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Background: Excessive oscillations at beta frequencies (13–35Hz) in the subthalamic

nucleus (STN) represent a pathophysiological hallmark of Parkinson’s disease (PD), which

correlates well with parkinsonian symptoms and is reduced in response to standard

disease treatments. However, the association of disease-specific regional gray matter

(GM) atrophy or cortical thickness (CT) with the presence of STN beta oscillatory activity

has been poorly investigated but is of relevance given the potential of these variables for

extracting information about PD pathophysiology. This exploratory study investigated the

involvement of regional GM volume and CT in the basal ganglia-cortical network and its

potential association with the presence of STN beta oscillatory activity in PD.

Methods: We acquired preoperative GM densities on T1-weighted magnetic resonance

imaging scans andwe carried out regional estimation of GM volume andCT. LFP activities

from the STN were recorded post-operatively in 7 cognitively preserved PD patients off

dopaminergic medication undergoing deep-brain stimulation surgery. Oscillatory beta

power was determined by power spectral density of 4-min resting state STN LFP activity.

Spearman partial correlations and regression analysis were used to screen the presence

of STN beta power for their relationship with GM volume and CT measurements.

Results: After controlling for the effects of age, educational level, and disease

duration, and after correcting for multiple testing, enhanced STN beta power

showed significant and negative correlations between, first, volume of the right

putamen and left caudate nucleus, and second, smaller CT in frontal regions

involving the left rostral middle frontal gyrus (MFG) and left medial orbitofrontal

gyrus. A lower volume in the right putamen and a lower CT in the left

MFG demonstrated the strongest associations with increased STN beta power.
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Conclusions: These tentative results seem to suggest that STN LFP beta frequencies

may be mainly linked to different but ongoing parallel neurodegenerative processes, on

the one hand, to GM volume reduction in dorsal striatum, and on the other hand, to CT

reduction of prefrontal-“associative” regions. These findings could further delineate the

brain structural interactions underpinning the exaggerated STN beta activity commonly

observed in PD patients.

Keywords: Parkinson’s disease, subthalamic nucleus, beta oscillations, local field potentials, cortical thickness,

gray matter volume

INTRODUCTION

A commonly acknowledged way to study oscillatory activity
in PD is to record the local field potentials (LFPs), which are
thought to represent the summation of local electrical fields
near the recording electrodes, through implanted electrodes in
the subthalamic nucleus (STN) intraoperatively during or post-
operatively after deep-brain stimulation (DBS) surgery (1, 2). The
beta rhythm (13–35Hz) is the longest-studied STN oscillation
and has been theorized to play a key role in Parkinson’s disease
(3). Increased beta oscillations are the most salient LFP event
during resting and awake states in PD patients (4), and has been
correlated with symptom severity (5). Furthermore, reduction
of this excessive beta oscillatory activity by treatment with
levodopa (6) and DBS (7) has been linked with motor symptom
improvement (8). As a result, there is growing confirmation
highlighting the potential utility of STN beta activity as a
functional biomarker for PD motor symptom severity and
treatment response (9).

There is strong evidence supporting the notion that the
progressive degeneration of dopaminergic neurons in the
substantia nigra pars compacta (SN) that project to the striatum
is a trait of PD pathology (10, 11), although the role of the
striatum as a possible source of beta frequency rhythms in PD
is still poorly understood (12). In addition, the underlying neural
structure(s) and circuit networks accountable for the prominent
STN beta oscillations are indeed intensely controversial. Studies
have pointed to the dorsal part of the STN as the main source of
this pathological synchronization of beta oscillatory activity (13–
15), likely influenced by both the interaction of the STN with
other basal ganglia structures, particularly the external segment
of the globus pallidus (GPe) (16–18), and exogenous or cortical
pattering (17, 19, 20).

In this respect, converging studies indicate that the STN is
structurally and functionally connected to different cortical and
other gray matter (GM) nuclei (21), with significant degeneration
and changes in these projection pathways in PD patients (22),
which likely impact the structural integrity of their brain
networks. Although a variety of studies have reported thinning
of both the frontal and posterior cortex (23–25) and increased
atrophy in subcortical (particularly caudate and putamen)
and cortical networks spanning frontal, temporal and parietal
cortices (26–28), disease-specific regional cortical atrophy is still
considered to be controversial as a brain marker in PD. In
this regard, GM volume reduction or cortical thickness (CT)

and their likely association with the presence of beta oscillatory
activity have been poorly investigated, despite the attractive
relationship between the variables for extracting information
regarding cortico-basal ganglia pathophysiology.

In this preliminary study, we explored the presence of
STN beta oscillatory activity and the associations with regional
GM volume- and surface-based thickness measurements of the
basal ganglia–thalamo-cortical regions in PD and proposed a
new approach to integrate brain structural changes and STN
functional activity that can be used as adjunctive markers to track
the effectiveness of disease treatments and disease progression.
We speculate that both reduced GM volume (i.e., understood
as a hypothetical volume loss or increased atrophy) of basal
ganglia nuclei and reduced CT thickness (i.e., understood as
a hypothetical increased cortical thinning), particularly from
those brain structures influencing STN functioning, may also
contribute to abnormal striatal network dynamics and to the
mechanism responsible for pathological synchronization of STN
oscillations, resulting in enhanced beta frequency oscillations
in PD.

MATERIALS AND METHODS

Participants
Nine patients with idiopathic PD, as defined by the
Parkinson’s UK Brain Bank (29), undergoing bilateral surgical
implantation of DBS electrodes in the STN to treat their motor
symptomatology were recruited from the Movement Disorders
Neurology Outpatient Clinic at the Puerta del Mar University
Hospital. Two participants were excluded from the LFP study
based on clinical judgment related to the externalization of
DBS leads. The remaining seven participants (aged 37–65
years; five males and two females, mean disease duration: 13
years) included in this study exhibited typical motor symptoms,
such as bradykinesia, rigidity, or tremor. Each patient’s motor
condition was evaluated preoperatively and post-operatively by
a specialist in movement disorders with the Unified Parkinson’s
Disease Rating Scale (UPDRS, part III) (30) in the off- and
on-medication states. Additionally, none of the patients showed
significant cognitive impairment based on Mini-Mental State
Examination (MMSE score <24) performance (31) or major
depression based on the Beck Depression Inventory (BDI
scores <18) (32). Clinical details are summarized in Table 1

(33, 34).
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TABLE 1 | Demographic and clinical details of the PD patients included in the study.

ID Age (years) Sex Ha E (years) Disease duration

(years)

Predominant

symptoms

LEDD pre-surgery UPDRS—III MMSEc BDI IIc Bipolar channels

used for analysis

Pre-surgery Post-surgeryb

On med Off med Off med/off stim

1 64 M R 4 11 Akinetic-rigid 1,075 35 78 49 27 18 R: 1-2, 2-3

2 64 M R 23 7 Fluctuations,

Akinetic-rigid

1,350 38 59 52 29 16 L: 0-1, 1-2, 2-3;

R: 0-1, 1-2

3 60 M R 5 36 Tremor 500 14 67 20 30 18 L: 1-2, 2-3;

R: 0-1, 1-2, 2-3

4 65 M R 11 10 Akinetic-rigid 1,680 20 46 24 29 18 L: 1-2, 2-3;

R: 0-1, 1-2, 2-3

5 40 F R 17 4 Akinetic-rigid,

fluctuations

600 14 44 37 28 10 L: 0-1, 1-2, 2-3

6 59 F R 10 17 Tremor 1,200 13 71 52 30 8 L: 0-1, 1-2, 2-3;

R: 0-1

7 37 M R 10 6 Akinetic-rigid,

dystonia

1,560 22 56 35 28 5 L: 0-1, 1-2, 2-3

Mean 55.6 11.4 13 1,137.9 22.3 60.1 38.4 28.7 13.3

SD 11.9 6.7 11 451.1 10.3 12.7 13.2 1.1 5.5

H, Handedness; E, Education; LEDD, levodopa-equivalent daily dose in mg (33); UPDRS III, Unified Parkinson’s Disease Ratings Scale motor part III; on-med, with dopaminergic treatment; off-med, without dopaminergic treatment;
off-stim, with STN DBS switched off; MMSE, Mini-Mental State Examination; BDI II, Beck Depression Inventory; F, female; M, male; R, right; L, left; S.D., standard deviation.
aHandedness was assessed with the Edinburgh Handedness Inventory (34).
bPost-surgery UPDRS-III score was measured OFF medication and OFF stimulation on the day of LFP recording (2–3 days post-operative).
cMMSE and BDI-II were evaluated before DBS surgery during ON-med state.
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Surgical Procedure
Patients were asked to discontinue Parkinson’s medications
24 h before DBS surgery. Operative procedures were performed
according to the standard approach for bilateral implantation
of DBS electrodes into the STN that has been described
previously (35). The stereotactic coordinates and trajectories to
the simultaneous bilateral STNs were preoperatively targeted
using stereotactic magnetic resonance imaging (MRI) on a
neuro-navigational platform (StealthStation; Medtronic). All
participants received Medtronic 3389 leads (1.27mm diameter,
1.5mm contact length, 0.5mm intercontact spacing) placed in
the STNs of both hemispheres. Microelectrode array recordings
and intraoperative clinical response to macrostimulation were
used to adjust the final DBS electrode placement at the STN.

LFP Recordings
Following the routine DBS procedure of Puerta del Mar
University Hospital, participants underwent an LFP study in the
interval (2–3 days) between their DBS electrode implantation
surgery and subsequent surgery for the implantation of extension
wires to the subcutaneous stimulator. All medication doses of
dopaminergic drugs were stopped for at least 12 h in participants,
and LFP recordings took place in the clinically defined off state
while the participants were comfortably seated in an eyes-open
rest condition during∼4 min.

The STN DBS leads were connected by electrode extension
cables, which were externalized through the scalp to a Physio16
input box and EGI’s Geodesic EEG acquisition system (Electrical
Geodesics Inc., EGI R©, Eugene, OR). LFP signals were recorded
during and digitized with a Net Amps 400 amplifier (EGI R©)
sampled at 1 kHz using Net Station Acquisition 5.4 software
(EGI R©). LFPs were obtained by rereferencing adjacent contact
pairs of the DBS electrode (bipolar: 0–1, 1–2, and 2–3), which
resulted in a maximum of three bipolar channels per electrode
(see Figure 1A). Contact 0 is the most ventral, and contact 3 is
the most dorsal.

Electrode Localization and LFP Data
Analysis
First, electrodes placed in the STN were individually localized
by merging the preoperative MRI and post-operative CT images
using Lead-DBS software (36) (www.lead-dbs.org) and following
the 2nd pipeline version (37). Thus, all STN leads were visualized
post-operatively (see Figure 1A). Consequently, only bipolar
channels located inside the STN, according to the DBS electrode
reconstructions, were included in the subsequent LFP analysis
(see Figure 1A). The LFP data were processed offline using
Fieldtrip (38) and customMATLAB 2018a routines (MathWorks,
Natick, MA). The STN LFP data were bandpass-filtered between
0.5 and 98Hz cutoff frequencies using a fifth-order Butterworth
filter. Additionally, a notch filter (band-stop filter at 48–52Hz,
fifth-order Butterworth filters) was applied to remove power line
interference at 50Hz. Subsequently, the continuous recordings
were segmented into epochs of 2 s in length. Epochs were rejected
when they contained artifacts or non-physiological signals.

Power spectral density (PSD) was calculated by fast Fourier
transform (FFT) algorithms using multiple tapers based on

discrete prolate spheroidal sequences (DPSS). Beta power
frequencies were defined for each participant as the frequency
between 13 and 35Hz at rest. Peak amplitudes for beta power
were measured as the highest point of the spectrum in the range
of 13–35Hz. Importantly, no distinction between sensorimotor,
associative, or limbic territories of the STN was taken into
account for the estimation of LFP power activity, but only
contacts including artifact-free data segments that were correctly
placed into the STN were considered for further analysis. In
3 patients, bipolar channels of the right or left DBS electrode
were specifically excluded from the analysis due to the fact
that none of these bipolar channels met the abovementioned
LFP inclusion criteria. Further, differences between hemispheres
were initially checked by considering only participants in which
both hemispheres could be correctly recorded. These analyses
confirmed that there were no significant differences regarding
the beta frequency peak between right or left hemispheres
in our sample patients. As a result, the subsequent analysis
distinguishing both hemispheres was not further considered.
The resulting data were thus individually averaged across valid
contact pairs and hemispheres and were normalized using log
transformation for statistical analysis purposes.

MRI Data Acquisition
Brain MRI data were collected using a 1.5 T scanner (Siemens
Magnetom, Erlangen, Germany) ∼1–2 weeks before DBS
surgery. In addition to MRI sequences necessary for
neuronavigation in DBS surgery, 3D T1-weighted MRIs
were also acquired at the same time for all participants. This
additional structural MRI included (1) a sagittal T1-weighted
3D MPRAGE sequence [repetition time (TR) = 2.200ms; echo
time (TE)= 3.25ms; flip angle= 8◦, matrix= 384× 512× 176,
and voxel size = 0.5 × 0.5 × 1mm] and (2) a sagittal FLAIR 3D
sequence (TR= 6,000ms; TE= 358ms; flip angle= 120◦, matrix
= 224× 256× 160, and voxel size= 1.02× 1.02× 1 mm).

MRI Data Processing to Obtain GM Volume
and CT Values
GM volumes were obtained following a voxel-based
morphometry (VBM) methodology using the Computation
Anatomy Toolbox (CAT-12, version 12.7) via the current
version of Statistical Parametric Mapping (SPM12;
fil.ion.ucl.ac.uk/spm/). For this purpose, a visual inspection from
all MRI images was performed initially to ensure that artifacts
were absent. Subsequently, images were preprocessed following
the standard pipeline recommended in the CAT-12 manual,
which includes image bias-field correction, segmentation into
GM, white matter (WM) and cerebrospinal fluid (CSF) maps,
spatial normalization and modulation of GM maps to the
Montreal Neurological Institute (MNI) template.

The obtained tissue compartment volumes were used to
calculate total intracranial volume (TIV) as the sum of the
GM, WM and CSF volumes. Brain parenchymal fraction (BPF)
was calculated as an index of global brain atrophy using the
following formula: BPF = GM+WM/TIV (39). GM fraction
(GMF) was also calculated as an index of specific global
GM atrophy as GMF = GM/TIV (39). Finally, GM regional
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FIGURE 1 | (A) DBS electrode location. Images were reconstructed and 3-D visualized using the Lead-DBS toolbox to determine the coordinates of each electrode

contact. Right: DBS electrode localizations of 7 PD patients; and left: simulated location of the position of each bipolar register (black spheres, calculated by averaging

the location of each pair of adjacent contacts) in the STN used for LFP analysis. Figures are visualized in the context of a 3D representation of the Morel stereotactic

atlas in MNI space (Posterior view). The bilateral subthalamic nucleus (STN; orange), external globus pallidus (GPe; blue), internal globus pallidus (GPi; green), and red

nucleus (RN; red) are shown. (B) Resting state STN spectral power in PD patients. Averaged (orange solid line) log-transformed power spectral density for STN-LFPs

in 7 patients with Parkinson’s disease off medication are shown. Orange shaded areas depict S.E.M of the mean for each frequency bin across patients. The x-axis

represents frequency (Hz), and the y-axis represents the normalized power spectral density (log PSD, µV2/Hz). The gray shaded area indicates the beta frequency

spectrum (13–35Hz). (C) Regional analysis of gray matter (GM) volume showing areas negatively correlated, after adjustment for multiple testing, with local field

potential (LFP) power in the beta band in the subthalamic nucleus (STN). The yellow line shows the right putamen, which was the only structure retained in the

regression model predicting LFP beta activity in the STN (p < 0.01). (E) Regional analysis of cortical thickness (CT) volume showing areas negatively correlated, after

adjustemt for multiple testing, with LFP power in the beta band in the subthalamic nucleus (STN). The yellow line shows the left rostral middle frontal gyrus (MFG),

which was the only structure retained in the regression model predicting LFP beta activity in the STN (p < 0.01). (C,E) The red color denotes brain areas with

significant partial correlations after FDR adjustment between regional GM volumes or CT measures and STN LFP beta activity. The yellow color indicates brain areas

with a trend toward statistical significance after FDR adjustment between regional GM volumes and STN LFP beta activity. The red and yellows images are overlaid on

a standard MNI T1 template. (D–F) Scatterplot graphs illustrating the partial correlations between STN LFP beta power and (D) right putamen nucleus atrophy and (F)

left rostral MFG thinning, controlling for age, educational level, and disease duration. For illustration purposes, the y-axis represents the log-transformed power

spectral density (log PSD, µV2/Hz), and the x-axis of each scatterplot graph represents the averaged residuals of age, educational level, and disease duration of (D)

regional GM volume in the right putamen and (F) CT in the left rostral MFG.
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volumes were extracted using the neuromorphometrics atlas
(neuromorphometrics.com/) and were normalized for head size
using TIV as a covariate in all subsequent statistical analyses.

CT global and regional values were also obtained with the
CAT-12 toolbox following an automated method that relies on a
tissue segmentation step to estimate distances between WM and
GM voxels using projection-based thickness (40). Regional CT
values were obtained using the Desikan-Kiliany atlas (41).

Our study only targeted regions of interest (ROIs) of those
cortical-subcortical regions described to be part of the basal
ganglia-thalamo-cortical network (42–45), which included ROIs
located in the thalamus, basal ganglia, amygdala, hippocampus,
cerebellum, cingulate, motor, and prefrontal cortices for analysis
of gray matter volumes, and only cingulate, motor, and prefrontal
cortices for CT values.

Statistical Analysis
Statistical analyses were conducted using SPSS v.24 (IBM,
Armonk, NY) and custom SPSS syntax routines. Specifically,
the non-parametric Spearman partial correlation coefficient (ρ),
adjusted for age, educational level, and disease duration, was
calculated to separately screen the regional GM volume- and
surface-based thickness variables for their relationship with STN
LFP beta power. Only those MRI variables (cortical-subcortical
atrophy and cortical thickness) that showed a significant
correlation after FDR-adjustment (p < 0.05) for multiple testing
were then entered into two forward linear regression models
to determine the strongest MRI predictors of STN LFP beta
activity. The residuals obtained from partial correlation, after
adjusting for age, educational level, and disease duration, for each
significant variable were first saved and then entered as new MRI
variables into the regression model as predictors of STN LFP beta
(log PSD) power.

RESULTS

Table 1 summarizes the main clinical characteristics of the
PD patient sample. Briefly, PD patients exhibited a mean
preoperative UPDRS-III off medication score of 60.1 ± 12.7
and an on medication score of 22.3 ± 10.3. The mean post-
operative UPDRS-III offmedication score, i.e., immediately prior
to the LFP study, was 38.4 ± 13.2. Importantly, our PD sample
exhibited preserved cognitive functioning, as revealed by MNSE
scores. Additionally, patients showedminimal andmild ranges of
depression symptoms based on BDI scores.

Relationship Between STN LFP Beta
Activity and GM Volume and CT
Regarding PSD, the mean STN LFP amplitude spectral density
across all subjects showed a single-peaked beta activity of 2.6
µV2/Hz in amplitude at 19.53Hz (see Figure 1B). Specifically,
patients presented maximum peaks of beta PSD in the frequency
ranges of 15Hz to 25Hz with amplitudes between 0.9 and
6.4 µV2/Hz. Importantly, 35.7% of the bipolar channels were
excluded from the LFP analysis because they were located outside
the STN or did not have artifact-free segments.

Spearman partial correlations (adjusted for age and disease
duration) revealed that elevated post-operative, but not
preoperative, UPDRS-III scores were significantly and positively
associated with increases in STN LFP beta power (partial, ρ =

0.831, p= 0.041).
To further describe the relationship between regional MRI

measures (anatomical regional parcellations for GM atrophy and
cortical thickness) and STN LFP beta power, individual tests were
assessed using partial correlations adjusted for age, educational
level, and disease duration. Exploratory partial correlations
results showed that increased LFP beta power in the STN was
significantly and negatively correlated to, first, bilateral smaller
volume in the putamen, left caudate nucleus, and left external
cerebellum, as well as right portions of anterior insula and
anterior cingulated gyrus; and second, smaller cortical thickness
involving different parcelations of the orbitofrontal gyrus (OFG),
left middle frontal gyrus (MFG), and right inferior frontal gyrus
(pars triangularis) (see Table 2).

Nevertheless, regarding GM atrophy, and after multiple
testing adjustment, increased LFP beta power in the STN was
only significantly and negatively linked to smaller volume in
the right putamen (partial ρ = −0.977; p = 0.044) and in
the left caudate nucleus (partial ρ = −0.949, p = 0.048) (see
Table 2; Figure 1C). Only atrophy of the right putamen remained
significant in the regression model after adjusting for the effects
of age, educational level, and disease duration, and explaining the
enhanced LFP beta activity in the STN (R2 = 0.954, p< 0.05) (see
Figure 1D).

With respect to cortical thinning, and after multiple testing
adjustment, the left rostral MFG (partial ρ = −0.995, p = 0.031)
and in the left medial OFG (partial ρ = −0.990, p = 0.037) were
significantly and negatively associated with beta power during
resting STN LFP (see Table 2; Figure 1E). Regression analysis,
controlling for the effects of age, educational level, and disease
duration, confirmed that the cortical thinning of the left rostral
MFG accounted for the greatest variance in explaining the STN
LFP beta power increase (R2 = 0.990, p < 0.01) (see Figure 1F).

DISCUSSION

After controlling for age, educational level, and disease duration,
the main finding of our study was the association between
increases in STN LFP beta oscillatory activity and both reduced
GM volumes in dorsal striatum (putamen and caudate nucleus)
and reduced CT over the middle prefrontal and orbitofrontal
cortices. These results suggest that an ongoing neurodegenerative
process would be present at the cortical and subcortical levels
that could be linked to a dysfunctional pattern of basal
ganglia activity in the beta band in PD patient candidates for
STN DBS.

Previous research has broadly demonstrated that the STN
LFP beta band may represent a sensitive electrophysiological
marker of a patient’s clinical symptoms in PD (3, 7, 46), which
is correlated with motor symptomatology, such as bradykinesia
and rigidity (8, 47, 48), and responds to dopamine replacement
therapy and DBS (4, 9, 49–51). Our data showed that STN
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TABLE 2 | Spearman partial correlations analysis controlling for age, educational

level, and disease duration between log beta power in the STN and both regional

gray matter (GM) volume and cortical thickness (CT).

Adjusting for age,

educational level, and

disease duration

Variable Partial Spearman’s ρ P-values FDR adjusted

P < 0.05

Regional GM volume

Left caudate nucleus −0.949 0.016 0.048*

Right caudate nucleus −0.890 0.055† –

Left putamen −0.923 0.023 0.067†

Right putamen −0.977 0.011 0.044*

Left external cerebellum −0.908 0.045 –

Right external cerebellum −0.830 0.085† –

Right anterior insula −0.948 0.026 0.071†

Right ACG −0.934 0.033 –

Right frontal operculum −0.838 0.081† –

Regional CT

Left medial OFG −0.990 0.005 0.037*

Right medial OFG −0.897 0.052† –

Left rostral MFG −0.995 0.001 0.031*

Left OFG −0.922 0.039 –

Right pars opecularis −0.868 0.066† –

Right pars triangularis −0.910 0.045 –

Bold numbers and asterisks indicate significant p-values after FDR adjustment for
multiple testing.
†
Indicates statistical trend.

ACG, anterior cingulate gyrus; MFG, middle frontal gyrus; OFG, orbitofrontal gyrus.

beta band activity was linked to PD symptom severity as
measured by post-operative, but not preoperative, UPDRS-III
in the off medication state. This emphasizes that the post-
operative UPDRS-III scores, controlled by age and disease
duration of the patients and evaluated at the time point of the
LFP recordings, could be the most precise way to relate both
measurements, given that both are collected under the same
experimental conditions and could represent a more precise
state of parkinsonian symptomatology linked to the impact
of the stun effect, which may influence oscillatory activity
patterns in the STN (52). Nevertheless, despite this insertional
effect, the patient clinical improvement commonly observed
and induced by the electrode insertion differs substantially
from that obtained with dopaminergic treatment (6) and ON
DBS (7).

The current study also demonstrated that volume reduction
in the dorsal striatum accounted for somewhat more variance
than cortical volume in explaining beta band STN LFP activity.
Regarding GM volume, consistent findings have pointed to
progressive atrophy accumulation in subcortical areas, such as
the putamen and caudate, and in both the early andmiddle stages
of PD (53, 54). Importantly, the putamen, which is a central
projection site of the cortical inputs into the basal ganglia, and
its activity is primarily movement-related, has been frequently
considered one of the first structure that shows both volume

and shape variations in PD (44, 45, 55–57), so that putaminal
alterations can decidedly contribute to the pathophysiology of
cortico-basal ganglia motor loops. Moreover, caudate volume
loss has aroused great interest as an MRI biomarker of disease
progression from early PD stages (24, 28, 58) and is also linked
to conversion to mild cognitive impairment or dementia (27,
28, 59). Therefore, the putamen and caudate (and cerebellum)
are considered primarily related to motor function, such as
coordination, planning, execution, and movement regulation,
and are also increasingly recognized as relevant hubs related to
inhibitory control of action, learning, and cognition (60). Our
results are consistent with this evidence and underscore that
decreased dopaminergic inputs to the basal ganglia, particularly
to the dorsal striatum, and likely due to progressive accumulation
of atrophy as a consequence of the evolution of the disease,
promote synchronized beta LFP activity in the STN and
abnormal pallido-striatal feedback (16–18, 61, 62) and could lead
to characteristic parkinsonism symptoms (7, 63).

Despite its relevance as a potential neurodegenerative
biomarker of disease progression, little emphasis has been
previously given to CT and its likely relationship with beta
oscillatory activity in the STN. After controlling for the age,
educational level, and disease duration, the current study
revealed that CT reductions may be associated with enhanced
STN beta activity, mainly involving regions in the middle
prefrontal and orbitofrontal cortices. In fact, cortical thinning
involving prefrontal regions has been previously reported in PD
patients. Furthermore, there is converging evidence stressing
the so-called “limbic hyperdirect pathway” between the ventral
and medial OFG and the STN (64). Hence, enhanced STN beta
rhythm may also be linked to a pattern of regional cortical
thinning that would correspond to specific nodes of large-
scale cortical networks structurally connected to basal ganglia
and functionally specialized in limbic processing (e.g., medial
PFC/OFC), including language-related regions (pars triangularis
and pars opecularis).

It is worth mentioning some limitations to this observational
pilot study. First, despite the robustness of our results, the main
limitation was the small patient sample size. Increasing the
sample size in future studies would allow us to better address
the current findings, enabling us to assess different clinical
subgroups according to PD symptoms, which would enhance
the significance of the present results. Second, our findings are
correlational, so we cannot establish causation. Therefore, it
is recommended to focus on establishing causal connections
to related STN beta activity to neurodegenerative states of the
specific brain areas. Third, we did not investigate the lower
and upper ranges of the STN beta frequency band or from
different territories of the STN, which may have somewhat
different functional significance. For example, it has been
frequently demonstrated that low beta activity is suppressed by
current conventional dopaminergic or DBS therapies, allowing
alleviation of PD symptoms, which would mostly reflect
a pathological STN-striatal feedback mechanism, while high
beta activity is relatively less modulated after dopaminergic
medication withdrawal and seems to be more strongly coupled
with cortical activity (8, 47, 65–67). Further studies should better

Frontiers in Neurology | www.frontiersin.org 7 March 2022 | Volume 13 | Article 799696

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Sanmartino et al. MRI Correlates of Beta STN-LFP Oscillations

address the association between regional cortical-subcortical
volume-surface-based MRI measures and the subranges of the
STN beta band from three functional territories of the human
STN (sensorimotor, associative, limbic). This would provide
more precise insight into the functional mapping of STN activity
and its relationship with neurodegenerative processes of cortical-
subcortical large-scale networks in PD.

CONCLUSIONS

The results of this pilot study support the investigation of
how exaggerated synchrony at beta frequencies within the STN
might be accompanied by both GM volume reductions in
dorsal striatal motor circuits and more widespread thinning of
prefrontal associative territories, and suggest that this association
remains to be elucidated in detail. Taken together, these findings
support the hypothesis that spreading neurodegeneration of
nigrostriato regions may also functionally and structurally impair
distinct striato-cortical connections, likely contributing to the
malfunctioning of oscillatory activity of the STN observed
in PD. The use of multiple brain markers resulting from
multimodal imaging techniques may provide new insights
into the neuroanatomical and pathophysiological mechanisms
associated with the underlying disease.
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