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Background and Purpose: The ability of attenuation value of the non-hypodense region

of hematoma in non-contrast computed tomography (NCCT) for predicting hematoma

expansion (HE) remains unclear. Our purpose is to explore this relationship.

Methods: Two cohorts of patients were collected for analysis. The region where we

measured hematoma attenuation values was limited to the non-hypodense region that

was not adjacent to the normal brain tissue on NCCT. The critical attenuation value was

derived via receiver operating characteristic (ROC) curve analysis in the derivation cohort

and its predictive ability was validated in the validation cohort. Independent relationships

between predictors, such as critical attenuation value of the non-hypodense region and

HE were analyzed using the least absolute shrinkage and selection operator (LASSO)

regression and multivariate logistic analysis.

Results: The results showed that the attenuation value <64 Hounsfield units (HU) was

independently associated with HE [odds ratio (OR), 4.118; 95% confidential interval (CI),

1.897–9.129, p < 0.001] and the sensitivity, specificity, positive predictive value (PPV),

negative predictive value (NPV), positive likelihood ratio (PLR), negative likelihood ratio

(NLR), and area under the curve (AUC) for predicting HE were 36.11%, 81.71%, 1.97,

0.78, 44.8%, 75.7%, and 0.589, respectively.

Conclusions: Our research explored and validated the relationship between the

attenuation value of the non-hypodense region of hematoma and HE. The attenuation

value < 64 HU was an appropriate indicator of early HE.

Keywords: attenuation value, non-hypodense region, hematoma expansion, Hounsfield units, non-contrast

computed tomography, spontaneous intracerebral hemorrhage
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INTRODUCTION

Hematoma expansion (HE) occurs in approximately one-third
of patients with spontaneous intracerebral hemorrhage, and it
is an independent risk factor for the worsening prognosis and
early death (1). Early recognition of HE is considered as one
of the potential therapeutic goals to improve prognosis (2, 3).
In addition to the spot sign and its density on contrast CT (4),
the presence of hypodense areas within the hematoma on non-
contrast computed tomography (NCCT) is an important factor
in assessing the inefficient clot contraction and the instability
of intracerebral hematomas with a high discriminating ability
(5). However, the hypodense foci on NCCT do not always
match the location of the spot sign suggestive of contrast
leakage on contrast CT (6), which may be implicated in the
relatively low sensitivity of the NCCT signs in predicting HE
(7–9). Minimally invasive surgery appeared to reduce the poor
prognosis of patients at high risk of hematoma expansion, yet
this difference was not significant for reasons that cannot be
ruled out due to the inability to accurately identify the actual
hematoma that will undergo expansion (10). In our clinical work,
we have noticed that some homogeneous hematomas dilated
(>6ml or 33% increase compared with baseline volume) without
any hypodensity foci but with overall low attenuation value,
some dilated heterogeneous hematomas (those with a swirl sign,
black hole sign, or blend sign) with relatively low attenuation
value within the non-hypodense region, while some non-dilated
heterogeneous hematomas have relatively high attenuation
values within the non-hypodense region (Figure 1), prompting
us to wonder that whether low attenuation value of the non-
hypodense region is a risk factor for HE. Therefore, this study
aims to investigate the clinical significance of the attenuation
value within the non-hypodense region for predicting HE.

MATERIALS AND METHODS

Patients
Patients with spontaneous intracerebral hemorrhage admitted
to our three hospital branches from January 2013 to June 2021
were selected for this retrospective study. Inclusion criteria
for eligible patients were (1) the first NCCT examination
was performed within 6 h after onset and (2) one or more
NCCT re-examinations were performed within 72 h after
onset. Exclusion criteria were (1) patient age <18 years
old; (2) intracerebral hemorrhage secondary to arteriovenous
malformation, aneurysm, trauma, tumor, Moya-Moya disease,
or other diseases; (3) multiple cerebral hemorrhages or primary
ventricular hemorrhage; (4) any form of neurosurgery performed
before the first NCCT re-examination; (5) patients with axial
layers <3 on the first NCCT scan (aiming to eliminate partial
volume effects when extracting hematoma attenuation values);
and (6) baseline hematoma volume <1 ml.

Abbreviations: NCCT, non-contrast computed tomography; HE, hematoma

expansion; ROC, receiver operating characteristic; LASSO, least absolute shrinkage

and selection operator; HU, Hounsfield units; PPV, positive predictive value; NPV,

negative predictive value; PLR, positive likelihood ratio; NLR, negative likelihood

ratio; AUC, area under the curve; IQR, interquartile range.

Derivation Cohort
Eligible patients admitted in the main hospital site from January
2013 to August 2015 were included as a derivation cohort
according to the inclusion and exclusion criteria described above.
Attenuation value within the non-hypodense region of the
hematoma was examined retrospectively for suitability to predict
HE, and a cutoff value was determined by an ROC analysis based
on the maximum Youden index.

Validation Cohort
Patients admitted in the main hospital site between September
2015 and June 2021 (n = 119) and two other branch sites
(October 2015 to June 2021, n = 70; November 2017 to June
2021, n = 58) who met the above criteria were included as
a validation cohort. A validating analysis was performed to
investigate whether a critical attenuation value of the non-
hypodense region could predict HE in this cohort. The studies
involving human participants were reviewed and approved by
the local ethics committee. Written informed consent was not
required for this study due to the de-identified retrospective data.

Clinical Information
Clinical information for each patient is collected from the
electronic medical records, such as demographic characteristics,
medical history, physical examination items, and potentially
relevant laboratory tests at the time of admission (Table 1).

Imaging Characteristics
Non-contrast computed tomography images of the patients were
obtained by standard clinical protocols (120 kV, axial section 5–
7.5mm thick). Baseline hematoma volume was calculated via
the Tada formula ABC/2. The NCCT image data with DICOM
format of each patient were used to measure the attenuation
value of the non-hypodense region of the hematoma in the
Picture Archiving and Communication System (PACS). The non-
hypodense region was restricted to any layer within the highest
density region of the heterogeneous hematoma as well as the
core region of the homogeneous hematomas. When the standard
deviance of the mean HU value in the region of interest of
the non-hyperdense region is ≤6, this part of the hematoma is
considered to be homogeneous. The layer used to measure the
attenuation value was limited to the core axial section of the
hematoma, and the upper and lower layers adjacent to the normal
brain tissue were not used for measurement (Figure 2). The
attenuation value of the hematoma was assessed independently
by two experienced raters (YC and DC) who were unaware of
the outcome of patient. The midline shift distance was defined
as the maximum lateral vertical displacement distance of brain
tissue structures in the horizontal plane from the mid-axis
sagittal plane of the NCCT scan. The definitions of irregular
sign, satellite sign, island sign, swirl sign, black hole sign, and
blend sign were conformed to the standards that were proposed
by Andrea Morotti et al. (11). HE or dilated hematoma was
defined as a >33% or >6ml increase of hematoma volume
or new intraventricular hematoma development on the NCCT
re-examination (Figure 3) (12).
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FIGURE 1 | Case examples. (A,B) An initial NCCT scan performed 3.5 h after the onset of symptoms showed a small, regular shape hematoma with an attenuation

value of 61.72 HU at the internal capsule, which enlarged 10 h later. The patient eventually died. (C,D) An NCCT scan performed 0.5 h after symptom onset showed a

basal ganglia hematoma that was heterogeneous with an attenuation value of 63.86 HU within the non-hypodense region and appeared significantly expansion 12 h

later. (E,F) NCCT scan performed 1 h after onset showed a heterogeneous basal ganglia hematoma with an attenuation value of more than 64 HU in the

non-hypodense region, and the patient did not present with HE despite the presence of the black hole sign on the initial NCCT examination. A, area; P, perimeter; M,

mean; SD, standard deviance; HU, Hounsfield units; NCCT, non-contrast computed tomography.

Statistical Analysis
Statistical analyses were performed with R software (version
4.0.5, http://www.Rproject.org) and the SPSS package (version
24.0, IBMCorporation, Armonk, NY). Categorical variables were
expressed as percentages (%) and continuous variables were
expressed as means [±standard deviation (SD)] or medians
(interquartile range, IQR). Cohen’s κ-test was used to determine
inter- and intra-rater agreement referring to the NCCT signs
and attenuation value level. A univariate analysis was performed
using chi-square test, Fisher’s exact test, two-tailed Student’s t-
test, or univariate logistic analysis, as appropriate. An ROC
curve analysis with Delong’s test was used to obtain cutoff
for attenuation value within the non-hypodense region of
the hematoma and to obtain the sensitivity, specificity, PPV,
NPV, PLR, NLR, and AUC values. Considering the possible
collinearity between variables, the least absolute shrinkage and
selection operator (LASSO) regression was first used to screen
the potential predictors of HE (13), and then variables with
non-zero coefficients were further included in the multivariate
model. The model was visualized using the nomogram and the
discrimination and calibration of the prediction were observed
by the use of Harrell’s concordance index (C-index)/AUC of
ROC analysis and calibration plot. The decision curve analysis
and clinical impact curve analysis were used to observe the
performance of the attenuation value within the non-hypodense
region in the terms of improving the predictive power of

the model. A two-tailed test of p < 0.05 was considered
statistically significant.

RESULTS

Clinical and Radiological Characteristics
and Outcomes of Two Cohorts
In the primary and validation cohorts, 31 of 132 patients (23.5%)
and 72 of 247 patients (29.1%) experienced HE. The median
attenuation value of the non-hypodense region of hematoma
was 66.2 HU [IQR, 63.1–69.3 HU] in the derivation cohort
and 67.6 HU [IQR, 64.4–70.8 HU] in the validation cohort.
Supplementary Figure 1 shows the patient selection process for
both cohorts. The clinical and radiological characteristics and the
outcomes of two cohort patients are shown in Table 1.

Factors Associated With the Attenuation
Value of the Non-hypodense Region of the
Hematoma in the Validation Cohort
The correlation matrix heatmap for continuous variables
are shown in Supplementary Figure 2. In homogeneous
hematomas, the attenuation value within the core region was
relatively low in those with HE compared with those without
HE, and without a significant increasing trend over time
(Figure 4A). In heterogeneous density hematomas, there was
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TABLE 1 | Comparison of clinical and radiological characteristics and the outcome of derivation and validation cohort patients.

Variables Derivation cohort (n = 132) Validation cohort (n = 247) P

Clinical characteristics

Age, years, mean (SD) 55.0 (11.1) 57.6 (12.4) 0.039

Sex, male (%) 88 (66.7) 162 (65.6) 0.922

Hypertension (%) 81 (61.4) 171 (69.2) 0.152

Diabetes (%) 13 (9.85) 21 (8.50) 0.804

Current smoker (%) 50 (37.9) 46 (18.6) <0.001

Current alcohol drinker (%) 36 (27.3) 42 (17.0) 0.026

Stroke history (%): 0.812

No 117 (88.6) 210 (85.0)

Hemorrhage 6 (4.55) 17 (6.88)

Infarction 8 (6.06) 17 (6.88)

Hemorrhage and infarction 1 (0.76) 3 (1.21)

Antiplatelets or anticoagulants therapy (%) 5 (3.79) 11 (4.45) 0.969

Systolic pressure on admission (mmHg), median [IQR] 162 [146; 178] 160 [144; 180] 0.807

Diastolic pressure on admission (mmHg), mean (SD) 92.4 (16.9) 92.9 (15.5) 0.795

Baseline GCS score (%): 0.519

12–15 51 (38.6) 109 (44.1)

9–11 52 (39.4) 84 (34.0)

3–8 29 (22.0) 54 (21.9)

RBC count (*1012/L), median [IQR] 4.64 [4.37; 4.95] 4.62 [4.28; 5.00] 0.447

Hemoglobin (g/L), median [IQR] 140 [129; 150] 139 [129; 151] 0.475

Hematocrit (%), median [IQR] 41.6 [38.7; 43.7] 41.2 [38.7; 44.3] 0.700

MCV (fl), median [IQR] 89.1 [86.7; 91.4] 89.9 [87.0; 92.5] 0.237

MCH (pg), median [IQR] 30.3 [29.5; 31.2] 30.5 [29.2; 31.4] 0.917

MCHC (g/L), median [IQR] 338 [330; 348] 338 [328; 345] 0.311

RDW (%), median [IQR] 13.0 [12.5; 13.7] 12.9 [12.2; 13.6] 0.186

Platelet count (*109/L), median [IQR] 196 [158; 227] 206 [171; 249] 0.082

Platelet distribution width (%), median [IQR] 13.9 [12.2; 15.8] 12.7 [11.1; 14.3] <0.001

Prothrombin time (seconds), median [IQR] 13.4 [13.0; 13.9] 13.3 [12.9; 13.8] 0.060

Activated partial thromboplastin time (seconds), median [IQR] 34.2 [32.0; 36.8] 34.5 [32.2; 37.2] 0.434

International normalized ratio, median [IQR] 1.03 [1.00; 1.08] 1.02 [0.97; 1.06] 0.020

Total cholesterol (seconds), median [IQR] 4.27 [3.65; 5.04] 4.33 [3.70; 4.94] 0.806

Serum glucose (mmol/L), median [IQR] 6.72 [5.56; 8.43] 6.84 [5.80; 8.33] 0.640

Time from first NCCT scan to onset (hours), median [IQR] 3.00 [1.88; 4.12] 3.00 [1.50; 4.00] 0.472

Radiological characteristics

Hematoma location (%): <0.001

Thalamus 28 (21.2) 43 (17.4)

Basal ganglia 101 (76.5) 157 (63.6)

Brain stem or cerebella 0 (0.0) 11 (4.5)

Cerebral lobe 3 (2.3) 36 (14.6)

Baseline hematoma volume (ml), median [IQR] 19.6 [9.25; 34.7] 16.8 [8.69; 30.6] 0.187

Largest hematoma width/length ratio on axial section (>0.6), (%) 65 (49.2) 119 (48.2) 0.929

Midline shift distance (>0.5 cm), (%) 41 (31.1) 51 (20.6) 0.033

Subarachnoid hemorrhage (%) 7 (5.30) 15 (6.07) 0.940

Intraventricular hemorrhage (%) 48 (36.4) 62 (25.1) 0.029

Swirl sign (%) 19 (14.4) 44 (17.8) 0.479

Black hole sign (%) 10 (7.58) 26 (10.5) 0.454

Blend sign (%) 12 (9.1) 49 (19.8) 0.011

Irregular sign (%) 51 (38.6) 95 (38.5) 1.000

Satellite sign (%) 39 (29.5) 68 (27.5) 0.768

(Continued)
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TABLE 1 | Continued

Variables Derivation cohort (n = 132) Validation cohort (n = 247) P

Island sign (%) 13 (9.85) 23 (9.31) 1.000

Attenuation value of non-hypodense region (HU), median [IQR] 66.2 [63.1; 69.3] 67.6 [64.4; 70.8] 0.011

Outcome

HE (%) 31 (23.5%) 72 (29.1%) 0.289

3 months mRS score (4∼6), (%) 60 (45.5%) 128 (51.8%) 0.283

SD, standard deviation; IQR, interquartile range; GCS, Glasgow coma scale; RBC, red blood cell; MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin; MCHC, mean

corpuscular hemoglobin concentration; RDW, red blood cell distribution width; NCCT, non-contrast CT; HU, Hounsfield units; HE, hematoma expansion; mRS, modified Rankin scale.

FIGURE 2 | Measurement of the attenuation value of the region of interest (ROI) of the non-hyperdense region of the hematoma. There are six layers of hematoma on

axial NCCT images. The upper (A,B) and lower layers (E,F) are not suitable for measurement because they are adjacent to normal brain tissue. The core two layers

(C,D) are selected as the best layer for measurement. The area of layer (D) (black arrow) that is adjacent to normal tissue [layer (C), black arrow] may cause partial

volume effects that affect the accuracy of the measurement and is therefore excluded from the ROI. A, area; P, perimeter; M, mean; SD, standard deviance; HU,

Hounsfield units; NCCT, non-contrast computed tomography.

no significant correlation between the attenuation value within
the non-hypodense region of the hematoma and the time from
the first NCCT scan to onset, irrespective of the occurrence of
HE (Figure 4A). NCCT attenuation value was generally lower
within the non-hypodense region of expanded hematomas,
and this difference was more pronounced in the brainstem or
cerebellar locations (Figure 4B). A positive correlation existed
between attenuation value within the non-hypodense region and
hemoglobin level (Figure 4C), and a negative correlation existed
referring to the red blood cell distribution width, regardless of
whether the hematoma was expanded (Figure 4D).

Derivation of the Critical Attenuation Value
of Hematoma to Predict HE
An ROC curve analysis showed that the cutoff of attenuation
value within non-hypodense region for predicting HE was
<64 HU, and its sensitivity, specificity, PLR, NLR, PPV, NPV,

and AUC were 67.74% (95% CI, 48.6–83.3%), 82.18% (95%

CI, 73. 3–89.1%), 3.8 (95% CI, 2.3–6.2), 0.39 (95% CI, 0.2–

0.7), 53.8% (95% CI, 41.8–65.4%), 89.2% (95% CI, 83.2–

93.3%), and 0.722 (95% CI, 0.600–0.844, p < 0.001), indicating
its suitability for predicting HE (Figure 5A). A total of 40
hematomas had an attenuation value of <64 HU within
the non-hypodense region and there were 31 heterogeneous
hematomas. Among them, 8 of 9 hematomas with regular
morphology and homogeneous density and suffered HE, and
had a density value of < 64 HU (p < 0.001). Seven of the
11 patients with irregular morphology, homogeneous density,
and dilatation had an attenuation value < 64 HU (p =

0.028). Among the heterogeneous hematomas, 6 of the 9
hematomas with a non-hypodense region attenuation value
of <64 HU and only 5 of the 22 hematomas with a non-
hypodense region attenuation value of >64 HU that eventually
expanded (p= 0.02).
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FIGURE 3 | The initial NCCT showed that the thalamic hematoma broke into

the ipsilateral ventricle only (A); a follow-up NCCT (B) showed new hematoma

formation in both the ipsilateral and contralateral ventricles (black arrow).

Validation of the Association Between
Attenuation Value < 64 HU and HE
There was good inter-rater (rater 1, κ = 0.967; rater 2, κ = 0.956)
and intra-rater (κ = 0.945, rater 1 vs. rater 2) agreement for the
measurement of attenuation value <64 HU. A univariate logistic
analysis showed that attenuation value within non-hypodense
region <64 HU was associated with HE, both unadjusted and
after adjusting for other factors (Table 2). An ROC analysis
showed that the sensitivity, specificity, PLR, NLR, PPV, NPV, and
AUC of the attenuation value <64 HU for HE prediction were
36.11% (95% CI, 25.1–48.3%), 81.71% (95% CI, 75.2–87.1%), 1.
97 (95%CI, 1.3–3.1), 0.78 (95%CI, 0.6–0.9), 44.8% (95%CI, 34.4–
55.8%), 75.7% (95% CI, 72.0–78.9%), and 0.589 (95% CI, 0.526–
0.652, p = 0.005) (Figure 5B). There were 89 heterogeneous
hematomas and there were 58 hematomas that had attenuation
value < 64 HU within the non-hypodense region. Of the
14 hematomas with regular morphology, homogenous density
and subsequent expansion, 9 had attenuation value <64 HU
(p < 0.001). Out of 22 patients with irregular morphology,
homogeneous density and who underwent expansion, 11 had
attenuation value <64 HU (p = 0.041). Among heterogeneous
hematomas, expansion occurred in the 6 of 12 hematomas with
attenuation value <64 HU in the non-hypodense region and
in 30 of 77 hematomas with attenuation value >64 HU in the
non-hypodense region of the hematoma (p= 0.683).

A LASSO analysis was applied to screen for predictors
without the collinearity of HE (Figures 6A,B). The multivariate
model showed that an attenuation value < 64 HU remained an
independent predictor [odds ratio (OR), 4.118; 95% CI, 1.897–
9.129, p < 0.001] after adjusting for male sex, time from the first
NCCT scan to onset, baseline hematoma volume, blend sign, and
irregular sign (Figure 6C, Supplementary Table 1).

Based on the multivariate model, the nomogram
was constructed (Figure 7A) and its discriminating and
calibrating ability was favorable with a C-index/AUC of 0.806
(Supplementary Figure 3) and good calibration (Figure 7B).
In addition, the model showed good discrimination ability in
derivation cohort and combined cohorts with the C-indexes
of 0.883 and 0823. A decision curve analysis showed that an

attenuation value < 64 HU significantly improved the predicted
net benefit when the probability of HE varied in the range of
∼0.3–0.6 (Figure 7C). The clinical impact curve showed that the
predicted and actual number of HE was close when the threshold
risk of HE exceeded∼0.5 (Figure 7D).

DISCUSSION

The attenuation value of intracerebral hematoma on the NCCT is
one of the indicators that have received much attention in recent
years for it can be used to predict HE which seriously affects
the prognosis of a patient (14–16). Studies had shown that the
difference of attenuation value between high-density and low-
density areas that had a clear margin within hematoma >18 HU
(7, 17–19), and the minimal attenuation value of the hematoma
≤ 31 HU were independent risk factors for predicting HE (20).
Here, according to our study, the attenuation value within the
non-hypodense region of the hematoma is also an independent
predictor associated with HE, and an attenuation value <64 HU
is a potential cutoff.

There is no doubt that the hemostatic status of the bleeding
site of the ruptured vessel is the fundamental cause of whether
the hematoma will enlarge. In the early stages of intracerebral
hemorrhage, the density of fresh hematoma is ∼+30 to 45 HU
(21). Then, it gradually increases during the initial ∼48 h and
then decreases again after reaching the peak value (5, 22, 23).
The increased attenuation value of the hematoma is mainly
due to the formation of a meshwork of fibrin fibers, globin
molecules, and early clot contraction events after bleeding (5, 24),
therefore hypodense foci within the hematoma may be the result
of repeated bleeding from the primary bleeding site or poor clot
contraction and hence the evidence of the potential HE (7, 9, 17).
However, the exact site of hemorrhage, whether it is a primary
hemorrhagic vessel (25), or a secondary hemorrhagic vessel (26),
is not always within the hypodense foci, but may also be located
within the non-hypodense region and appear as a spot sign on
contrast CT (6, 27). Therefore, the role played by the attenuation
value within the non-hypodense region in determining the
hemostatic status of the bleeding site is not negligible.

The attenuation value of the hyperdense area of hematoma has
been taken into count sparsely in assessing the probability of HE.
In the acquirement of the mean attenuation value of hematoma
by Jeong et al., both the hypodense and non-hypodense regions
of hematoma were measured in a post-hoc analysis, though the
mean density of the hematoma with and without hypodense
foci was not statistically significant, the mean density of the
dilated hematoma was significantly lower (5). Nevertheless, their
study failed to account for the proportion of high-density and
low-density regions in each hematoma, so the unique role of
the non-hypodense regions in hematoma expansion cannot be
accurately determined. In contrast, our study confirmed that the
non-hypodense regions of the expanded hematoma do possess
a lower attenuation value. To the best of our knowledge, there
is no clearly reported indicator regarding NCCT hematoma
density that can be used as a predictor of secondary expansion
of homogeneous hematomas. Since the existing hypodensity sign,
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FIGURE 4 | Correlation of the attenuation value of non-hypodense region and time from the first NCCT to onset between hematomas with or without hypodensities.

(A) The attenuation value of the non-hypodense region of most expanded hematomas remains lower irrespective of time prolonging, whereas no trend exists between

the time and non-hypodense region attenuation value of heterogeneous hematomas. (B) The mean value and 95% CIs of the attenuation value of the non-hypodense

region at different cerebral locations. The attenuation value of the non-hypodense region of the cerebellar and brainstem hematomas is the lowest and differs most

significantly between expanders and non-expanders. (C,D) Loess analysis of attenuation value and hemoglobin and RDW between expanders and non-expanders.

The attenuation value increases with a higher hemoglobin level, but with a lower RDW. HU, Hounsfield units; RDW, red blood cell distribution width.

swirl sign, black hole sign, and blend sign are based on hypodense
regions to determine the risk of HE, the attenuation value within
the non-hypodense region of the hematoma provides an option
to determine whether a homogeneous hematoma is at high
risk. In addition, heterogeneous hematomas with this feature
may have a greater likelihood of expansion. This feature does
not intersect with the hematoma morphology and low-density
markers that predict HE, and quantifies the density values of the
high-density areas independently of the low-density areas within
the hematoma, avoiding the influence of the proportion of low-
density areas in the calculation of mean density value and thus
having independent diagnostic value.

The multifactor model incorporated predictors involving the
attenuation value level within the non-hypodense region that
was determined by LASSO regression and was presented in the
form of a nomogram, allowing for a clearer understanding of

the role played by each predictor. The nomogram is simple
and feasible, applicable to individual patients and practitioners
in daily clinical practice, and the data are easily accessible (28,
29). The discriminative power of our model is good compared
with previous reports (29, 30), with a cutoff nomogram score
of about 126 and a corresponding prevalence of about 0.3
of expansion, the patient has a high probability of HE. A
decision curve analysis can be used to visually and graphically
evaluate the ability of each component to improve the model
and has been highly recommended in recent years (31, 32).
Our model shows that the net benefit of treatment is higher
when the risk of hematoma varies between 0.3 and 0.6, thus
taking into account the magnitude of the attenuation value
within the non-hypodense region may be more helpful (Net
Reclassification Improvement = 0.4336, p = 0.001; Integrated
Discrimination Improvement = 0.0483, p = 0.002) in making
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FIGURE 5 | Receiver operating characteristic (ROC) curves. (A) An ROC analysis for determining the critical attenuation value of the non-hypodense region of

hematoma in the derivation cohort. (B) An ROC analysis of the attenuation value <64 HU for predicting HE in the validation cohort.

TABLE 2 | Variables with statistical significance for predicting HE analyzed by univariate logistic regression.

Variables Crude Model 1 Model 2 Model 3

OR 95% CI P OR 95% CI P OR 95% CI P OR 95% CI P

Sex, male 2.056 1.103–3.834 0.023 2.033 1.028–4.022 0.041 2.235 0.948–5.272 0.066 3.140 1.129–8.734 0.028

Time from first NCCT scan to

onset, hour

0.764 0.632–0.925 0.006 0.751 0.618–0.914 0.004 0.673 0.532–0.850 0.001 0.611 0.462–0.809 0.001

Baseline GCS score 1.562 1.100–2.219 0.013 1.644 1.140–2.373 0.008 1.470 0.966–2.236 0.072 1.297 0.762–2.208 0.338

Baseline hematoma volume, ml 1.023 1.010–1.037 0.001 1.024 1.011–1.038 <0.001 1.022 1.006–1.038 0.008 1.014 0.993–1.037 0.200

Blend sign 2.980 1.559–5.695 0.001 2.860 1.462–5.595 0.002 3.916 1.793–8.552 0.001 3.471 1.326–9.038 0.011

Irregular sign 3.223 1.825–5.691 <0.001 3.578 1.957–6.540 <0.001 3.554 1.739–7.263 0.001 2.911 1.021–8.304 0.046

Island sign 1.727 1.118–2.668 0.014 1.948 1.219–3.115 0.005 2.227 1.303–3.808 0.003 2.079 0.954–4.527 0.065

Attenuation value of

non-hypodense region, HU

0.935 0.886–0.986 0.014 0.926 0.876–0.979 0.007 0.912 0.854–0.974 0.006 0.845 0.770–0.928 <0.001

Attenuation value of

non-hypodense region <64 HU

2.140 1.111–4.122 0.023 3.072 1.577–5.986 0.001 4.337 1.885–9.978 0.001 10.252 3.306–31.788 <0.001

Variables that were statistically significant in the univariate analysis were adjusted again to observe whether there was a significant change of OR for the coexistence of other factors.

Model 1: Adjusted for age, sex, co-existing diseases (hypertension, diabetes, current smoker, current alcohol drinker, and stroke history), and antiplatelets or anticoagulants therapy.

Model 2: Adjusted for Model 1, physical examination results (systolic pressure, diastolic pressure, and baseline GCS score) and laboratory findings (RBC count, hemoglobin, hematocrit,

MCV, MCH, MCHC, RDW, platelet count, platelet distribution width, prothrombin time, activated partial thromboplastin time, international normalized ratio, total cholesterol, and

serum glucose).

Model 3: Adjusted for Model 2, time from the first NCCT scan to onset, and hematoma features on NCCT scan (location, baseline hematoma volume, hematoma width/length ratio on

axial section, midline shift distance > 0.5 cm, subarachnoid hemorrhage, intraventricular hemorrhage, swirl sign, black hole sign, blend sign, irregular sign, satellite sign, and island sign).

HE, hematoma expansion; OR, odds ratio; CI, Confidence interval; NCCT, non-contrast CT; GCS, Glasgow coma scale; HU, Hounsfield units; RBC, red blood count; MCV, mean

corpuscular volume; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; RDW, RBC distribution width.

the right clinical decisions when the risk of HE determined by
assessment methods is within this range. Besides, the prediction
will be more accurate if the threshold of HE is >0.5 according to
the clinical impact curve.

The study has some limitations. First, the relatively small
number of subjects may have produced some selective bias. In
addition, the attenuation of the non-hypodense region was not
suitable for predicting intracerebral hematomas with volume
<1ml, which means that most hematomas located in the
midbrain, pons, and medulla may not be applicable. The study
also excludedmultiple intracerebral hemorrhages, although some
of these hematomas may have the same etiology, the non-
hypodense region attenuation value, and associated model may
not be suitable for these hematomas. Again, although the model

performed well in our dataset, a follow-up replication study is
necessary to validate it as the newmetric that has not been studied
in other literature. Finally, the optimal cutoff of the new predictor
may need to be modified to reach higher accuracy.

CONCLUSIONS

In conclusion, our study explored and validated the attenuation
value of the non-hypodense region of hematoma that was
independently associated with early HE in patients with
spontaneous cerebral hemorrhage. The critical attenuation value
< 64 HU was shown to be an appropriate indicator of possible
subsequent HE and was able to significantly improve the
predictive power of the multifactor model.
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FIGURE 6 | Forest plot showing the results of multivariate analysis. The potential predictors included in the multivariate analysis were first screened by the least

absolute shrinkage and selection operator (LASSO) regression. (A) LASSO coefficient curves for 39 variables, such as age, sex, time of onset, radiological

characteristics of the hematoma, medical history, physical examination, and laboratory parameters. (B) Dotted vertical lines were drawn at the optimal values by using

the minimum criteria and the one-standard error of the minimum criteria (the 1-SE criteria). Six variables with non-zero coefficients (attenuation value of

non-hypodense region <64 HU, time from the first NCCT scan to onset, baseline hematoma volume, sex, irregular sign, blend sign) were identified. (C) Forest plot of

all six variables identified by LASSO regression that have p < 0.05.
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FIGURE 7 | (A) A nomogram is derived from the multivariate analysis. (B) Calibration plot of the nomogram model. (C) A decision curve analysis of the model with or

without incorporation of the attenuation value of the non-hypodense region of hematoma. The model with six variables has a higher net benefit when the expansion

risk threshold varies between 0.3 and 0.6. (D) Clinical impact curve analysis. The actual events and the predicted events are close while the risk of threshold exceeds

about 0.5.
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