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Recent years have witnessed a strongly increasing interest in digital technology within

medicine (sensor devices, specific smartphone apps) and specifically also neurology.

Quantitative measures derived from digital technology could provide Digital Biomarkers

(DMs) enabling a quantitative and continuous monitoring of disease symptoms, also

outside clinics. This includes the possibility to continuously and sensitively monitor the

response to treatment, hence opening the opportunity to adapt medication pathways

quickly. In addition, DMs may in the future allow early diagnosis, stratification of

patient subgroups and prediction of clinical outcomes. Thus, DMs could complement

or in certain cases even replace classical examiner-based outcome measures and

molecular biomarkers measured in cerebral spinal fluid, blood, urine, saliva, or other body

liquids. Altogether, DMs could play a prominent role in the emerging field of precision

medicine. However, realizing this vision requires dedicated research. First, advanced data

analytical methods need to be developed and applied, which extract candidate DMs

from raw signals. Second, these candidate DMs need to be validated by (a) showing

their correlation to established clinical outcome measures, and (b) demonstrating their

diagnostic and/or prognostic value compared to established biomarkers. These points

again require the use of advanced data analytical methods, including machine learning.

In addition, the arising ethical, legal and social questions associated with the collection

and processing of sensitive patient data and the use of machine learning methods

to analyze these data for better individualized treatment of the disease, must be

considered thoroughly. Using Parkinson’s Disease (PD) as a prime example of a complex

multifactorial disorder, the purpose of this article is to critically review the current state

of research regarding the use of DMs, discuss open challenges and highlight emerging

new directions.
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INTRODUCTION

Digital technologies including wearable sensors, smartphone
applications and smart algorithms currently receive a strongly
increasing interest and begin to move toward medical
applications. They have the potential to bring relevant
information (e.g., “data”) derived from the patient’s real-world
environment to a better understanding of the diseases-
related characteristics (“research”) and at the same time they
potentially could serve for a better healthcare by supporting
individual patients and doctors or other healthcare service
providers. Digital biomarkers (DMs) derived from these digital
technologies are specifically addressing the area of objective
diagnosis and continuous real-world symptom monitoring. As
such, a DM can be defined as an information—also referred to
as “parameter,” “measure” or technically speaking as “data”—that
is assessed or measured by digital technologies. Thus, DMs
exhibit two major characteristics: First, they are measured by
an objective method, e.g., passively via a wearable sensor, or
actively via a questionnaire that is provided to the patient
by a computer or smartphone app. This contrasts with any
examiner-based questionnaire or examination procedure, which
largely depends on the examiner’s expertise and individual
training. It is important to note, that the information itself could
still be subjective which is especially the case for patient-reported
outcome or experience measures (PROMs/PREMs), but the
recording is objective.

A second characteristic of DMs is their patient centricity,
which make them an ideal outcome revealing a patient’s real-
world environment, everyday procedures and activities of daily
living outside regular physician visits (e.g., “real world data”).
Here, it is important to note that DMs could also be derived from
gold standard measures under routine procedures, including
clinical examinations. The common aspect is, that they are
derived from procedures that have not the intention to result into
research data, but to improve healthcare, manage the disease or
to measure everyday life activities of the patient on a continuous
time scale.

Development of digital tools for this purpose is a stagewise
process, where the last stage is the integration into standard
healthcare (Figure 1):

1. A technical device measuring a certain signal needs to be
developed. The signal needs to be analyzed via data analytical
algorithms to extract a set of quantitative, informative
features, e.g., gait parameters. These parameters can be
understood as candidate DMs.

2. Using the device and corresponding algorithms, candidate
DMs should be measured systematically within a randomized,
controlled clinical study in parallel to traditional examiner-
based outcome measures, e.g., Unified Parkinson’s Disease
Rating Scale (UPDRS).

3. The quantitative relationship of DMs to traditionally used
outcome measures needs to be validated statistically, hence
demonstrating that the new technique can be used as a valid
diagnostic tool.

4. The technical device together with the employed
algorithms for feature extraction needs to be approved
by a regulatory agency.

5. The actual benefit of DMs compared to traditional outcomes
with respect to an earlier or more accurate diagnosis or
prognosis for the individual patient should be evaluated.
Notably, this aim connects DMs with the broader ambitions
of precision medicine, as outlined later.

6. Based on the outcome of step 5, existing guidelines and
procedures for routine healthcare need to be adapted or
newly implemented.

It is important to understand that the process through steps 1–
6 is an interdisciplinary effort, which requires expertise from
clinicians, engineers, statisticians and computer/data scientists.
In addition, there are ethical, legal and social implications, which
need to be addressed appropriately, specifically within step 6.
Using Parkinson’s Disease (PD) as a prime example of a complex
multifactorial disorder, the purpose of this article is to critically
review the current stage of research regarding the use of DMs and
to highlight its interdisciplinary character. Moreover, we want to
point out the connection with the broader ambitions of precision
neurology as an emerging topic.

CURRENT STATE OF DIGITAL
BIOMARKERS IN PARKINSON’S DISEASE

The Need for Early and Accurate Diagnosis
of Parkinson’s Disease
PD is a long-term neurodegenerative disorder. Parkinson’s
Disease is estimated to currently affect 7–10 million people
worldwide (1). This places PD after Alzheimer’s disease, but
with a faster growth. Its prevalence in industrialized countries
is around 0.3% and increases with age: 1% of people over the
age of 60 and up to 4% of those over 80 are affected (2). The
prevalence of PD has doubled between 1990 and 2016, whichmay
be explained by the rise in life expectancy, better diagnoses and
environmental factors.

PD is characterized by progressive loss of dopaminergic
neurons in the substantia nigra (located in the midbrain). This
loss already begins in the prodromal stage of the diseases, but
first motor symptoms appear after 30–60% of the dopaminergic
neurons are lost, and 60–80% of their striatal endings have
degenerated (3). Standard diagnosis is mainly based on clinical
examination. For example, according to the UK Parkinson’s
Disease Society Brain Bank Diagnostic criteria PD is diagnosed,
if bradykinesia and at least one of the following criteria
are fulfilled: muscular rigidity, 4–6Hz rest tremor, postural
instability not caused by primary visual, vestibular, cerebellar or
proprioceptive dysfunction.

The accurate and timely diagnosis of PD is critical for the
success of symptomatic treatment.

Among motor symptoms, impairments of speech and voice
often appear as early symptoms. Hence, a lot of research in the
field of DMs has focused on the detection of PD by analyzing
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FIGURE 1 | Stagewise process from development of Digital Biomarkers until their integration into routine healthcare.

biometric signals of speech, voice, gait and handwriting. In the
following we will discuss the existing work related to DMs in
more detail.

Digital Biomarkers for Speech and Voice
Impairments
There is emerging evidence that voice dysfunction is an early
sign of motor impairment in PD (4–6). According symptoms are
known as hypokinetic disartria, resulting in reduction of prosody,
irregularities in phonation and difficulties in articulation. So far,
most authors have focused on detecting PD in a moderate to
advanced stages of the disease from speech and voice data (7–
13). In earlier research DMs have been extracted as handcrafted
features, such as e.g., repeated vowels or repeated sentences.
According information was either obtained by asking subjects
to read a text, by analysis of free speech, or by executing
some more specific task, e.g., diadochokinetic (DDK) tasks (14).
The DDK tasks consist of producing rapid syllabic sequences
(/pa/-/ta/-/ka/, /ba/-/da/-/ga/, . . . ) containing consonant-vowel
combinations. They can reveal articulatory problems in the
coordination of the motor subsystems involved in speech
production. A more comprehensive review of existing methods
for handcrafted feature engineering for PD detection is provided
in (15).

Recent research shows that it is also possible to automatically
discriminate PD from healthy controls at an early stage via
handcrafted features extracted from speech (16). Moreover, in
(17) a new DM technique (named X-vectors) was presented,
which employs modern machine learning (ML) methods rather
than designing handcrafted features. Improved classification
results with X-vectors were obtained, validating the approach for
early PD detection, using both high-quality speech recordings
performed in laboratory settings and speech data acquired
through telephone recordings. Such validations are important to
move from the in-the-hospital controlled environment to remote
eHealth applications.

Digital Biomarkers for Hypomimia
In addition to voice and speech impairments, hypomimia
(reduced facial dynamics, also known as facial bradykinesia) is
a prominent clinical feature in people with PD and seen as
secondary sign of the disease in an early stage (18). Bologna et al.
summarize the main clinical and pathophysiological features of
facial bradykinesia in PD (19): Clinical observations suggests
that reduced spontaneous and emotional facial expressions are
features of facial bradykinesia in PD. In PD, facial bradykinesia

is primarily mediated by basal ganglia dysfunction leading to
abnormalities of spontaneous, emotional and voluntary facial
movements. Given associations between facial movement and
voice, the potential of the Lee SilvermanVoice Treatment (LSVT)
to alleviate decreased facial expressivity was examined in (20).

Surprisingly, there are only few studies that tried to extract
DMs for quantifying hypomimia: Vinokurov et al. extracted
hypomimia DMs in Parkinson patients using a depth camera
(21). Bandini et al. analyzed facial expressions in PD through
video-based automatic methods (22). Grammatikoupoulou et al.
developed PD detection tests, based on the interaction of users
with everyday technological devices to quantify the progressive
decrease of variability of facial expressions in early PD patients
by analyzing patterns emerging from selfie-photos (23). Rajnoha
et al. proposed algorithms to detect hypomimia based on face
recognition methods (24). Jin et al. diagnosed Parkinson’s disease
via facial expression recognition from video analysis (25). In
those studies algorithms from traditional machine learning and
advanced deep learning were utilized.

Recently, deep learning methods have dramatically improved
the state-of-the-art performance of face recognition, leaving
space for extracting new types of hypomimia associated DMs
(26). In addition, easy-to-use high-quality cameras are now
more and more present in our living spaces. Therefore,
there is potential to extract higher quality DMs related to
hypomimia. A further and largely unexplored research direction
is the combination of simultaneously acquired DMs from face
and speech.

Digital Biomarkers for Gait Impairment
Among other motor symptoms, PD results in walking
impairments, which characterize disease progression, but
also severely limit quality of life, increase fall risk, and leads to
a great burden of patients (27, 28). Available gait assessment
modalities include muscular activity, kinetic data (via force
plates or pressure sensors), and kinematic information (via
conventional optical motion capture systems or wearable inertial
sensors), which can be used for PD severity analysis (29).
Compared to gait pathologies arising in other diseases, most
research has been published related to PD (29). Systematic
changes in parameters such as gait speed, stride length, cadence,
double support time have been identified in a large body of
evidence (30). Gait parameters assessed by wearable digital
technology, such as inertial measurement units which are worn
on body segment such as foot, pelvis, lower back, or wrist, have
been suggested to be used as digital biomarkers (31).
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A recent systematic review summarizes current evidence on
discriminant ability, construct validity, prognostic value and
responsiveness using those digital mobility outcomes in PD (32).
Recent research aims toward assessing gait in real-world walking
environments, overcoming the challenges of standardized tests in
clinics, which are also performed only rarely in a patient’s disease
history (33, 34). Current challenges include the technical and
clinical validation, as well as regulatory acceptance of wearable
devices for mobility assessment (35).

However, PD progression trajectories are heterogeneous and
require a better understanding by modeling large data sets. Intra-
and inter-individual variability and medication effects need to be
accounted for when modeling disease progression longitudinally
(36). Besides the classification of PD disease states, analytical
approaches also include symptom detection. A recent work
presented the detection of PD motor states at a high temporal
minute-wise resolution (37). Notably, gait-based DM can also be
combined with markers derived from other modalities to provide
more reliable diagnosis, real-world symptom monitoring and
prognosis. However, the availability of sufficiently labeled clinical
reference datasets of adequate sample size currently remains
a challenge.

Digital Biomarkers for Impairment of
Handwriting
Several studies have shown the potential of PD assessment
through handwriting analysis, especially online handwriting
acquired from tablet computers. Corresponding data provides
rich information about spatio-temporal dynamics, such as
velocity, acceleration, jerk (the derivative of the acceleration), and
pressure of the handwriting strokes (38–40). To acquire the data,
different tasks are usually proposed to PD patients and healthy
controls, chiefly among them, writing words and sentences,
copying names and addresses, drawings like Archimedean
spirals, circles, and “llll” series. These studies, especially those
based on statistical analysis tools show that, even at an early stage,
Parkinsonian handwriting can get degraded in several ways,
such as decrease of the stroke size, i.e., micrographia (41, 42),
onset/increase of tremor (increase of jerk) (43–45), bradykinesia
(slowness of movement) (41, 46, 47), and rigidity (48, 49).

These studies provide insights into the principal feasibility
of DMs to capture differences between PD patients and healthy
controls. However, the use of digital handwriting analysis in
clinical routine requires to not only measure different features
of the impairment, but also to aggregate these features into an
overall diagnosis/clinical score. Only few authors have performed
research in this direction so far: In (50), for instance, based
on kinematic and pressure data, several ML classifiers have
shown promising performance for discriminating PD against
healthy controls. More recently, following the large success of
neural networks in computer vision and speech analysis, several
deep learning-based approaches have been proposed for PD
assessment (51–53).

Despite these promising developments there are still several
limitations in current research. First, current studies do not
always target early stage PD. In addition, virtually all published

approaches do not include the isolated rapid eye sleep movement
disorder (iRBD) group, which limits their aid-to-diagnostic
potential. Moreover, each group (PD or healthy control) is
usually assumed to feature a unimodal handwriting behavior,
which does not usually reflect the actual dynamics of each group,
associated with different factors such as age, clinical scores (e.g.,
MDS-UPDRS, education, emotional states, etc.).

Digital Biomarkers Derived From Other
Biometric Data Modalities
There are also some recent studies analyzing biometric data
modalities other than speech, face, gait and handwriting in
order to extract DMs for PD. Giancardo et al. studied computer
keyboard interaction as an indicator of early PD disease (54).
Williams et al. used standard smartphone video recordings
of finger tapping for the same purpose (55). Iakovakis et al.
estimated motor impairments via touchscreen typing dynamics
toward PD detection from data harvested in-the-wild (56). The
assessment of the cardinal symptom tremor is addressed in
several research studies as well (57–59). DeOliveira et al. reported
early diagnosis of Parkinson’s disease using EEG, ML and partial
directed coherence (60). Their goal was to classify participants
into three distinct groups: PD patients who are medicated;
patients with PD and drug deprivation; and healthy subjects.
Even though their results are promising, they require specific
sensors and are therefore not suited for remote monitoring.
In addition, extracted DMs have not been tested and validated
in different cohorts. In conclusion, DMs extracted from data
modalities other than speech, hypomimia, gait and handwriting
could potentially give new insights into the pathophysiology
of PD.

Validation and Regulatory Approval of
Digital Biomarkers
Before any use in clinical practice, a candidate DM needs to
be validated via a prospective clinical study, like any molecular
biomarker. The study needs to show that the DM is applicable
to the target population in the context of its intended use (61).
That means the correlation of the DM with disease state and/or
any accepted clinical endpoint, such as MDS-UPDRS, has to be
statistically demonstrated. Based on the outcome of such a study,
a DM based solution may subsequently seek for approval as
“software as a medical device (SaMD)” by a regulatory authority.
Noteworthy, according to the definition of the US Food andDrug
Administration (FDA), SaMDs can perform a medical function
without necessarily being part of a hardware medical device (62).
Hence, ML algorithms are covered by this definition.

Examples of approved medical devices, of which extracted
features can be regarded as validated DMs include Mobile
GaitLab, a CE certified mobile gait sensor producing various gait
parameters that have previously shown to reflect a physician’s
rating of PD, and to correlate with MDS-UPDRS and drug
response (63–66). Also, wrist worn sensors have been CE certified
to detect various motor-impairments in PD such as bradykinesia,
tremor, or dyskinesia.
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It should be noted that the CE label and the according
EU device classification regulates DMs from a purely technical
perspective and does not provide any evaluation of medical
benefit. Indeed, the regulation of DMs is in the US and
EU organizationally separated from that of drugs, and thus
far the experience with DMs in the context of clinical trials
is altogether limited. Therefore, there exist uncertainties for
pharma companies, which seek for approval of a drug: While
from a scientific point of view measuring a drug’s efficacy via
a technically certified DM might be viable alternative to a
traditional examiner-based clinical assessment, the acceptance
of such a digital endpoint by a regulatory authority is currently
not totally clear. Regulatory agencies first want to evaluate
the relationship of DMs to traditional clinical endpoints and
understand their benefit for measuring drug efficacy and safety.
Hence, at present DMs are not yet included as standard into
clinical trials in the PD field.

DATA SCIENCE AS ENABLER OF DIGITAL
BIOMARKERS

Digital Biomarkers Are Features Extracted
From Large Volumes of Data
The high resolution of digital sensors allows for an
unprecedented high volume of precise data that can be
leveraged for assessment of PD symptoms. For example, a recent
camera for video streaming (Microsoft’s Kinect v2) provides
five video related data streams. Besides the color (1,920 × 1,080
at 30Hz) and infrared (512 × 424 at 30Hz) data streams, it
provides depth images (512 × 424 at 30Hz), body index images
(512 × 424 at 30Hz) and the skeleton information for every
tracked person (25 joints at 30Hz). Color images are provided
with 4 bytes per pixel and depth images with 2 bytes per pixel
resolution. In order to distinguish tracked persons, the camera
software stores body index images, which take one byte per pixel.
The joint positions are provided at a resolution of 4 bytes per
coordinate (12 bytes per joint). Every frame contains a time
stamped gait assessment (67).

To find patterns in the resulting huge volume of data,
advanced data analytical methods are required, including
modern approaches from Artificial Intelligence (AI). The result
of these algorithms is a set of abstract (not necessarily human
understandable) features describing, for example, gait or voice
characteristics within an individual patient. If such features
can be reproducibly associated to disease symptoms, they
can be regarded as candidate DMs, which after a rigorous
validation process might subsequently be approved for use in
medical practice.

From a technical point of view, there are several approaches
for feature extraction from digital sensor data: One possibility
is to construct handcrafted features, reflecting, for example,
spatiotemporal or kinematic aspects of voice (68), handwriting
(69) or gait (70). On the other hand, neural networks and, in
general, representation learning-based approaches can directly
process raw data to generate high-level features implicitly (51, 69,
71, 72). Learning of high-level, implicit features is usually guided

by a supervised prediction task, for example discriminating PD
vs. healthy controls (51, 71).

In addition to machine learning approaches, biomechanical
models have also been used for feature construction, specifically
in gait analysis (73–75).

Unavoidable Challenges From a Data
Science Perspective
It is important to mention that the derivation of DMs from
real-world data is associated with several challenges from a
Data Science perspective. First, real-world data are always and
unavoidably impaired by noise. Noise can result from the
technical measurement process as well as from the natural
biological variability of disease symptoms. Discriminating both
sources of noise is still a major challenge in Data Science (76).

Another challenge is the limited amount of training data,
which is typical in biomedical applications due to the high costs
and regulatory issues compared to other application fields. In
addition, statistical andAImethods assume that training data was
sampled independently and identically distributed (i.i.d.) from
the same underlying statistical population. This assumption is
rarely fulfilled in biomedicine, e.g., due to selective recruitment
of patients. While modern Data Science techniques like transfer
learning might partially address this issue, their actual benefit
has still to be evaluated carefully and more broadly. Therefore,
recent initiatives focusing on generation of large scale real-world,
such as the “All of Us” research program in the US, could play an
increasingly important role in future PD research (77).

Finally, it is worthwhile to mention that supervised learning
approaches require a manual and careful labeling of cases by
medical experts, which can be time consuming and depends on a
certain gold standard. Accordingly, the application of the device
is then limited to the used gold standard. While unsupervised
approaches are well-established in Data Science, their use is
limited to specific tasks (e.g., clustering, representation learning),
and the validation of detected patterns is comparably much more
difficult than in case of supervised learning.

In conclusion, Data Scientist face unique challenges in
biomedicine, which require a careful adaptation of existing
methods or the development of new ones (78).

THE EMERGING FUTURE: DIGITAL
BIOMARKERS IN PRECISION
NEUROLOGY

Precision Neurology Requires Multi-Modal
Data and Multivariate Stratification
Approaches From the Area of Data Science
DMs can be viewed as objective and quantifiable biomarkers
in the same way as a protein abundance, a genetic variant, a
neurological image or any other patient specific characteristic
that can be used for individualized disease diagnosis, monitoring,
prognosis, drug response prediction or stratification. The main
difference to traditional biomarkers is the measurement process,
which in the case of a DM is performed via a digital device
or via a smartphone app. In contrast to traditional biomarkers,
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the portability of most DMs offers unprecedented mobility and
continuity of themeasurements, enabling a location-independent
sensitive monitoring of patient phenotypes for long durations
and with minimal interruptions.

In most disease areas, including neurology, single biomarkers
are not sufficient to reliably diagnose and monitor a disease,
prognose its progression, predict the response to a specific
drug or to identify well-separated patient subgroups. This
is because many neurological diseases (including PD) are
complex and heterogeneous, involving high inter- and intra-
individual variability over time and affecting a multitude of
biological mechanisms. Different combinations of genetic and
environmental factors may lead to different forms or sub-types of
the disease, which may manifest themselves in a wide spectrum
of highly diverse motor- and non-motor symptoms. This
diversity cannot be captured by a single biomarker. Accordingly,
comprehensive multifactorial biomarker signatures are needed.

Identifying and robustly validating such marker signatures
is difficult and requires state-of-the-art approaches offered
by Data Science. Specifically, multivariate stratification and
prediction algorithms using techniques from the area of
Artificial Intelligence (AI, including machine learning) thus play
an increasingly important role (Figure 2). Recent noteworthy
examples from the area of PD include a machine learning
approach to predict the risk of an individual patient to receive
the clinical diagnosis PD using routinely collected data from
electronic health records about 5 years in advance (79). A
further example is a machine learning approach to cluster
AD and PD patients into 4 different subgroups based on the
genetic burden on 15 molecular mechanisms (80). The authors
in (81) developed a machine learning approach to predict the
progression of PD using a signature of 27 inflammatory cytokines
measured in blood serum. Furthermore, mobile phone gyroscope
and accelerometer data have been used in combination with
demographic and clinical data to predict different measures of
Parkinson’s disease symptom severity (82). Finally, in (83) a
subgrouping of PD patients based on their disease trajectories,
described via a variety of outcome scores, was suggested.

Altogether, there is an increasing awareness that moving
toward precision neurology requires a holistic view on the
disease, in which aging, genetic and epigenetic variants,
environmental pollutants/toxins, life style, comorbidities and
clinical assessments are considered jointly (84–87). Accordingly,
we believe that in the future DMs will play a more important
role in this context, because they principally allow for a more
objective, sensitive and continuous assessment of longitudinally
variable disease symptoms compared to questionnaire-based
outcome measures. Hence, DMs could in the future be combined
with other data modalities (including genetic variants) for earlier,
more robust and accurate disease diagnosis and prediction of
disease progression.

In addition, DMs offer further opportunities: Certain disease
comorbidities, such as freezing of gait in PD, which can be
particularly debilitating for the patient, may require a continuous
patient monitoring to enable new effective interventions.
Such applications, necessitating uninterrupted monitoring and

FIGURE 2 | Machine learning (ML) refers to an approach, in which a statistical

model is fit to data. After this “learning” process the model encompasses a

“pattern” or a “rule.” ML can be supervised or unsupervised. In supervised

learning, we train a model based on a dataset with hopefully many

observations, each containing a (possibly large) number of features, coupled

with the known clinical outcome (e.g., drug response, see example on the

right). Based on the established model predictions for patients that were not

part of the training data can be made (such as Mr. Smith). Machine learning

models can make accurate predictions, even if there is no single biomarker

that discriminates patient groups. For example, in the Figure neither blood

pressure nor the digital biomarker alone allows for discriminating drug

responders from non-responders. However, both features together admit a

perfect separation (diagonal line). Notably, supervised learning is not restricted

to classification, but also continuous outcomes can be predicted. As opposed

to supervised learning, unsupervised learning aims at inferring patterns from

data without having access to a label, such as phenotype. Many machine

learning models can discard features that are irrelevant for the prediction

(sparse models). The set of features selected by the algorithm then establishes

a biomarker signature.

offering the potential to issue direct feedback and warnings to the
patient, may only be achievable with the help of DMs.

Of course, the idea to use DMs for precision neurology
requires a sufficient validation, and thus we initiated the
dedicated EU-wide project DIGIPD (Validating DIGItal
biomarkers for better personalized treatment of Parkinson’s
Disease—https://www.digipd.eu). DIGIPD will specifically focus
on three types of DMs: (i) sensor-based gait assessment, (ii) voice
recordings (also via phone), and (iii) video recordings of face
movement. The project will initially evaluate the association of
these DMs with disease diagnosis and progression, as described
via traditional questionnaire-based assessments, such as MDS-
UPDRS. Furthermore, we will test, in how far DMs could be used
and interpreted in combination with other data types (genetics,
demographics, molecular markers and associated cellular disease
maps) to predict the progression of the disease for an individual
patient, as well as other clinically relevant disease outcomes
and comorbidities.

Toward Establishing Precision Neurology
in Clinical Practice
AI based stratification and prediction algorithms resulting from
research projects such as DIGIPD are not immediately applicable
in clinical practice. There is a multi-step validation procedure
and legal pathway required before using any such approaches

Frontiers in Neurology | www.frontiersin.org 6 February 2022 | Volume 13 | Article 788427

https://www.digipd.eu
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Fröhlich et al. Digital Technology for Individualized Treatment

outside research (76): Typically, AI algorithms are initially
validated internally by leaving out parts of the original training
data for testing purposes, using a single split of the data into
a training and a test set, or multiple random or stratified
splits as part of a dedicated cross-validation procedure. This is
necessary to evaluate how the algorithm can predict a given
endpoint in principle, but it does not answer the question,
in how far the algorithm might be applicable to patients
that are different to those included into the original training
cohort. This is important, because patient selection criteria and
differences between patient populations in different geographic
regions unavoidably bias studies used for training and testing AI
algorithms. In consequence, the typically made assumption in
machine learning of training and test data being drawn from the
same underlying statistical distribution is certainly not fulfilled in
medicine (88). Accordingly, subsequent validation steps for an AI
algorithm include (76):

1. Retrospective validation on independent study data.
2. Prospective validation using a specifically designed

clinical study
3. Regulatory approval as a medical product, as outlined above

In addition, the actual benefit for the patient compared to
the current medical practice should be evaluated, also from a
health economic perspective. Finally, since biomarker-guided
treatment decisions may also involve adverse effects in some
cases (e.g., in case of CSF biomarkers), not only a cost/benefit
assessment may be required, but also a critical evaluation of the
benefit/risk relation.

ETHICAL, LEGAL, AND SOCIAL ASPECTS

The Use of Digital Biomarkers Requires
Considering Ethical, Legal, and Social
Aspects
In the recently published World Health Organization (WHO)
global report on Artificial Intelligence in Health (89), Soumaya
Swaminathan aptly emphasizes that while AI “has enormous
potential for strengthening the delivery of health care and
medicine [. . . ], for AI to have a beneficial impact on public health
and medicine, ethical considerations and human rights must be
placed at the center of the design, development, and deployment
of AI technologies for health.” The collection of large volumes of
health data through digital devices as well as the use of advanced
analytical techniques to process these data entail multiple ethical,
legal and social implications.

Ensuring Ethical and Legal Data
Processing
Collecting DMs for better individualized treatment of PD and
sharing information pertaining to patients between different
research centers raise questions regarding confidentiality of data,
their cross-border flows (90), availability of data for research,
and access to the results of the research. Because AI systems
require large quantities of good-quality data for training and
validation, Intellectual Property and data protection, are critical

issues. Aikten et al. suggest that individuals are willing to support
the use of medical data for technological development, but only
if careful attention is paid to confidentiality, control, governance
and assured use for public interest (91). This is complicated by
the rapid movement of large technology companies (e.g., IBM,
Google) into healthcare, as well as the proliferation of start-ups
developing healthcare related products. Expansion of data use
also increases opportunities for data leakage and re-identification
(e.g., Google with the vast individuated and geolocated datasets
they already hold), and this needs to be addressed to leverage
the potential of digital technology in a justifiable and legitimate
way (92).

The General Data Protection Regulation (GDPR) (93)
imposes rules that may be difficult to reconcile with AI use, such
as the principles of transparency, data minimization and access to
the system underlying the decision taken by an AI system. Legal
pathways are however possible, especially as scientific research
is promoted by the Regulation (article 89.1) and national laws
(article 89.2) by permitting and providing derogation measures
for such aims. Furthermore, as protection of personal data is an
“intermediate” right to protect fundamental values, namely the
right to self-development/ autonomy/ human dignity, its rules
are to be interpreted in this context (94).

Protection of the used technologies and databases against
adversarial model attacks (95) is crucial as well. There is thus
a need to identify the technical measures that need to be
implemented to ensure resilience to attack and security of the
systems in use. The GDPR addresses concerns relating to data
security and confidentiality.

Ensuring Ethical AI
The European strategic plan on AI released in 2018 (93) includes
the provision of an ethical and legal framework for “Trustworthy
AI.” In order to achieve this objective, the European Commission
set up a High-Level Expert Group on AI, which published in 2019
the Ethics Guidelines for Trustworthy Artificial Intelligence (96).
These Guidelines indicate that AI should be human-centric and
used in the service of common good and humanity, with the aim
to improve human welfare and freedom. Trustworthy AI must
be lawful, ethical and robust, both from a technical and social
perspective, since, even with good intentions, AI systems can
cause unintentional harm.With respect to the ethical aspects, the
Guidelines prescribe seven requirements:

• Human agency and oversight: AI systems should empower
human beings, allowing them to make informed decisions
and fostering their fundamental rights. At the same time,
proper oversight mechanisms need to be ensured, which can
be achieved through human-in-the-loop, human-on-the-loop,
and human-in-command approaches.

• Technical Robustness and safety: AI systems need to be
resilient, secure, reliable and reproductible, and provide
accurate results.

• Privacy and data governance: full respect for privacy and
data protection is to be ensured, with adequate data
governance mechanisms.
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• Transparency: the data, system and AI business models should
be transparent. Traceability mechanisms can help achieving
this. Moreover, AI systems and their decisions should be
explained in a manner adapted to the stakeholder concerned.

• Diversity, non-discrimination and fairness: unfair bias should
be avoided, while access to all should be ensured as well as
multiple stakeholders’ participation.

• Societal and environmental wellbeing: AI systems should be
sustainable and environmentally friendly. Social and societal
impacts should also be considered.

• Accountability: Auditability, report on negative impacts, and
adequate redress mechanisms should be ensured.

The AI HLGE has developed a detailed list of measures to be
adopted as well as the procedure to be followed in order to meet
the seven requirements that must be covered by the so-called
“ethical” evaluation: this is the “Assessment List for Trustworthy
Artificial Intelligence” (ALTAI) (97). Given the specificity of AI
system applications, it must be adapted to the particular case and
context in which the systemwill operate. An online prototype has
been developed to guide developers and deployers of AI systems
through a dynamic and accessible checklist. While this list allows
us to assess the conformity of the system envisaged with the
above-mentioned ethical principles, it does not allow us to assess
the conformity of the system with the legal requirements.

Ensuring Human Oversight and
Accountability
Some AI algorithms are based on ML, which is a fast, automatic
and not an intuitively explanatory self-learning mechanism.
ML algorithms are often described as transforming inputs to
outputs through a “black box” which involves introducing a
critical issue: explainability or interpretability of the output
from a human perspective (98, 99). Many ML algorithms,
specifically in the field of neural networks, produce outputs
that are difficult for humans to explain or interpret. This is in
contrast with traditional statistical modeling approaches (100). It
could imply that future healthcare AI systems may recommend
individualized diagnostic, prognostic and management decisions
that lack transparency and thereby trust (101). This situation
also challenges the requirement of transparency when it comes
to the processing of personal data based on automated decision-
making, as well as the data subject’s right to information.

Tightly linked with the explainability and interpretability of
the functioning of the system and its outputs, responsibility and
liability are crucial issues regarding AI use (102). While AI is
being introduced into healthcare exponentially, there is a lack of
clear regulator, trial process and legal accountability regime (103).
One exception is the area of data protection, especially protection
of health-related data, where general and specific regimes are
emerging or already adopted (including in the GDPR) and
further work between stakeholders is undergoing. However, there
is still a clear “regulatory gap” with respect to clinical use of AI.
A new “purpose built” regulatory framework should be created,
setting up guidelines and regulation to be followed protecting
vulnerable patients but also ensuring that appropriate innovation
in technologies is supported.

Furthermore, the use of AI in healthcare may lead to
changes in the role and self-image of physicians. Future
decision making is likely to involve both clinicians and AI
systems in some way, requiring management of machine-
human interaction. If physicians are directly involved in patient
care, but if decisions partly depend on non-explainable AI
recommendations, physicians will face challenges regarding their
moral and legal responsibility. Hence, it should be considered
where to locate the decision-points in algorithms’ development
that should trigger attributions of responsibility (104). This shift
in attributions of responsibility may affect the patient’s trust
in clinicians and health care institutions and change medical
roles. Clinicians could have more time to talk with patients,
for example, but if decisions are algorithmically supported there
may be limits to what clinicians are able to explain (105). It is
thus important to ensure that technical means remain a help for
the human. In addition, if algorithms enter individual clinical
care and clinicians become more dependent on these systems
for decision-making, patients who do not share the requested
health data may not be able to receive gold-standard treatment,
creating tension between clinical consent and quality of care
(106). The eventuality of a right for patients to refuse the use
of new techniques making use of AI systems in medicine has
therefore to be considered.

Avoiding Unfair Bias
The data feeding the AI system should be appropriate,
accurate and up to date. The AI system’s level of accuracy
should be assessed, and this accuracy should be appropriately
guaranteed. Fundamentally, AI systems are “made of” data.
By exposure to massive datasets, they develop the ability
to identify patterns in those datasets, and to reproduce
desired outcomes. These abilities are shaped not only by
their coding, but also by the data they are fed with. Feeding
biased data into AI systems produces systematically biased
outputs from those systems. In addition, human choices may
prompt AI systems to work in discriminatory or exploitative
ways (107). A high degree of transparency about data
sources and distinction between efficacy and effectiveness will
be necessary to protect against these potential weaknesses.
Appropriate ways should be implemented to prevent, discover
and correct mistakes.

Ensuring Protection of Vulnerable People
Research with vulnerable people is an additional source of
potential concerns. Vulnerable persons are described as those
who are relatively (or absolutely) incapable of protecting their
own interests (108) (p. 65). This includes, for instance, people
with an incurable disease (as PD) or with physical frailty
(e.g., due to age or co-morbidities). While research with this
population is generally allowed unless a good scientific reason
justifies their exclusion, there are some specific considerations
that need to be addressed. According to the Declaration
of Helsinki, “medical research with a vulnerable group is
only justified if the research is responsive to the health
needs or priorities of this group and the research cannot
be carried out in a non-vulnerable group. In addition, this
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group should stand to benefit from the knowledge, practices
or interventions that result from the research.” (109). This
principle of providing specific protections and safeguards to
vulnerable persons is reiterated in the UNESCO Declaration
on Bioethics and Human Rights (art. 8) (110), the WHO
Handbook for Good Clinical Research Practice (principle 1)
(108) and the CIOSM Guidelines (guideline 15) (111). Such
protections could include “allowing no more than minimal
risks for procedures that offer no potential individual benefits
for participants; supplementing the participant’s agreement by
the permission of family members, legal guardians, or other
appropriate representatives; or requiring that the research be
carried out only when it is targeted at conditions that affect
these groups.”

Ensuring Legally Trustworthy AI
While, as it was emphasized by the Committee on Social Affairs,
Health and Sustainable Development of the Council of Europe
(112), “the speed of the development and deployment of [AI]
technological developments [in health care] is much faster than
that of the legal framework regulating them,” any development
of AI driven solutions for health care must be in line with
existing legal instruments. These include the European Social
Charter (113), the European Convention on Human Rights
(114), the Convention on Human Rights and Biomedicine
(115), the Convention for the Protection of Individuals with
regard to Automatic Processing of Personal Data (116) and its
Amending Protocol (117), and the European Charter on Medical
Ethics (118).

In addition, AI systems may be considered as medical devices
pursuant to the regulation on medical devices (119) which
prescribes that “a device may be placed on the market or
put into service only if it complies with this Regulation when
duly supplied and properly installed, maintained and used in
accordance with its intended purpose” (article 5). AI systems
considered as medical devices and all elements permitting
its functioning therefore need to be tested and controlled. It
is also important to note that in April 2021, the European
Commission proposed new rules on AI (120). The proposed
regulation imposes multiple obligations on all actors involved in
the development and use of AI systems qualified as high risks.
According to Article 6 §1, the AI system shall be considered
high-risk where it “is intended to be used as a safety component
of a product, or is itself a product, covered by the Union
harmonization legislation listed in Annex II; [AND] the product
whose safety component is the AI system, or the AI system itself
as a product, is required to undergo a third-party conformity
assessment with a view to the placing it on themarket or putting it
into service of that product pursuant to the Union harmonization
legislation listed in Annex II.” The regulation on medical devices
already mentioned being listed in Annex II, the proposed AI Act
may impose a multiple set of new obligations for AI use in the
health sector.

Ensuring Patients’ Involvement
While DMs and associated AI algorithms may offer benefits
for the individual patients from a scientific point of view, the

patients’ actual acceptance as well as their involvement in the
development process is essential. This is strongly encouraged
by UNESCO in its recently adopted Recommendation on the
Ethics of AI (121). Hence, any attempt to implement DMs in
healthcare routine should be accompanied by an engagement
with patients. This engagement is necessary during all steps of
the process: identification of research questions, study design,
recruitment processes, data collection and analysis of results. It
also seems necessary to provide some explanations regarding the
apparent need to implement AI solutions that may transform
the experience of healthcare provision and consumption, and to
increase control and deliver investment opportunities (122).

As an example of such an engagement, within the EU wide
project DIGIPD (https://www.digipd.eu), a structured online
survey as well as interviews will be conducted to investigate
the acceptance by PD patients of the use of sensitive personal
data collected through digital devices and advanced analytical
techniques in the development of better individualized patient
care. Data privacy and ethical concerns will specifically be
addressed. The primary objective of this approach is to collect
detailed information on the opinions, thoughts, experiences and
feelings of PD patients on the use of DMs (extracted from
mobile gait sensors, voice recordings and face movements) and
AI in clinical routine. A secondary objective is to identify other
factors that must be taken into account in order to gain patients’
acceptance and meet their demands.

CONCLUSION

Recent years have witnessed a strongly increasing interest
into DMs, because they enable a quantitative and continuous
monitoring of disease symptoms within a patient’s real-world
environment. A main distinction point to traditional examiner-
based outcome measures is thus the avoidance of a subjective
rater bias. Furthermore, DMs can be regarded as non-invasive
complements or even replacements of molecular biomarkers. In
this context DMs could also play a vital role in the emerging
field of precision neurology. However, research in this direction
is just starting.

Current research demonstrates that DMs derived from speech,
voice, gait, handwriting and face movement have a high
potential in the PD field. However, their shift from research
into medical routine requires a more systematic and rigorous
validation within prospective clinical studies and subsequent
regulatory approval. In addition, there are ethical, legal and
social implications that need to be considered: DMs are in
essence data driven and specifically AI driven techniques. Hence,
appropriate data privacy measures need to be implemented
and the trustworthiness of AI algorithms ensured. In addition,
the implementation of DMs into healthcare routine requires
acceptance by patients.

Altogether, the development of DMs and subsequent
implementation into medical routine has to be regarded as
a stagewise process, which requires input from clinicians,
engineers, statisticians, computer/data scientists, legal experts,
regulators and patient representatives. Accordingly, institutions
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that want to be active in this field need to be aware of the
necessary organizational steps as early as possible.
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