visualized
P1 segment
Non-IA 256, NR NR
Tarulli (30) Canada CCs 2005-2009 DSA, CTA, Al <50% of the AcomA-A 105, 52/53 52&11 NR
MRA contralateral Al
Other IA 123,31/92 5011 NR
Non-IA 159, 75/84 69+£15
Xu (18) China css 2009-2016 DSA FTP Not visualized P1 Ruptured 89,9/80 62.1+117 691 £4.12
segment PcomA-A
Unruptured 166, 28/138 592496 5.42+257%
PcomA-A
Zhang (20) China Cccs 2008-2020 DSA, CTA, Al <50% of the AcomA-A 253,137/116 546+ 127 4.38 £1.98
MRA contralateral Al
Ruptured 218, 118/100 NR 4.56 £1.96
AcomA-A
Unruptured 35,19/16 NR 324+ 1.79*
AcomA-A
Non-IA 83, NR 527131

AcomA, anterior communicating artery; AcomA-A, anterior communicating artery aneurysm; CA, cerebral angiography; CCS, case-control study; CSS, cross-sectional study; CTA, computed tomography angiography; DSA, digital subtraction angiography; F, female; FTP,
fetal-type posterior cerebral artery; IA, intracranial aneurysm; M, male; MRA, magnetic resonance angiography; NR, not reported; PcomA, posterior communicating artery; PcomA-A, posterior communicating artery aneurysm; RCS, retrospective cohort study.
*P < 0.05.
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Study Design Variation Groups Yes
Charbel (31) CCs Al AcomA aneurysm 37 9 28
Non-IA 50 3 47
Chen (10) css Al AcomA aneurysm 138 60 78
Non-IA 7,875 365 7,510
de Rooij (31) ccs Al Ruptured AcomA aneurysm 11 3 8
Unruptured AcomA aneurysm 11 4 7
PcomA Ruptured PcomA aneurysm 10 6 4
Unruptured PcomA aneurysm 10 7 3
FTP Ruptured PcomA aneurysm 10 4 6
Unruptured PcomA aneurysm 10 3 7
He (16) Css FTP PcomA aneurysm 24 11 13
Other IA 26 5 21
Non-IA 314 75 239
Horikoshi (32) CCs Al AcomA aneurysm 31 19 12
Other 1A 100 14 86
Non-IA 434 67 367
Hu (15) ccs FTP PcomA aneurysm 152 26 126
Other IA 156 15 141
Huhtakangas (17) Ccss FTP Ruptured PcomA aneurysm 258 70 188
Unruptured PcomA aneurysm 155 27 128
Jabbarli (27) RCS Al Ruptured AcomA aneurysm 228 106 122
Unruptured AcomA aneurysm 10 1 9
Kaspera (11) Cccs Al AcomA aneurysm 77 33 44
Non-IA 73 9 64
Kayembe (34) ccs Al AcomA aneurysm 27 9 18
Other IA 17 1 16
Non-IA 146 16 130
PcomA PcomA aneurysm 8 5 3
Other IA 36 11 25
Non-IA 134 22 112
Krasny (12) Cccs Al AcomA aneurysm 223 141 82
Non-IA 204 48 156
Krzyzewski (13) CcCs Al AcomA aneurysm 50 18 32
Non-IA 100 9 91
Kwak (35) CcCs Al AcomA aneurysm 213 145 68
Non-IA 76 22 54
Lv (28) Ccss FTP Ruptured PcomA aneurysm 68 20 48
Unruptured PcomA aneurysm 40 11 29
Matsukawa (29) css FTP Ruptured PcomA aneurysm 39 17 22
Unruptured PcomA aneurysm 95 30 65
Park (19) RCS Al Ruptured AcomA aneurysm 102 58 44
Unruptured AcomA aneurysm 107 42 65
Rinaldo (26) RCS Al Ruptured AcomA aneurysm 148 28 120
Unruptured AcomA aneurysm 56 6 50
Silva Neto (14) CCS Al AcomA aneurysm 59 28 31
Other IA 99 1 98
Non-IA 256 7 249
FTP PcomA aneurysm 59 14 45
Other IA 99 2 97
Non-IA 256 33 223
Tarulli (30) Cccs Al AcomA aneurysm 105 73 32
Other IA 123 14 109
Non-IA 159 37 122
Xu (18) CSS FTP Ruptured PcomA aneurysm 89 27 62
Unruptured PcomA aneurysm 166 28 138
Zhang (20) CCS Al AcomA aneurysm 253 141 112
Non-IA 83 10 73
Al Ruptured AcomA aneurysm 218 169 84
Unruptured AcomA aneurysm 35 14 69

AcomA, anterior communicating artery; CCS, case-control study; CSS, cross-sectional study; FTP, fetal-type posterior cerebral artery; IA, intracranial aneurysm; PcomA, posterior communicating
artery; RCS, retrospective cohort study.
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Outcomes No. of study OR (95%Cl) Heterogeneity test
Py
Overall 11 7.97 (5.58, 11.39) <0.001 68.7 <0.001
Area
Asian 5! 8.33(4.91,14.13) <0.001 732 0.005
Western 6 7.59 (4.66, 12.37) <0.001 60.9 0.025
Design
Case-control study 10 7.16 (5.25,9.75) <0.001 454 0.057
Cross-sectional study 1 15.83 (11.12,22.52) <0.001 NA NA

NA, not available.
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