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Mycobacterium tuberculosis infection, which claims hundreds of thousands of lives

each year, is typically characterized by the formation of tuberculous granulomas — the

histopathological hallmark of tuberculosis (TB). Our knowledge of granulomas, which

comprise a biologically diverse body of pro- and anti-inflammatory cells from the host

immune responses, is based mainly upon examination of lungs, in both human and

animal studies, but little on their counterparts from other organs of the TB patient

such as the brain. The biological heterogeneity of TB granulomas has led to their

diverse, relatively uncoordinated, categorization, which is summarized here. However,

there is a pressing need to elucidate more fully the phenotype of the granulomas from

infected patients. Newly emerging studies at the protein (proteomics) and metabolite

(metabolomics) levels have the potential to achieve this. In this review we summarize the

diverse nature of TB granulomas based upon the literature, and amplify these accounts

by reporting on the relatively few, emerging proteomics and metabolomics studies on TB

granulomas. Metabolites (for example, trimethylamine-oxide) and proteins (such as the

peptide PKAp) associated with TB granulomas, and knowledge of their localizations, help

us to understand the resultant phenotype. Nevertheless, more multidisciplinary ‘omics

studies, especially in human subjects, are required to contribute toward ushering in a

new era of understanding of TB granulomas – both at the site of infection, and on a

systemic level.

Keywords: tuberculosis (TB), tuberculous meningitis, innate immunity, adaptive immunity, tuberculous granuloma,

metabolomics, proteomics, biomarkers

INTRODUCTION

Tuberculosis (TB) is a devastating infectious disease of pandemic proportions, caused by the
bacteriumMycobacterium tuberculosis (Mtb). For many years, it has been one of the top ten causes
of death from a single infectious agent (1). Although there has been a decline in the number of
TB cases in some geographical regions, the rise in drug-resistant TB poses new challenges (2). TB
is mostly a pulmonary disease, although it can affect other organs of the body, in which case it
is known as extra-pulmonary TB (EPTB). The most severe form of EPTB occurs in the central
nervous system (CNS-TB), with a prevalence of approximately 1% of the total TB cases reported
(3), leaving about half of its patients either dead or permanently neurologically disabled (4).
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Granulomas are the body’s response to chronic antigenic
stimulants. They represent the body’s first line of response to
Mtb infection and thus serve as a histopathological hallmark
of TB. They comprise a combination of specialized immune
cells influenced by an orchestrated pro- and anti-inflammatory
response (5, 6). Granuloma formation can be affected by
the number and location of these cells or other underlying
diseases in the host. For example, the presence of a large
number of B lymphocytes contribute to tuberculous granuloma
formation through the release of chemokines and cytokines
(7, 8). Granulomas can develop in any organ of the body
where the causative infectious agent resides. They can also
be formed in response to other persistent diseases such as;
sarcodiosis schistosomiasis, syphilis, Crohn’s disease, leprosy
and in infections caused by bacteria, fungi and protozoa (9–
18), and are either capable of containing the infection (latent
TB), or not (active TB) (19–21). The rupture of a mature TB
granuloma (the cause of which is not fully understood) in an
individual with latent TB typically results in active TB (19, 21,
22). The most widely studied organs with TB granulomas are
the lungs (6, 7, 19, 20, 23–28), whereas the characterization
of TB granulomas in the brain, a site where infection with
Mtb can have devastating consequences, is poorly described and
understood (3). An improved understanding of TB granulomas
in general could shed new light on improved approaches to TB
management (20). There are, however, limited agreement on the
conclusions to draw from studies of TB granulomas, such as lack
of understanding of how the human granuloma functions. There
is also no workable model that depicts the diseased human organ
in vitro, as the structure and composition of granulomas vary
among different organisms (6, 7, 29, 30). These are handicaps
to our fuller understanding of TB. There is also no standard
classification for the different types of granulomas identified to
date. They are either grouped according to the composition of
the immune cells, as primary or secondary granulomas (23, 29),
or based on appearance and features such as: solid, caseous
and cavitary, necrotizing, and non-necrotizing (5–7, 21, 22,
31). Consequently, the study of the TB granuloma needs to
be expanded upon, using research methodologies, such as the
‘omics approaches, including, but not limited to, proteomics
and metabolomics. Both proteomics and metabolomics have
the potential of being instructive by elaborating upon the
phenotype of TB granulomas at the protein and metabolite
level, respectively.

This review provides a brief overview of TB; discusses the
TB granuloma via function and importance, development, and
categorization; and provides insights into the pro- and anti-
inflammatory immune responses to Mtb by examining the
limited proteomics studies (animal and human) conducted on
TB granulomas and identifying specific metabolic indicators of
TB progression and/or severity. The primary aim of this review is
to indicate how proteomics and metabolomics have contributed,
and can be expected to contribute, toward a better understanding
of the TB granuloma extracted mainly from animal and human
lung tissue. The secondary objective is to identify gaps in the
literature that limit our understanding of the disease, in particular
that there are few in vitro studies on TB granulomas in the

brain. Lastly, inferences from current, as well as directions for
future, ‘omics-related research on granulomas, are offered for
tuberculous meningitis (TBM).

BRIEF OVERVIEW OF TB

Pulmonary TB begins with the transmission of the Mtb bacilli,
via the transfer of Mtb-containing aerosols expelled from an
infected person and inhaled by a non-infected person. TB
affects the lungs more than any other organ of the body, since
the lungs are usually the first point of entry into the host
(32, 33). When these infected air droplets enter the new host,
there is a subsequent activation of the host’s innate agents
conferring immunity, namely, neutrophils, dendritic cells and
alveolarmacrophages, which phagocytose theMtb in the terminal
alveoli (6, 34). The infected immune cells from the alveoli
migrate to the lymphoid tissue, activating type 1 T-helper
cells, producing pro-inflammatory cytokines such as interleukins
(IL) and tumor necrosis factor alpha (TNF-α). These initial
immune reactions lead to inflammatory changes in the lungs
(30, 34–36). The Ghon focus, the primary site of infection in
the lungs, enlarges as the disease progresses or the foci heal,
leading to dense scars that may calcify (37). In an attempt
to contain Mtb, macrophages engulf the bacilli and destroy
them. However, if the process of elimination is unsuccessful,
there will be continuous multiplication of the engulfed bacilli
within the macrophage. Consequently, immune cells continue
to work tirelessly in an attempt to contain the spread of the
Mtb. In such instances, monocytes are subsequently recruited
from the bloodstream to the site of infection, and the cycle
of engulfment continues (32, 38). In a further attempt to
neutralize the infection, the adaptive response/delayed type
hypersensitivity is activated within 2–10 weeks after exposure to
the infection (38, 39). This combined immune response to the
invading bacilli eventually leads to the formation of a mature
granuloma. Depending on the patient’s immunity, the bacilli
can be contained and the disease kept dormant (latent), not
causing any clinical symptoms or disease or, typically in the
case of individuals with a compromised immunity, active TB
in which the infection spreads in the lungs. TB can progress
from a latent form to an active state through the release of Mtb
from the host’s immune cells that have failed to contain/kill the
bacilli (21). The progression from latent to active TB can be
a result of several factors, such as immune deficiency, large or
recurrent exposure to the disease, insufficient immune response
to the pathogen, or exposure to a more virulent Mtb strain
(6, 30, 40). Globally, about 23% of the human population have
latent TB. The chances of individuals developing active TB
from a latent infection are between 2–23%, and are higher (7–
33%) in people living with human immunodeficiency viruses
and acquired immunodeficiency syndrome (30, 41, 42). Latent
TB can be detected only by carrying out tests such as the
tuberculin skin test, interferon-gamma (IFN-γ) release assays, or
the more recently developed QuantiFERON (Qiagen, Germany)
and T.SPOT (Oxford Immunotec, UK) tests. Since these tests
measure the resulting immune response in vivo or in vitro only,
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they cannot differentiate latent TB from resolved infection or
active TB (43–45).

Of the 6.4 million TB cases reported by the World Health
Organization (WHO) in 2017, 14% represent EPTB cases (1).
EPTB occurs as a result of the lympho-hematogenous spread
of bacilli to other organs of the body (46, 47). Once Mtb
enters the host’s immune system, the bacilli can replicate
within the immune cells, thereby inducing the rapid production
of chemokines and/or cytokines, which can be detected 2 h
after infection (6, 7), and can be transported as far as the
immune system carrying it travels (47).Mtb escapes the infected
immune cells through the region of difference (RD1) locus (this
locus is mostly found in virulent strains of Mtb), where the
bacilli continue to replicate in the cytosol (38). The lymphatic
endothelial cells, activated by IFN-γ, are said to be capable of
restricting the RD1 locus of the bacilli from replicating (48),
although this does not always occur sufficiently.

Tuberculous meningitis (TBM), the most lethal form of EPTB,
is a form of CNS-TB where Mtb invades the meninges of
the brain (49). Despite the protective properties of the blood–
brain barrier (BBB) and the cerebrospinal fluid (CSF), Mtb are
still able to enter the brain. The etiology of TBM is not fully
known, but based upon research using animal models, it is
proposed that Mtb enters the brain through infected immune
cells, such as neutrophils and macrophages (the “Trojan horse”
mechanism), and/or bind to endothelial cells of the brain (50–
52). Once the bacilli penetrate the CNS barriers, they cause the
resident immune cells (microglia) in the brain to be activated.
Activation of microglia causes the release of numerous cytokines,
which are important in the host’s defense against Mtb infection,
and which can also mediate inflammation. Microglia, rather
than astrocytes, are preferentially infected by Mtb. The resulting
neuroinflammatory processes lead to the disruption of the BBB,
trigger the formation of vasogenic edema and recruit immune
mediators that contribute toward BBB disintegration and the
influx of the innate and adaptive immune cells from the periphery
into the CNS (53, 54). The subsequent accumulation of these
immune cells around the Mtb leads to the brain lesions typically
seen in these patients. Rich and McCordock proposed that TBM
is caused by the rupture of one of these lesions, the Rich focus;
they are found in both the meninges and the brain parenchyma,
and usually follow a vascular pattern (55–57). Activation of the
Rich foci and the release of Mtb into the subarachnoid space,
leads to additional cascades of devastating neuroinflammatory
events (58).

During active Mtb infection, regardless of where it occurs
in the body, there is a strong immune response involving
clusters of differentiation of CD4+ and CD8+ lymphocytes
and cytokines, including IFN-γ and TNF-α, produced by the
dominant T-helper cell subset associated with the successful
control ofMtb (59, 60). The inflammatory response subsequently
causes IFN-γ to act in conjunction with TNF-α in order to
activate macrophages and dendritic cells. IFN-γ and TNF-α are
thought to play a crucial part in the complete eradication ofMtb
because of their role in enabling the macrophages to produce
reactive nitrogen intermediates and phagolysosome acidification
(24, 61) to contain the bacilli. They do this by enhancing,

stimulating, activating and mobilizing host defenses against the
Mtb. These activated macrophages are essential for the formation
of a granuloma (31). The pathogen is, however, merely contained
(latent), maintaining a level of supposed inactivity, while the
immune system constantly tries to maintain its defense with
no clinical manifestations in the host (62–64). Despite this
understanding of the initial mechanisms of Mtb infection, the
perplexity of TB granulomas, in general, and especially so in the
brain, still needs to be elucidated.

The function, importance and development of TB granulomas
are comprehensively summarized in the next two sections, in
order to provide a backdrop on our existing knowledge and a
basis for future work.

TB GRANULOMA FUNCTION AND
IMPORTANCE

Granulomas are characterized by aggregates of lymphocytes,
monocytes, plasma cells, mono-nuclear phagocytes, epithelioid
cells, and giant cells – multi-nucleated fusion of immune
cells, formed during chronic inflammation (29, 65, 66),
formed in response to an infectious microorganism. The TB
granuloma characterizes the host’s immune response to an Mtb
infection (67), and comprises an array of innate and adaptive
immune cells, formed in response to signals given off by the
infected macrophages, that trigger the migration of uninfected
macrophages to the site of infection, in order to contain theMtb
invasion. However, in the case of failure to contain the bacilli, the
TB granulomas can become shells in which the bacilli actually
proliferate (6, 29, 65).

This poses the question: who benefits the most from the
development of the granuloma – the host or the pathogen? The
current precept backs the idea that a granuloma is a mark of an
adequate and restrictive host immune response (68). However,
studies (69–71) have shown that Mtb has the capacity to use
the TB granuloma to its benefit. Upon initial infection, the
bacilli recruit additional macrophages to contribute to the further
spreading of the disease within the host. Macrophage infection
triggers a localized pro-inflammatory response, resulting in the
recruitment of activated innate immune components, including
the neutrophils and dendritic cells. This then leads to the
secretion of antimicrobial peptides (e.g., cathelicidin), cytokines
(including IL-1α, IL-1β, TNF-α, IL-6 and IL-12), chemokines
and additional macrophages that convene into a TB granuloma
– a multicellular structure that cloisters the infecting Mtb from
the surrounding tissue (36, 50, 72, 73). The formation of the TB
granuloma is controlled by chemokines and cytokines, produced
by local tissue cells and infiltrating leukocytes (74, 75). The
organized, compact structure of the TB granuloma acts to
constrain the Mtb infection and coordinates the activation of
the immune cells, although the mechanism(s) surrounding this
remains unclear (74). TB granulomas function via an interplay
between the innate and cellular adaptive immunity (76), and
orchestrate the interaction between immune cells, leading to an
effective response to the infection: (1) the inhibition and killing
of the Mtb; (2) containment of the infection and preventing
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the spread of the organism; or (3) localizing the inflammatory
response and tissue damage (76, 77). TB granulomas can also
serve as a niche for the invading Mtb (the bacilli can survive
inside these structures for a relatively long time in a dormant
state), while simultaneously protecting the host from active
disease (78). Thus, TB granulomas have a duplicitous role. Owing
to the dual role of the granuloma, the metabolism ofMtb and its
survival within the host has been the subject of intense research.
Because the bacilli depend completely on the host for survival,
access to nutrients becomes a critical battle for survival (72). The
Mtb genome subsequently evinces its metabolic flexibility and
autonomy, as well as its capacity to resist nutrient stress (79).Mtb
survives by producing sulfatides (which inhibit phagolysosomal
fusion), cord factors (which inhibit neutrophil migration and
damage mitochondria) and wax D (which controls intramural
acidity, thereby making the DNA replication possible), which
are all part of the Mtb cell wall (80–82). Mtb can persist and
adapt to an in vivo environment by modifying gene expression;
its metabolic capabilities enable the pathogen to cope in different
stressful conditions within the host – (re)initiating the infectious
cycle when environmental conditions are favorable (83, 84).

Changes in the number and the location of macrophages have
an effect on the balance of TB granulomas and determine if the
TB granuloma will effectively control the spread of the bacilli,
or not (6). The structure of TB granulomas also changes as the
disease progresses (85). These features are not yet completely
understood and have given rise to several research studies
using animal models; these, however, have not given a clear
understanding of these phenomena in human granulomas (85–
89). Furthermore, the TB granuloma studies performed in most
animal species use other strains of mycobacteria, for instance,
Mycobacterium bovis in sheep (91) andMycobacterium marinum
in zebrafish (90).

While there is much that we know about how the immune
system responds to Mtb, much remains unknown. Within the
tried-and-tested reductionist scientific approach, we can only
answer the questions that we ask. What of the questions that we
do not yet know how to ask? A new approach (‘omics) is needed
to explore the dark side of the moon.

DEVELOPMENT OF TB GRANULOMAS

During the early infection phase, the interaction between
macrophages and Mtb has a negative effect on the host –
dampening the immune response and causing the increased
survival of the Mtb bacilli (91). It has been proposed that the
most abundant antigens of Mtb could benefit the pathogen
rather than the host (92). The initial aggregation of macrophages
occurs in response to a persistent stimulus triggered by a
granulomatous reaction at its core (93, 94). Macrophages
are distinct at the core of the granuloma, undergoing a
series of distinguishable morphological changes exhibiting their
immunometabolic characteristics, most importantly, epithelioid
cell differentiation (94). Furthermore, macrophage polarization
into M1 and M2 types is finely regulated by the host for the
purpose of managing chronic infection(s), thereby regulating

the promotion and formation of the granuloma (65, 94–97). A
pro-inflammatory response, promoted by the M1 macrophages,
bridges the innate and the adaptive immune response to
infection. This functionality is considered the cornerstone
of an effective host defense. At the same time, the M2
macrophages promote an anti-inflammatory response, which is
crucial to immune regulation, also preventing an aggravated
chronic inflammatory state, and simultaneously promoting the
maintenance of tissue homeostasis (94, 95, 98). Lipid-laden
macrophages, also known as foamy cells, are linked to TB
granuloma necrosis, since they promote the formation of
caseum – the build-up of necrotic debris at the core of the
granuloma. When infected, foamy cells are packed with host
lipids and are consumed by Mtb through aerobic glycolysis,
thus promoting inflammation as well as transmission of live
bacilli and the subsequent development of disease. Studies have
shown localization and migration of Mtb toward the host lipid
reservoirs (67, 99, 100), and the presence of foamy macrophages
in TB granulomas (80, 81, 91, 92). Foamy macrophages seem to
sustain intracellular Mtb in a physiological state, which explains
the persistence and nutritional advantages to the Mtb bacilli
(67, 101).

Natural killer (NK) cells, as well as B and T cells, dendritic
cells, and neutrophils, are also recruited and contribute to TB
granuloma function (76, 95). NK cells do not require antigen-
specific recognition to kill target cells. IFN-γ, produced by
CD4+, CD8+ and NK cells, and T-lymphocytes, are important
mediators of macrophage activation, effector function and the
immune response targeted against Mtb (76, 102). The dendritic
cells and macrophages are mainly responsible for proteolytic
processing and antigen presentation, and their functions include:
regulating the overall immune response, initiating antigen-
presenting cell activation, directing T-lymphocytes, activating
NK cells, augmenting IFN-γ production, and directing antigen-
induced cytotoxicity, (76, 103). The dendritic cells can also serve
as a replication niche after ingesting Mtb, and are essential for
antigen presentation to the T cells in the draining lymph nodes.
However, pathogenic Mtb bacilli have developed mechanisms to
prevent both dendritic cell migration and antigen presentation –
an evolved adaptation of the pathogen (104, 105). In response
to inflammatory stimuli, neutrophils are of the first cells to
migrate to the infection site in response to the Mtb, in order
to kill the pathogen, aided by the antimicrobial molecules
(defensins, lactoferrin, cathelicidin, and lysozymes) contained
in their granules (106–108). However, these immune reactions
which target the pathogen may also lead to destruction of the
surrounding host tissue, due to high levels of neutrophil influx,
contributing to the development of a pathology serving as a
“Trojan horse” for the Mtb. Although much is known about
the immune cells that make up TB granuloma formation, much
more remains to be learned about their functions in response to
promoting or preventing disease (109–111).

The hallmark of the Mtb bacillus is a thick and waxy cell
wall, whose unique design makes the bacilli difficult for the host
to kill, which renders it rigid and impermeable, protecting the
pathogen from dehydration and also rendering it resistant to
conventional antibiotics (80, 84). Of the protective antigens of
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Mtb, mycolyltransferase and lipoarabinomannan are considered
to be the most important. Modulating interactions with the
immune system plays a key role in the infection cycle of Mtb, by
blocking phagosome maturation and thus preventing lysis and
antigen presentation, while also creating a favorable habitable
environment forMtb to replicate (112–115). Furthermore, as the
immune system becomes activated, macrophages get stimulated
with IFN-γ to increase proficiency againstMtb (83).

The Mtb serine/threonine protein kinase, called PknG,
regulates bacterial metabolism as well as the pathogen’s ability
to survive inside the host by inhibiting phagosome maturation
(116, 117). Studies show that PknG expedites Mtb growth
and adaptation under in vitro stress conditions, such as
nutrient deprivation, acid stress, and hypoxia (118–120). Under
aerobic conditions, the bacilli are predicted to access glucose
and triacylglycerides as sources of carbon throughout early
replication; however, glucose-deficient macrophages trigger a
metabolic shift in Mtb to utilize lipids (72, 121). PknG
further disrupts host macrophage metabolic homeostasis to
promote the accumulation of lipid bodies, complementing the
aforementioned lipid use (122).

Hitherto, this review has summarized the basis of TB
and its characteristic granuloma. From here on we examine
several studies that illustrate the diverse categorization of TB
granulomas, followed by the contributions offered by proteomics
and metabolomics. The prime point of pretension proffered is
that the categorization of TB granulomas is diverse.

CATEGORIZATION OF TB GRANULOMAS
IN HUMAN OR ANIMAL MODELS

A compact ordered aggregation of macrophages and their
derivatives characterize granulomatous inflammation
morphologically (40). It is thought that an understanding
of these derivatives involved in inflammation (initiation and
maintenance) could be important in assessing the development of
the lesion, which in turn could help in the design ofmore effective
and selective therapies (123). Subsequently, this has resulted in
the categorization of the various TB granulomas, based on the
varying derivatives associated with inflammation and/or Mtb
interaction (Table 1). One key feature that distinguishes human
TB granuloma from animal granuloma types is how they are
structurally organized, although, differences are observed within
granuloma types, rather than between the types. This could be
as a result of the tissue location, cytokines, growth factors and
associated cells, while the animal granuloma types may not be
as organized as a result of the type of causative agent injected
into the animal in order to induce immune responses similar to
that observed in human TB granuloma (6, 20, 22). Figures 1, 2
illustrate our depictions of TB granulomas, based upon the
information given on the categorizations below.

Foreign Body- and Hypersensitivity-Type
Granulomas
The pre-existing classification of lesions was according to
their causative agents: infectious granulomas, foreign body

granulomas and granulomas of unknown etiology (126, 127).
Boros (128) revised this classification into the foreign body-type
(non-immune) and hypersensitivity-type (immune) granuloma,
in which classification was based on the involvement of antigen-
specific lymphocytes in lesion development. The foreign body
type was T-cell independent, whereas the hypersensitivity type
was T-cell dependent. The hypersensitivity types were formed in
response to foreign agents, which would require a delayed type
of immunological response and would usually involve a high
number of cellular responses. These agents could be bacteria,
worms, fungi or viruses. The foreign body type were not formed
in response to specific antigens and may be mostly inactive in the
absence of specific foreign agents, such as a streptococcal cell wall,
cord factor and silica (40, 123). Using a surface glycolipid derived
from the cell walls of virulent strains of Mtb – trechalose 6,6
dimycolate (TDM) – Yamagami et al. (40) showed that TDM can
induce both foreign body- and hypersensitivity-type granulomas
in mouse lung tissue. Hence, both non-immune and immune
mechanisms participate in granulomatous inflammation induced
byMtb infection.

Solid, Caseous, and Cavitary Granulomas
Classification of granulomas by Marakalala et al. (5) was
conducted on the basis of the histological characteristics
of the Mtb-infected lung tissue collected from rabbits and
humans. Solid granulomas lacked necrosis and had only
one histologically distinct region. The caseous and cavitary
granulomas had fused with an airway and both displayed
two histologically distinct regions. The enzyme leukotriene
A4 hydrolase (LTA4H) was present in abundance in caseous
granulomas, less so in cavitary granulomas, and none was present
in solid granulomas. LTA4H synthesizes leukotriene B4, a pro-
inflammatory eicosanoid associated with the production of TNF-
α, a key component of early host control of Mtb growth. From
the protein and lipid snapshots of the human and rabbit lesions
analyzed, Marakalala et al. (5) hypothesized that the pathological
response to TB is shaped by the precise anatomical localization
of these inflammatory pathways during the development of
the granuloma.

Nascent, Caseous, Fibrocaseous, and
Resolved/Calcified Granulomas
Kim et al. (21) performed immunohistological analysis on lung
tissues excised from TB patients. Tissues from 32 independent
Mtb-infected samples (each sample had multiple granulomas)
were categorized into four stages: nascent, caseous, fibrocaseous,
and resolved. Their categorization of granulomas was based
upon the proteins adipophilin (ADFP), acyl-CoA synthase long-
chain family member 1 (ACSL1), and saposin C (SapC), as
three key representatives of the lipid-modulating pathways
that are impacted by the pro-inflammatory cytokine TNF-
α. ADFP is a lipid droplet-associated protein present on the
surface and in the core of intracellular lipid droplets formed
in foam cells. ACSL1 mediates the formation of fatty acyl-CoA
esters and a key component to stepin lipid biosynthesis and
fatty acid degradation. SapC is involved in glycosphingolipid
metabolism, and is also known to transfer mycobacterial
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TABLE 1 | Categorization of TB granulomas, based upon the literature.

Type Main findings Mycobacteria

strain

Site of

granuloma(s)

Subjects Reference

Foreign body-type

(non-immune) and

hypersensitivity-type

(immune) granulomas

(Figure 1A)

The Mtb cell component trechalose 6,6 dimycolate is a

pleiotropic molecule that induces both non-immune and

immune TB granulomas.

Mtb Lung Mice (40)

Solid, caseous and cavitary

granulomas (Figures 1B,C)

Characterized by region of necrosis, TNF-α composition and

presence of leukotriene A4 hydrolase (LTA4H):

Solid – none.

Caseous – high.

Cavitary – low.

Mtb Lung Humans & rabbits (5)

Nascent, caseous.

fibrocaseous and

resolved/calcified

granulomas (Figures 1D,E)

Characterized based on the abundance of the proteins ADFP,

ACSL1 and SapC:

Nascent – low.

Caseous – high.

Fibrocaseous – high.

Resolved – none.

Mtb Lung Humans (21)

Categories 1–5 granulomas

(Figures 1F–J)

Characterized based upon mononuclear phagocytes, alveolar

macrophages and lymphocytes, and:

1 – few lesions.

2 – scattered, discrete foci.

3 – moderate-sized lesions.

4 – enlarged, coalescing lesions with small necrotic foci and

advanced fibrosis.

5 – chronic, interstitial fibrosis of the lung and thickened

granuloma wall.

Mtb Lung Mice (124)

Primary, secondary and

tertiary granulomas

(Figures 2A,B)

Granuloma types explain disease severity in murine models:

Primary (accumulated immune response) – beginning.

Secondary (immunity acquisition) – middle.

Tertiary (linkage with foamy macrophages) – late.

Mtb Lung Mice (23)

Type I, type II and type III

granulomas (Figures 2C–E)

Characterized by immune response routes:

Type I (initial) – innate.

Type II (developed) – adaptive cellular.

Type III (terminal) – adaptive humoral.

Mycobacterium

bovis

Bronchial

lymph node

Sheep (125)

Early granuloma (Figure 2F) Early TB granuloma characterized by presence of

mycobacteria and either epithelioid or foamy macrophages.

Mycobacterium

marinum

Brain Zebrafish (90)

Non-necrotizing, necrotizing

gummatous and necrotizing

abscess granulomas

(Figures 2G–I)

Characterized by size, reticulin fibers and Mtb load:

Non-necrotizing – small, none and no Mtb.

Necrotizing gummatous – medium, present and lowMtb load.

Necrotizing abscess – large, none and high Mtb load.

Mtb Brain Humans (31)

lipid antigens, thereby activating the antigen-specific T cells.
Nascent TB granulomas showed little-to-no presence of these
three proteins, resolved/calcified TB granulomas showed none,
and caseous and fibrocaseous TB granulomas demonstrated
abundant ADFP, ACSL1 and SapC. The actual caseum of
several TB granulomas revealed an abundance of ADFP,
suggesting that the lipids of the caseum were likely to have
been derived from the lipid droplets sequestered within foam
cells upon the subsequent death of those cells. Kim et al.
(21) further hypothesized that the TB granuloma undergoes a
shift in lipid metabolism and accumulates host-derived lipids,
supported further by the analysis of the lipid constituents
of the caseous material isolated from human pulmonary TB
granulomas. Hence, Kim et al. (21) proposed that granuloma
formation was dependent on host lipid metabolism, mediated by
the pathogen.

Categories 1–5 Granulomas
Using mice aerogenically infected with Mtb, Rhoades et al. (124)
categorized granulomas into five distinct immunopathological
stages based upon the lesions formed in the lungs and
their level of progress and development. Category 1 –
small, isolated lesions composed of a few adjacent alveoli
with thickened septae, scattered throughout infected lungs,
consisting primarily of mono-nuclear phagocytes, alveolar
macrophages and an occasional lymphocyte. Category 2 –
scattered, discrete foci of alveolitis filled with mono-nuclear
phagocytes and a few epithelioid macrophages, with perivascular
and peribronchiolar lymphocytes. Category 3 – moderately sized
granulomatous lesions characterized by sheets of epithelioid
and foamy macrophages that fill the alveoli, with mild
interstitial fibrosis and tight associations of lymphocytes.
Category 4 – enlarged, coalescing granulomatous lesions
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FIGURE 1 | Graphical illustrations of TB granulomas based upon key cellular elements in their categorizations, based upon literature. (A) Foreign body-type and

hypersensitivity granuloma. (B) Caseous and cavitary granuloma. (C) Solid granuloma. (D) Caseous and fibrocaseous granuloma. (E) Nasent granuloma. (F) Category

1 granuloma. (G) Category 2 granuloma. (H) Category 3 granuloma. (I) Category 4 granuloma. (J) Category 5 granuloma.

FIGURE 2 | Graphical illustrations of TB granulomas based upon key cellular elements in their categorizations, based upon literature. (A) Primary granuloma. (B)

Secondary granuloma. (C) Type 1 granuloma. (D) Type II granuloma. (E) Type III granuloma. (F) Early granuloma. (G) Non-necrotizing granuloma. (H) Necrotizing

gummatous granuloma. (I) Necrotizing abscess granuloma.
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consisting mainly of macrophages, including epithelioid cells,
large foamy macrophages, and an occasional multinucleated
giant cell, with small necrotic foci, advanced fibrosis of
alveolar septae and a few remaining lymphocytes. Category
5 – late spectrum granuloma degeneration associated with
chronic, interstitial fibrosis of the lung and characterized by
thickened alveolar septae demarcated areas filled with dead/dying
epithelioid and foamymacrophages. Amajor limitation observed
by Rhoades et al. (124) was that the Mtb-infected mice did not
develop caseating granulomas as is observed in humans. Rhoades
et al. (124) further postulated that in animals the cytokine milieu
around the lesions is different, perhaps leading to degeneration of
the centers of large granulomas and necrotic caseation, and that
the migratory capacity of the mouse lymphocytes is limited.

Primary, Secondary, and Tertiary
Granulomas
Also using the aerogenic infection model of mice with Mtb,
Cardona et al. (23) simplified the histopathological categorization
of TB granulomas in lungs as follows: primary, secondary and
tertiary, based upon the immune reactions. A large accumulation
of infected macrophages at the beginning of the infection
defined primary granulomas, characterized by their large centers,
and being surrounded by a lymphocytic mantle over time.
After the acquisition of immunity against Mtb, secondary
granulomas develop, in which scanty infected macrophages are
surrounded by a thick lymphocytic mantle. Neighboring primary
or secondary granulomas eventually become linked with foamy
macrophages to form tertiary granulomas. Rhoades et al. (124)
hypothesized a different histological evolution considering the
migration of packed wedges of lymphocytes into granulomas,
made by sheets of epithelioid and foamy macrophages, rather
than foamy macrophages spreading out to the periphery of
secondary granulomas (23).

Type I, Type II, and Type III Granulomas
Using sheep infected with Mycobacterium bovis, Vallejo
et al. (125) analyzed the bronchial lymph nodes for the
immunohistochemical characterization of TB granulomas,
based upon the number of acid-fast bacilli (AFB), T cells,
B cells, macrophages and plasma cells each contained. Type
I TB granulomas had <10 AFBs, no plasma cells, 1–10 T-
lymphocytes, 11–50 B-lymphocytes and predominantly (51–100)
macrophages. Type II TB granulomas had 10–20 AFBs, 11–50
plasma cells, 1–10 T-lymphocytes, 51–100 B-lymphocytes and
predominantly (>100) macrophages. Type III TB granulomas
had 10–20 AFBs, 51–100 plasma cells, no T-lymphocytes,
>100 B-lymphocytes, and 51–100 macrophages that appeared
peripherally. Thus, in the early/latent stages, an innate immune
response would be more prominent. If the bacilli are not
contained, there would be an increase in the number of
macrophages that would subsequently attract more lymphocytes
to the site of infection (adaptive cellular). Finally, a shift to
a new phase in the immune response (adaptive humoral)
would occur where B-lymphocytes and plasma cells would
contain the infection with a humoral component (shift toward
type 2 T-helper response) (125). Furthermore, Vallejo et al.

(125) demonstrated how sheep are less than ideal models for
studies using mycobacteria, since these animals were highly
resistant, mostly attributed to their highly effective innate
immune response that prevents the spread of the infection in the
initial stages.

Early Granuloma
Using an adapted zebrafish model of Mycobacterium marinum
infection, van Leeuwen et al. (90) showed that the zebrafish–
M. marinum model is particularly suitable for characterizing
the early steps in the formation of brain granulomas, their
immunological composition and the effect of bacterial virulence
factors in the context of TBM, allowing for the detailed analysis
of both bacterial and host factors involved in the disease. The
brain is a notoriously difficult organ to analyse in terms of TB
granulomas; hence, knowledge is limited. Van Leeuwen et al.
(90) characterized the initial phases of zebrafish infection at the
early developmental stages (innate immunity), with formation of
bacterial clusters that were identified as early TB granulomas. All
clusters contained both mycobacteria and a population of either
epithelioid or foamy macrophages; however, their development
was not influenced by changes to the BBB. The results of van
Leeuwen et al. (90) suggest that traverse over the BBB occurs even
at very low levels of extracellular bacterial loads, which led to their
hypothesis that mycobacteria possibly make use of host cells –
that is, macrophages – to migrate out of the bloodstream (which
supports the concept of a “Trojan horse”).

Non-necrotizing, Necrotizing Gummatous,
and Necrotizing Abscess Granulomas
In one of the only studies to categorize TB granulomas
in human brain tissue, Zaharie et al. (31) described three
different types of granulomas – non-necrotizing, necrotizing
gummatous and necrotizing abscess-type granulomas. The
non-necrotizing granulomas are the smallest (0.1–0.5mm) of
the three, containing activated macrophages, lymphocytes and
plasma cells, with absence of Mtb bacilli. The necrotizing
gummatous granulomas (>5mm) contain reticulin fibers in
the center of necrosis and a relatively low Mtb bacilli load.
The necrotizing abscess-type granulomas (up to 10mm) are
the largest, containing a large number of neutrophils, and
completely absent of reticulin fibers in the center, with a high
load of Mtb bacilli. Zaharie et al. (31) postulated that these
different types of granuloma are part of the developmental
stages of the pathological process. These authors (31) also
challenge the classical theory of the Rich focus in TBM (58),
by demonstrating that chronic granulomatous inflammation is
initiated almost exclusively in the leptomeninges and not in
the brain parenchyma, as opposed to the Rich hypothesis, in
which the bacilli spread through the subarachnoid space, causing
leptomeningitis after an active pulmonary infection.

All of the granuloma types reviewed here are categorized on
the basis of the research interests of the researchers and writers.
Perhaps if the granulomas are categorized according to disease
severity, the organ from which the granulomas are extracted
and characteristics of the cells that consist the granulomas, there
could be a better understanding of how granulomas function
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TABLE 2 | Main findings from studies describing the role of proteomes and metabolomes in granulomas in both animal and human subjects infected with Mtb.

Omics Subjects Site of

granuloma(s)

Main finding Reference

Proteomics Humans and rabbits Lung Inflammatory and antimicrobial effects of the center of the granuloma –

known to be required to combat the Mtb infection but are destructive to

host tissue, are contained by a ring of anti-inflammatory activity.

(5)

Humans and mice Lung and spleen Novel Mtb functional antigens were identified, which were obtained directly

from granulomatous lesions of TB patients

(140)

Humans Lung Using immunohistochemistry, representative proteins were identified, which

differed in their abundance levels in the caseous and cellular regions of

granulomas.

(141)

Metabolomics Guinea pigs Lung Metabolic changes seen are similar to the changes in the development of a

tumor in cancer.

(85)

Guinea pigs Lung Unique metabolic signatures were identified at different stages of the

disease which may be useful for innovative and rapid diagnostic measures.

(142)

Mice Lung Mtb infection triggers a temporary and progressive catabolic state to satisfy

the continuous change in energy demand in order to control infection.

(143)

and how such functions can be channeled to better understand
the TB disease. The use of the ‘omics approach (discussed next)
is a step in the right direction, which will give better insight,
understanding and possibly help in the diagnosis of TB in the
future. Also, more human post-mortem samples (not only from
brain but from other organs where granulomas form) need to
be studied in order to gain better insight into how the TB
granuloma forms and functions as seen in the study conducted
by Zaharie et al. (31).

Challenges to TB Granuloma
Categorization
Challenges to studying TB granulomas, specifically in the brain,
include the lack of appropriate models and inaccessibility to
human brain tissues, which has subsequently lead to the limited
literature on the topic. Further limitations are due to the fact
that direct inferences from the current animal models to humans
cannot be made as conclusive outcomes of the disease since
animals may have a different response to the disease and the
mode of infection varies with that of humans; hence, the disease
itself most likely presents differently. Therefore, there is still need
to use human post-mortem tissue samples for the study of the
human TB granulomas, as seen in the study of TBM in zebrafish
in comparison with the study carried out on actual human post
mortem samples, where notable differences were seen to exist
between the granuloma developed in the zebrafish and that of
human post-mortem samples (31, 90).

USING PROTEOMICS AND
METABOLOMICS TO UNDERSTAND TB
GRANULOMAS

The increasing demand and search for faster,
more accurate methodologies that best describe the
biochemical/pathophysiological status of granulomas have
channeled efforts in the area of biomedical research recently

to achieve better diagnostic and treatment methods (129, 130).
From the need to augment work in biomedical research,
the ‘omics era was born (131). The two such sub-disciplines
that apply in the case of TB granulomas are proteomics
and metabolomics.

Proteomics
A proteome is loosely defined as all the proteins that can be
expressed in a cell, tissue or in an organism, including the
post-translational modified forms of proteins, and their isoforms
(132). Proteomics – the study of the proteome – serves as a
tool to advance biomedical research, such as vaccinology, drug
discovery, and biomarker identification (133). The inherent focus
of proteomics is to provide the most detailed insights into
various cellular processes, by analyzing proteins, which cannot be
captured by genomics or transcriptomics (134–136). Proteomics
has come a long way over the last two decades and is currently
in transition from its use in basic research to applications in
medicine (134). During this period proteomics has contributed
significantly to improving our understanding of the human
pathogen Mtb, including application of improved intervention
and prevention measures for TB, and providing exciting new
insights into the adaptive life cycle of Mtb under different
conditions, ranging from active metabolism and replication
to dormancy (134, 135). Using proteomics, antigens expressed
by Mtb under defined conditions with relevance for vaccine
development have also been identified (137). Proteomics also
enables superior characterization of proteins located in the
Mtb cell wall, which previously were extremely difficult to
identify (134, 138, 139). The application of proteomics has
also contributed toward the understanding of TB granulomas
(Table 2).

In a 2015 proteomics study, Marakalala et al. (5) combined
laser-capture microdissection, confocal microscopy, and a Q-
Exactive mass spectrometer coupled on-line to a nanoflow
ultra-high-pressure liquid chromatograph (LC–MS–MS) to
analyze over 3,000 proteins and a limited number of lipids
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during the different stages of TB granuloma formation in
the lungs of humans and rabbits. Their main finding was
that the center of the TB granuloma has a pro-inflammatory
environment characterized by anti-microbial peptides, reactive
oxygen species and pro-inflammatory eicosanoids, and that
the tissue surrounding the caseum has an anti-inflammatory
signature. Marakalala et al. (5) hypothesized that the pathological
response to Mtb is shaped by the precise localization of
these inflammatory pathways during the development of the
granuloma. Hence, the organization of the TB granulomas
promotes antimicrobial activity while limiting host tissue
destruction. These results were consistent across both human and
rabbit lung tissue samples.

Also in 2015, Yu et al. (140) used free-solution isoelectric
focusing to obtain chaperone-rich cell lysates from the
granulomatous lung lesions of active TB patients, and combined
the technique with high-resolution orbitrap mass spectrometry
to identify six Mtb-associated peptides not noted in the control
samples. They further identified a peptide (PKAp) derived from
Mtb protein kinase, which not only contributed to significant
antigen-specific IFN secretion, but also to cytotoxic lymphocyte
function and T-cell proliferation. Yu et al. further validated
these results in vivo with mice immunized by the PKAp peptide,
showing increased cellular IFN-γ in both the lungs and spleen,
without causing immunopathogenesis/disease. Mice immunized
with the PKAp peptide alone showed increased IFN- γ secretion
only in lung CD4+ T cells but not in spleen cells (140).

A recent proteomics study (2020) by Seto et al. (141),
applied mass spectrometry-based proteomics combined with
laser microdissection, in order to investigate the unique protein
markers in human mycobacterial granulomatous lesions. These
researchers compared protein abundance (2,812 proteins) in
the caseous regions between TB and Mycobacterium avium
complex lung disease (MAC-LD) granulomas and demonstrated
the expression of mycobacterial proteins by proteomic profiling,
and showed a significant change in the abundance of several
proteins in MAC-LD caseum relative to those of the TB
caseum. Enrichment analysis further revealed that neutrophil
proteins were accumulating in the caseum region. Proteins in
the proteasome were abundant in the TB cell region, suggesting
that antigen processing and presentation by dendritic cells and
macrophages actively occur in this region (i.e., active innate
immune response).

Considering the above, proteomics has shown that TB
granulomas observed in human lungs have specific protein
markers unique to each granuloma type; TB granulomas are
different in the composition and abundance of cells that are part
of the immune response; features depend on the causative agent
of the disease (5, 78, 140, 141).

Metabolomics
Metabolomics is capable of quantifying all low molecular weight
compounds (metabolites; collectively known as the metabolome)
in biofluids, cells, tissues, andwhole organisms, and is designed to
quantitatively analyze and describe molecular phenotypes (144).
Metabolomics is an omics technique that has been adapted for
the study of infectious diseases – broadening our knowledge

with respect to its use for prognostic and diagnostic purposes,
specifically the screening of disease-specific biomarkers (145).
Metabolomics has been, and is still being, used to study the
biological mechanisms of TB both in vitro and in vivo, in
animal models and human patients (146–148). The technique has
revealed the carbon sources available to pathogenic Mtb in vivo
(149, 150), and has led to the identification of metabolic profiles
associated with TB in animal models. It has also been used to
characterize human latent and active TB infection by means of
NMR-based analysis of serum, as well as MS-based analysis of
sputum (151–154). These studies have been reviewed byDu Preez
and Luies (146) and Du Preez and Loots (153). Furthermore,
metabolomics has also served as an effective research tool for the
identification of specific novel TB metabolic markers (155, 156)
from patients’ sputum, plasma, serum and urine (151, 157–159).
However, all of these metabolic markers identified to date are
only associated with biofluids, with very few instances where the
actual infected tissue (in particular lungs or brain) were analyzed.
Hence, there is still a need to isolate the infected tissue (TB
granulomas) and study the altered host and Mtb metabolism at
the site(s) of infection.

Considering the latter, an ex vivo study using untargeted high-
resolution magic angle spinning nuclear magnetic resonance
(NMR) spectroscopy was carried out on lung tissue of guinea
pigs infected with Mtb (85). The study showed significantly
elevated lactate, alanine, acetate and glutamate, aspartate,
creatine, phosphocholine, glycerophosphocholine, betaine,
trimethylamine N-oxide (TMAO), myo-inositol, scyllo-inositol,
and dihydroxyacetone, as well as reduced phosphatidylcholine,
and oxidized and reduced forms of glutathione. These altered
metabolites indicate utilization of alternate energy sources by
the infiltrating cells that generate much of the metabolites in the
increasingly necrotic and hypoxic developing granuloma, via the
glycolytic, pentose phosphate, and tricarboxylic acid pathways.
Furthermore, the metabolic changes seen in their study were
very similar to what was previously reported in cancer during
tumor development. Somashekar et al. (85) concluded that
their non-destructive metabolomics approach is particularly
relevant in studying the metabolic fate of Mtb during human
infection and that metabolic fingerprints reflect the cycle of
active replication and persistence of Mtb during granuloma
formation in all stages of infection. In 2012, Somashekar et al.
(143), again using NMR metabolomics, analyzed lung tissue
collected from guinea pigs infected with the W-Beijing Mtb
strain, and indicated a characteristic metabolic difference (in
respect of acetate, alanine, glutamate, aspartate, glutathione,
phosphocholine, creatine, glutathione, glycerophosphocholine,
betaine, myo-inositol, TMAO, dihydroxyacetone, and scyllo-
inositol) compared to the control group, which also changed
as the disease state progressed. This metabolic profile closely
matched that observed in their previous study (85). However,
in this investigation they additionally observed an increase in
glutathione in response to elevated oxygen radicals produced
in the lesions. These researchers also indicated that use
of NMR in this study can be used to identify changes to
important pathways that occurred as a result of disease
progression, and that these metabolic signatures could possibly
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be used in the development of improved vaccination or
therapeutic strategies.

In a study on mice, using high-resolution mass spectrometry
coupled with the powerful imaging technology of MALDI,
Prideaux et al. (160) indicated that Mtb uses TMAO as an
electron acceptor under anaerobic conditions. They additionally
reported that high abundances of TMAO are produced by
the host, in response to the elevated concentrations of
trimethylamine, a substrate supplied by the Mtb after infection.
They concluded that the lung tissue metabolome can be
greatly altered as TB disease progresses, and untargeted
metabolomics is an extremely valuable approach to understand
better those metabolic changes associated with site-specific Mtb
infection (142).

Considering the above, metabolomics can be expected to be
useful in advancing our understanding of granuloma formation
in TB, and in determining the unique metabolic signatures of
different granuloma and tissue types (such as the brain). Of
particular interest, in all three of the metabolomics studies on TB
granulomas described above, TMAO was a common metabolite
and so worthy of further investigation.

MIND THE GAP

Table 1 shows that TB granulomas manifest great diversity,
depending on the source material and whether it is associated
with inflammation caused byMtb infection. The table also reveals
that our knowledge of these granulomas is predominantly based
upon examination of lungs, in both human and animal studies.
Only two investigations have reported EPTB granulomas – in the
bronchial lymph nodes in sheep (125) and the brain in zebrafish
(90). Just one study, by Zaharie et al. in 2020, has examined
TB granulomas in the human brain (31). This work, which
was based upon immunohistochemistry analyses and three-
dimensional computer modeling, challenges the classical theory
of the Rich focus (58) in TBM. Zaharie et al. demonstrated that
most of the chronic granulomatous inflammation was located in
the subarachnoid space (leptomeninges) and to a much lesser
extent in the superficial brain parenchyma (adjacent to the pia
mater). They hypothesized that the superficial intraparenchymal
component is just a transpial or perivascular extension (Virchow-
Robin spaces) of a leptomeningeal granuloma. Furthermore, all
three granuloma types studied by Zaharie et al. showed no
observable differences between adult and children, highlighting
that the immune response in a developing CNS that has been
impacted by an infection functions in a similar manner to that
of a developed CNS; however, hydrocephalus – a physiological
complication of infection, occurs in more frequency in children
(31). Thus, it is very clear that we need more research on the
TB granulomas in the brain, especially in children, in order to
understand the immunopathogenesis of TBM – one of the major
knowledge gaps identified by the US National Institutes of Health
(161) at a 2018 workshop.

The advantage offered by untargeted proteomics and
metabolomics is that the exploratory nature of their analyses
examines the research subject with an open mind and in a

holistic fashion, and permits hypotheses to be generated based
upon discoveries. This non-biased research approach is ideal for
providing new biological insight(s) that are otherwise difficult
to achieve via the traditional reductionist scientific method.
Discoveries that have been elucidated are that the metabolite
TMAO plays an important role in the lung granuloma of
animal models, and that the localization of specific proteins
in granulomatous lesions in the lungs of human TB patients
are distributed specifically to counter Mtb infection, while
containing the contents of the granuloma in order to limit tissue
damage. The sustained to-and-fro battle between host and Mtb
is immensely complicated, which is reflected in the complexity
of the TB granuloma. This complexity is compounded by
the biological variability among individuals; hence, each host
responds differently to the assault by the pathogen.

Although our data on the role of TB granulomas in the human
brain are extremely limited, we predict that applying proteomics
and metabolomics to the study of TB granulomas in the brains
of human TBM cases should provide new insights into the
pathogenesis of the disease. This newfound understanding could
then be translated into practical application toward reducing the
severity of this devastating, often fatal, neurology.

CONCLUDING REMARKS

The WHO aims to eradicate TB completely by the year 2030
(162) – an ambitious task. In order to achieve this, it is necessary
to identify those living with latent TB, and to neutralize the threat
before they become infectious (45). Identifying specific markers
peculiar to patients with latent TB would be beneficial to tackling
this challenge. The use of bioinformatics, and the other ‘omics’
disciplines, have proved able to identify several potential targets
for the survival ofMtb in the latently infected host (163–165).

Proteomics and metabolomics studies, using human and the
increasing sophistication of animal modeling have generated
new ideas about the roles of TB granulomas; nonetheless,
many questions still remain unanswered regarding the host’s
response to TB. For example, from work on the immunology
and immunometabolic events in TB granulomas (166), two
major points for future research have been identified, namely:
(1) What is the nature and function of the differential spatial
organization of immune cells within the TB granuloma and how
does the expression of the different anti-TB enzyme systems
change?; and (2) as T cells are essential to constrain the spread
of infection, what are the metabolic cues during TB-specific
T-cell trafficking between TB granulomas and draining lymph
nodes? Nevertheless, more multidisciplinary ‘omics studies, such
as gene expression studies (167), especially in human subjects,
are required to contribute toward ushering in a new era of
understanding of TB granulomas – both at the site of infection,
and on a systemic level.
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