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Cortical hubs identified within resting-state networks (RSNs), areas of the cortex that

have a higher-than-average number of connections, are known to be critical to typical

cognitive functioning and are often implicated in disorders leading to abnormal cognitive

functioning. Functionally defined cortical hubs are also known to change with age in the

developing, maturing brain, mostly based on studies carried out using fMRI. We have

recently used magnetoencephalography (MEG) to study the maturation trajectories of

RSNs and their hubs from age 7 to 29 in 131 healthy participants with high temporal

resolution. We found that maturation trajectories diverge as a function of the underlying

cortical rhythm. Specifically, we found the beta band (13–30Hz)-mediated RSNs became

more locally efficient with maturation, i.e., more organized into clusters and connected

with nearby regions, while gamma (31–80Hz)-mediated RSNs became more globally

efficient with maturation, i.e., prioritizing faster signal transmission between distant

cortical regions. We also found that different sets of hubs were associated with each

of these networks. To better understand the functional significance of this divergence,

we wanted to examine the cortical functions associated with the identified hubs that

grew or shrunk with maturation within each of these networks. To that end, we analyzed

the results of the prior study using Neurosynth, a platform for large-scale, automated

synthesis of fMRI data that links brain coordinates with their probabilistically associated

terms. By mapping the Neurosynth terms associated with each of these hubs, we found

that maturing hubs identified in the gamma band RSNs were more likely to be associated

with bottom-up processes while maturing hubs identified in the beta band RSNs were

more likely to be associated with top-down functions. The results were consistent with

the idea that beta band-mediated networks preferentially support the maturation of

top-down processing, while the gamma band-mediated networks preferentially support

the maturation of bottom-up processing.
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INTRODUCTION

The period from childhood to adolescence is a time window
of extensive developmental changes in the neurophysiological
topology of the brain (1, 2). This period of rapid growth and
reorganization also coincides with a delicate period of increased
vulnerability to neuropsychiatric disorders, further underscoring
the need to gain insight into the changes that underlie this
period. As part of cortical maturation, the distribution of
functional connections also changes so that some brain regions
acquire a higher-than-average number of connections to form
hubs, while other hubs that may have been prominent during
childhood may shrink with maturation. Hubs play a key role
in integrative processing and supporting connectivity between
network modules (3, 4), and are implicated in a range of brain-
based disorders (5). To date, the vast majority of studies of
cortical changes during maturation have focused on resting-state
networks due to their replicability across sites and relevance
to a wide range of psychiatric and neurological disorders (6–
13). Almost all these studies have been carried out using
functional magnetic resonance imaging (fMRI), i.e., with signals
that fluctuate in the infra-slow range. Thus, to date, it has not
been known whether or how hub maturation patterns vary as
a function of the frequency band mediating their connectivity.
This question is relevant because intrinsic cortical rhythms
are themselves functionally significant, and rhythm-specific
alterations emerge are widely reported for a wide range of brain-
based disorders and diseases (14–21). Studying the maturing
and changing distribution and characteristics of hubs formed by
intra-areal synchronization of specific intrinsic brain rhythms is,
therefore, necessary for a better understanding of the maturing
brain and parsing the functional relevance of developing hubs
can offer insights into brain function and underscore sensitive
periods underpinning developmental disorders.

We have previously observed that developmental changes in
the segregation and integration of resting-state networks and
their corresponding hubs are clearly observable within specific
cortical rhythms and vary by rhythm (22). Specifically, we showed
that there were no notable maturational changes mediated by
the slower brain rhythms (delta, 1–3Hz; theta, 4–7Hz; alpha, 8–
12Hz). In contrast, the resting state networks mediated by the
faster beta (13–30Hz) and gamma (30–80Hz) frequency bands
undergo marked topological reorganization during maturation
between the ages 7 and 29. Networks mediated by the beta
brain rhythm become more integrated with maturation, i.e.,
more organized into clusters, i.e., prioritizing communication
between nearby hubs. In contrast, networks mediated by the
gamma brain rhythm become more segregated and distributed
with maturation, i.e., prioritizing faster signal transmission
between distant hubs. As part of that same study, we found
that maturation-driven changes in network topology resulted
in the hubs expanding (getting more connections) or shrinking
(losing connections and potentially losing hub “status”) in
resting-state networks mediated by the beta and gamma bands.
Spatially, maturing hubs in the gamma band-mediated networks
were located in heteromodal regions, such as the posterior
parietal cortex, posterior cingulate cortex, and the anterior
insula, in agreement with fMRI studies (23, 24). Hubs in

the beta-band-mediated network were located in heteromodal-
frontal regions and shrunk with maturation, which is a finding
hitherto unobserved with fMRI.

In our prior study, we speculated that the altered spatial
distribution of hubs in both networks reflects a shift in higher-
order cognitive processes and thus top-down processing, within
the beta band-mediated networks, and in bottom-up sensory
functioning in the gamma band-mediated networks. This
hypothesis was derived from recent data on the putative roles
of the beta and gamma bands in intra-areal synchronization.
It has been demonstrated that intra-areal gamma-band
synchronization mediates bottom-up signaling of sensory inputs
in several studies (17, 25). Relatedly, top-down influences
on sensory processing, such as attentional selection and
cognitive control, are mediated by intra-areal, alpha-beta band
synchronizations (17, 25, 26). The developmental changes in
hubs observed with MEG indicate an increased clustering and
segregation in beta and gamma-mediated networks, respectively.

In this study, we investigated these hypotheses. To that end,
we conducted a meta-analysis that built on the results and data
from the prior paper. Specifically, we used Neurosynth, a meta-
analytic platform that relies on a large-scale, automated synthesis
of fMRI data for data mining (27) to test and substantiate the
interpretations of the results proposed in our prior study. The
Neurosynth platform allows association tests for identifying the
relevance of a brain region to categories of behavioral functions
in a statistically principledmanner and has been used successfully
in multiple studies to gain an understanding of the potential
function of hubs (28–33). The Neurosynth platform can be
tapped in two ways. In the “reverse” direction, called “decoding,”
the input to Neurosynth is the coordinate of interest, i.e., the
coordinate of the hubs, and the output is the terms associated
with these coordinates, ranked by the probability of association.
We hypothesized that maturing hubs identified in the beta band
network will be associated with Neurosynth terms related to top-
down processing while maturing hubs identified in the gamma
band network will be associated with terms related to bottom-
up processing. In the “forward” direction, one enters a brain-
related term of interest. As an output, Neurosynth returns the
coordinates of the brain areas associated with these terms based
on the papers analyzed in its database in probabilistic ranking
order. Therefore, the coordinates most often associated with the
term depression, for instance, will be ranked at the top of the
search results, and so on. We used this approach to test for the
extent of overlap between hubs associated with terms related
to bottom-up or top-down processing, and the hubs identified
in our analyses. We hypothesized that maturing hubs identified
in the beta band network will overlap with hubs associated
with terms related to top-down processing while maturing hubs
identified in the gamma band network will overlap with hubs
associated with terms related to bottom-up processing (22).

MATERIALS AND METHODS

Participants
Magnetoencephalography resting-state data were collected from
145 healthy typically developing participants, aged 7–29. Due to
excessive motion, data from 14 subjects were discarded, resulting
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in 131 high-quality datasets (64 females) with a roughly uniform
age distribution. Because we combined datasets across several
different studies that utilized the MEG at the Martinos Center
at the Massachusetts General Hospital, no single behavioral
measures were available across all the participants. IQ measured
with the Kaufman Brief Intelligence Test – II (34) was available
for 68 of the participants. Within this subgroup, no significant
change in IQ with age was observed, as expected, given that IQ
is normalized by age. All the studies that were pooled for this
analysis were screened for typical development and health. All
the adult (age 18+) participants signed a consent form, agreeing
to participate in the study, and consent forms were signed by the
parents of the participants aged 7–17. The participants aged 14–
17 were also invited to sign a consent form if they wished to do
so. All procedures and forms were approved by theMassachusetts
General Hospital IRB.

Experimental Paradigm
The resting-state paradigm consisted of a fixation cross at the
center of the screen, presented for 5min continuously, while the
participants were seated and instructed to fixate on the cross.
The fixation stimulus was projected through an opening in the
wall onto a back-projection screen placed 100 cm in front of the
participant, inside a magnetically shielded room.

MRI Data Acquisition and Processing
T1-weighted, high-resolution MPRAGE (Magnetization
Prepared Rapid Gradient Echo) structural images were acquired
on either a 1.5 T or a 3.0-T Siemens Trio whole-body MRI
(magnetic resonance) scanner (Siemens Medical Systems) using
either 12 channels or a 32 channel head coil. The structural data
were preprocessed using FreeSurfer (35, 36). After correcting
for topological defects, cortical surfaces were triangulated with
dense meshes with ∼130,000 vertices in each hemisphere. To
expose the sulci in the visualization of cortical data, we used the
inflated surfaces computed by FreeSurfer.

MEG Data Acquisition and Cleaning
Magnetoencephalography data were acquired inside a
magnetically shielded room (37) using a whole-head Elekta
NeuromagVectorView system composed of 306 sensors arranged
in 102 triplets of two orthogonal planar gradiometers and
one magnetometer. The signals were filtered between 0.1 Hz
and 200Hz and sampled at 600Hz. To allow co-registration
of the MEG and MRI data, the locations of three fiduciary
points (nasion and auricular points) that define a head-based
coordinate system, a set of points from the head surface and the
locations of the four HPI coils were determined using a Fastrak
digitizer (Polhemus Inc., Colchester, VT) integrated with the
VectorView system. ECG and horizontal (HEOG) and vertical
electrooculogram (VEOG) signals were recorded. The position
and orientation of the head with respect to the MEG sensor array
were recorded continuously throughout the session with the help
of four head position indicator (HPI) coils (38).

We also monitored the continuous head position, and the
session was restarted if the excessive head movement was
recorded. The session was also restarted if any slouching in the

seated position was observed. Pillows, cushions, and blankets
were fitted to each individual to address slouching and readjusted
as needed. In addition to the human resting-state data, 5min
of data from the empty room was recorded before or after each
session for noise estimation purposes.

Following this, the data were spatially filtered using the
signal space separation (SSS) method (39, 40) with Elekta
NeuromagMaxfilter software to suppress noise generated by
sources outside the brain. This procedure also corrects for head
motion using the continuous head position data described in
the previous section. The heartbeats were identified using in-
house MATLAB code modified from the QRS detector in BioSig
(41). Subsequently, a signal-space projection (SSP) operator was
created separately for magnetometers and gradiometers using
the singular value decomposition (SVD) of the concatenated
data segments, containing the QRS complexes and separately
identified eye blinks (42), using code now implemented into the
open-source MNE-Python software (43). Data were also low-
pass-filtered at 144Hz to eliminate the HPI coil excitation signals.

Artifact cleaning was performed as follows: signal spikes
where the amplitude was higher than 5σ over the mean were
identified and dropped. To remove the effect of microsaccades,
horizontal and vertical EOG channels were filtered at a pass-
band of 31–80Hz. The envelope was then calculated for the
filtered signals and averaged to get REOG. Peaks exceeding three
SDs above the mean calculated over the whole-time course were
identified, and the corresponding periods were discarded from
subsequent analysis. Lastly, head movement recordings from the
HPI coils were used to drop any 1-s blocks where the average
headmovement exceeded 1.7mm/s (an empirical threshold). The
amount of data lost through cleaning was well below 10% and did
not differ significantly with age.

MEG Data Processing
The analysis stream we followed is illustrated in Figure 1, and
details are described below.

Mapping MEG Data Onto Cortical Space
The dense triangulation of the folded cortical surface provided
by FreeSurfer was decimated to a grid of 10,242 dipoles per
hemisphere, corresponding to a spacing of ∼3mm between
adjacent source locations. To compute the forward solution, a
boundary-element model with a single compartment bounded by
the inner surface of the skull was assumed (44). The watershed
algorithm in FreeSurfer was used to generate the inner skull
surface triangulations from the MRI scans of each participant.
The current distribution was estimated using the regularized
minimum-norm estimate (MNE) by fixing the source orientation
to be perpendicular to the cortex. The regularized (regularization
= 0.1) noise covariance matrix that was used to calculate the
inverse operator was estimated from data acquired in the absence
of a subject before each session. This approach has been validated
using intracranial measurements (45). To reduce the bias of
the MNEs toward superficial currents, we incorporated depth
weighting by adjusting the source covariance matrix, which has
been shown to increase spatial specificity (46). All forward and
inverse calculations were done using MNE-C (47).
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FIGURE 1 | Schematic illustration of pipeline. From top left in a clockwise direction: Resting state data were acquired using MEG, cleaned as described above, and

then mapped to the cortical surface. The surface was then divided into regions (parcellated), and envelopes were calculated for each frequency band in each region.

The connectivity between the regions was then computed from the envelopes and used to derive the connectivity metrics. Hubs were then identified using

betweenness centrality. The whole pipeline from raw MEG data to connectivity metrics is available as an MNE-Python example.

Cortical Parcellation (Labels)
FreeSurfer was used to automatically divide the cortex into
72 regions (48). After discarding “medial wall” and “corpus
callosum,” regions were further divided into a total of N = 448
cortical labels so that each label covers a similar area, again using
FreeSurfer. This was done to avoid averaging across a large label
that crosses multiple sulci and gyri and, therefore, could result
in signal cancellation across the label. Lastly, a high-resolution
parcellation also reduces the dependence of the results on the
specific selection of the parcels.

Deriving the Time Series for Each Label
Because of the ambiguity associated with individual vertex
(dipole) orientations, the time series for each vertex within
a label was not averaged directly but first aligned with the
dominant component of the multivariate set of time series before
calculating the label mean. To align the sign of the time series
across vertices, we used the SVD of the data XT = U6WT .
The sign of the dot product between the first left singular vector
U and all other time series in a label was computed. If this
sign was negative, we inverted the time series before averaging.
The time series were band-pass filtered and downsampled for
faster processing, while making sure that the sampling frequency
was maintained at fs > 3fhi (obeying the Nyquist theorem and
avoiding aliasing artifacts). The chosen frequency bands were
delta (1–4Hz), theta (4–8Hz), alpha (8–12Hz), beta (13–30Hz),

and gamma (31–80Hz). The line frequency at 60Hzwas removed
with a notch filter of bandwidth of 1Hz. Hilbert transform was
then performed on these band-pass data. More specifically, for
each frequency band, the analytic signal X̂(t) was calculated by
combining the original time series with its Hilbert transform into
a complex time series:

X̂(t) = x(t)+  H[x(t)]

The resulting time series X̂(t) can be seen as a rotating vector in
the complex plane whose length corresponds to the envelope of
the original time series x(t) and whose phase grows according to
the dominant frequency. Figure 1, Step 4, shows an example of a
modulated envelope on the top of the bandpass data (carrier).

Deriving the Orthogonal Envelopes
We used envelope correlations to reliably estimate synchronicity
between different cortical labels (49). In contrast to phase-
based connectivity metrics, envelope correlations measure how
the amplitude of an envelope within a frequency band is
synchronously modulated over time across distinct cortical
regions, as illustrated in the fourth panel of Figure 1. Previous
studies (humans and primates) have demonstrated the validity
and functional significance of these synchronous envelope
amplitude modulations (49–53) for both oscillatory and
broadband signals.
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To address the field-spread problem associated with MEG
data (54), we used the previously described orthogonal (55)
variation of the envelope correlation metric. This method
requires any two putatively dependent signals to have non-zero
lag and is thus insensitive to the zero-lag correlations, stemming
from the field spread. Mathematically, the connectivity between
two complex signals X̂ and Ŷ is calculated by “orthogonalizing”
one signal wall-cap concerning the other Ŷ(t, f ) → Ŷ⊥X (t, f ),
and subsequently taking the Pearson correlation between their
envelopes. This is done in both directions, and the two results are
averaged to give the final connectivity measure C⊥(X̂, Ŷ; t, f ).

Ŷ⊥X (t, f ) = I

(

Ŷ(t, f )
X̂†(t, f )

|X̂(t, f )|

)
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)
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(∣
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∣
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∣

∣
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∣
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∣
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∣

∣
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Due to the slow time course of these envelopes and to ensure
enough independent samples are available in the correlation
window (55), we calculated the orthogonal connectivity using
an overlapping sliding window of 30 s with a stride of 1/8
of the window size. Note that all 30 epochs that contained a
discontinuity due to a noisy segment that had to be removed were
excluded from the analyses.

Deriving the Connectivity and Adjacency Matrices
As a starting point for calculating the graph-theoretic metrics,
we used the connectivity matrix, which contained the orthogonal
correlations between all N × N node pairs and at each time
window. A separate matrix was computed for each frequency
band. The result of the processing pipeline is a connectivity
array of dimension N × N × NTime × NBands for each subject.
To increase the signal to noise, we collapsed the connectivity
array along the temporal dimension by taking the median
of each pairwise orthogonal correlation across time windows.
Thresholding and binarizing the connectivity matrix result in the
adjacency matrix A.

We used a threshold proportional scheme to retain a given
proportion of the strongest connectivity matrix entries in A.
Specifically, the adjacency matrix A was constructed using a
fixed cost threshold, ensuring that the density or number of
connections of the network is equated across all individuals and
age groups. Cost is a measure of the percentage of connections
for each label about all connections of the network. Since the
total number of connections is the same for all participants and is
determined by the number of nodes being considered, the use of
a fixed cost, i.e., a fixed percentage threshold, allows for exactly
equal numbers of connections across the participants. This is
important to ensure graph metrics can be compared across all
individuals and age groups. As there was no rationale for using a
cost threshold, therefore, we compared graph network properties
for a wide range of costs; we used a thresholding range from 5
to 30% at increments of 5%. For the graph metrics to be reliable,
they should be consistent over the range of thresholds.

The adjacency matrix A defines a graph G in the form of pairs
of nodes that are connected by an edge. Thus, A is defined such

that its binary element Aij is either 1 or 0, depending on whether
the edge eij between nodes vi and vj exists or not:

Aij =

{

1&if ∃ eij
0&if ∄ eij

Path Length
The average shortest path length between all pairs of nodes was
calculated as follows:

L =
1

n(n− 1)

∑

i6=j;vi ,vj∈G

dij

where the topological distance dij between nodes vi and vj is
defined as the minimum number of edges one must traverse to
get from one node to the other

dij=min {n
∣

∣An
[

i,j
]

6= 0
}

where An denotes the nth power of the adjacency matrix A, and i
and j are row and column indices of the resulting matrix.

Degree
The degree (hubness) of a node vi in a Graph G is defined as

Di =

n
∑

j=1,j 6=i

eij

where eij is the i th row and j th column edge of adjacency
matrix A.

Clustering Coefficient
The local clustering coefficient in the neighborhood of a vertex vi
is defined as the ratio of actual and maximally possible edges in
the Graph Gi, which is equivalent to the graph density of Gi:

Ci =
2
∣

∣

{

ejk
}
∣

∣

ki
(

ki − 1
) : vj, vk ∈ Gi

Global and Local Efficiencies
Global efficiency measures the efficiency of information transfer
through the entire network and is assessed by mean path length.
While the concept of path length is intuitive in anatomical
networks, it is also relevant for functional networks, since a
particular functional connection may travel different anatomical
paths, and, while the correspondence between the two is generally
high, it is not necessarily identical (56–58). Local efficiency
is related to the clustering of a network, i.e., the extent to
which nearest neighbors are interconnected. Thus, it assesses the
efficiency of connectivity over adjacent brain regions.

The average global efficiency of information transfer in graph
G having n nodes can be calculated from the inverse of the edge
distances di,j

Eglob = E (G) =
1

n (n− 1)

∑

i6=j;vi ,vj∈G

1

dij
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The quantity above is a measure of the global efficiency of
information transfer for the whole graph G. There is also a
local efficiency for each vertex vi, measuring how efficiently its
neighbors can communicate when a vertex vi is removed. If
the subgraph of all neighbors of vi is denoted by Gi, then its
local efficiency E(Gi) is approximately equivalent to the clustering
coefficient Ci (59).

Eloc =
1

n

∑

vi∈G

E (Gi)

Betweenness Centrality
Betweenness centrality pertains to individual nodes in the
network rather than the network as a whole and assesses how
many of the shortest paths between all other node pairs in the
network pass through that node. Nodes with high betweenness
centrality (hubs) are, therefore, more important for overall
network efficiency.

The betweenness centrality of node i is defined as

bi =
∑

m 6=i6=n∈G

σmn(i)

σmn

where σmn is the total number of shortest paths (paths with the
shortest path length) from Node m to Node n, and σmn(i) is
the number of shortest paths from Node m to node N that pass
through Node i. Betweenness centrality of a node thus reflects the
control and influence of that node on other nodes. Nodes with
high betweenness centrality have a high impact on information
transferal and collaboration between disparate sub-networks.

Resilience
Resilience is the graph-theoretic metric most critical to the
current analysis and, therefore, merits a more thorough
discussion. Resilience measures the robustness of the network
if the most heavily connected nodes (hubs) are removed. This
measure is inversely related to the capacity of the system for
integrating information in an efficient manner and is also
reflective of the brain’s small-world property, a metric that
determines the balance between cost and efficiency proffered
by the network for information transfer (60, 61). Small world
property and resilience are inversely proportional because both
are computed from the relative strength of local and global
efficiencies, one directly and one inversely. Indeed, this small
world property and resilience for the beta and gamma-mediated
networks showed opposite trajectory directions with maturation.
We chose this measure because it has been studied, mostly using
fMRI, in the context of psychiatric disorders, where multiple
hubs might be functioning abnormally (3, 62). It has also been
shown that greater resilience in a functionally derived task-driven
network is associated with greater inhibitory control cognitively
(63), a function that is often impaired in neurodevelopmental
and psychiatric disorders. Importantly, the measure incorporates
network topology in conjunction with the spatial distribution of
hubs, because it takes the degree, i.e., the number of connections,
of individual nodes into account.

Resilience quantifies Graph G’s robustness to targeted or
random attacks. Targeted attacks remove nodes in the descending

order of importance (i.e., number of connections). At each attack,
global efficiency is computed. Robustness is defined as the ratio of
the original efficiency with efficiency calculated after the attack.
This process is repeated until a predetermined number of hubs,
or all hubs are removed. In this case, to obtain the data shown in
Figures 4, 5, we removed the largest 90 hubs (nodes) associated
with each term in descending order and computed the relative
loss or gain in network efficiency after each removal.

Bootstrapping and Correlation
To visualize the significance of age effects and assess uncertainties
in the graph metrics with respect to age, we used nested
bootstrapping with 1,024 realizations. The nested bootstrap
procedure approximates the joint distribution of age x with the
age-dependent network metric f (yx), where f (yx) is the average
network metric over many subjects of age x (see notes below).
We observed n pairs (xi, yi), where xi is the age and yi the
corresponding imaging data for the ith subject. Ideally, we would
like to observe (xi, Yx), where yx denotes the (conceptual) average
of subjects chosen at random from a population, where each
subject is of age x.

Let f (y) denote the function that maps imaging data to a scalar
metric, describing some aspect of a network. Since yi contains
noise, to visualize and estimate uncertainties in graph metrics,
we can approximate (xi, ȳ x) by (X̄∗ , ȳ∗), where the ∗ denotes a
bootstrap sample. We can then evaluate f (yx̄∗) instead of f (yi).

Each realization of bootstrapping yielded one average network
metric and one value for the mean age of the group. Each data
point on the normalized density color map corresponds to one
realization of the bootstrap. To evaluate the relationship between
network quantity and age, we used Spearman correlation. The p-
values were computed after correcting for multiple comparisons
across the correction space of frequency bands, thresholds, and
graph metrics by controlling for a family-wise error rate using
maximum statistics through permutation testing (64).

Specifically, the correction for multiple comparisons was done
by constructing an empirical null distribution. For this purpose,
np = 10,000 realizations were computed by first randomizing age
and then correlating it with all graph metrics at all thresholds and
frequency bands, and finally taking maximum correlation value
across this permuted correction space. The corrected p-values
(pc) were calculated as:

pc =
2(n+ 1)

np + 1

where n is the number of values in the empirical null
distribution greater or lower than the observed positive or
negative correlation value, respectively. The factor of two
stems from the fact that the test is two-tailed. Correlations
resulting in significant p-values were then again tested using
Robust Correlation (65), which strictly checks for false-positive
correlations using bootstrap resampling.

LOESS Regression
LOESS, which stands for Locally Estimated Scatterplot
Smoothing, is a non-parametric regression method that
combines multiple regression models in a k-nearest-neighbor-
based meta model to create a smooth line through a time plot or
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scatter plot to help visualize the relationships between variables.
We used the non-parametric LOESS regression to fit a curve to
the data (66). To prevent overfitting in estimating bandwidth,
we used 10-fold cross-validation. We generated our predictive
model using the data in the training set, and then measured the
accuracy of the model using the data in the test set. We tested
a range of bandwidths from 0.01 to 0.99 with a 0.01 step. The
bandwidth resulting in the least sum of squares error was then
selected (67).

Neurosynth Decoding for Hubs Word Cloud
Generation
Neurosynth (https://neurosynth.org/) is a platform for large-
scale, automated synthesis of functional magnetic resonance
imaging (fMRI) data. It uses information from several thousand
published studies, reporting the results of fMRI studies, to
determine the statistical association between cortical areas, and
cognitive, disease, or function terms. Thus, every cortical vertex
is assigned a statistical score of how correlated it is with terms
within Neurosynth, and vice versa—every term in Neurosynth
has a ranked by strength of an association list of cortical vertices
associated with this term. This makes it possible to assess
functions or disorders associated with a particular anatomical
region in the cortex, with much greater statistical reliability than
would be possible via visual inspection, for instance.

For Neurosynth decoding, surface maps showing all the
hubs that exhibited significant age-dependent changes in the
betweenness centrality metric (correlation between age and the
betweenness centrality of nodes) in either the beta or gamma
band-mediated networks were transformed using FreeSurfer
from the surface to volume MNI space (mri_surf2vol). The
correlation maps were then run through the Neurosynth
decoding python module for the identification of the relevant
text terms.

The text data significantly associated with the brain regions
can be visually represented using word clouds (also known as
text clouds or tag clouds); the more a specific word appears
in a source of textual data, the bigger and bolder it appears in
the word cloud. The Word cloud was generated using the first
500 most relevant terms from a total of 2,911 terms generated
from the Neurosynth decoding module. The size of the words
(Neurosynth terms) corresponds to its relative correlation with
the maps as inferred by the Neurosynth decoding module. A
Python package entitled “a little word cloud generator” was used
for plotting the word cloud (https://github.com/amueller/word_
cloud). Note that these word clouds are inherently statistical
quantities, since only significant age-dependent changes were
fed to the Neurosynth decoding module, and only significant
correlations were included as part of the word clouds.

Maturation of Resilience, Tested Using
Neurosynth-Derived Hubs
To test the extent to which hubs identified in our primary
analysis overlap with hubs that correspond to specific functions,
we began by choosing 12 brain-function terms and extracting
from Neurosynth the first 90 nodes in descending order of size,
which corresponded to these terms. The sensory and cognitive
terms were chosen because they are all known to mature between

childhood and adulthood and represent a variety of cognitive
functions that are known to rely more heavily on bottom-
up or top-down processing. The DSM-5 terms were chosen
because all the disorders with the exception of autism are
likely to have an onset time in adolescence or early adulthood.
Autism was added due to its high prevalence and our prior
experience with the disorder, as well as due to the fact that
the severity of autism sometimes increases during adolescence
(68, 69). Note that we excluded psychosis and schizophrenia
despite the high prevalence of the onset during adolescence. This
is because these terms were not associated with any “reverse
inference” maps in Neurosynth, i.e., there is no selectivity
for which regions activate with these terms, hence making
them non-specific for target hubs. The terms were entered
exactly as they appear in the results section, except for the
“dorsal visual” term, which was not available on the Neurosynth
website. The term “dorsal visual” was generated to mirror the
term “ventral visual,” using the neurosynth python framework
(github.com/neurosynth), by specifying expression = “dorsal
and visual,” in the dataset.get_studies module.

Reverse inference maps from Neurosynth (27) were
downloaded for each of the examined terms at FDR = 0.05, as
listed in the results section. The resultant meta-analytic reverse
inference map, also known as the association test map, is a map
of z-scores from a two-way ANOVA, testing for the presence of
a non-zero association between the term(s) used and the voxels
activation map. These maps were then projected and registered
onto the FsAverage surface using pysurfer (pysurfer.github.io).
The mean Z-scores from this two-way ANOVA, averaged across
node’s vertices for each of the 448 nodes, were then computed
from these surface-projected maps. This mean z-score is shown
as a textured color map on the cortex. Nodes were then removed
from the graphs in order of their Neurosynth Z-scores, in
descending order, from the highest z-score (i.e., the largest most
important node) downwards. At each removal, the following
two steps were performed: first, global efficiency for each subject
was recalculated and normalized with respect to the original
global efficiency before removal. The result at point M was
the network resilience after the removal of M nodes. Then,
the resultant-normalized global efficiency was correlated with
age using Spearman correlation. The resultant correlations
were then corrected using maximum statistics by permutation
across bands (2 bands—beta and gamma), nodes removed (90
most connected, i.e., largest nodes), and terms (the 12 chosen
from the Neurosynth database) using the methods described
in the previous section. The resultant correlation is plotted at
the maximum correlation. The correlation value for each node
removal is shown as a color map on the top of the correlation
plot, marked with the white line at which LOESS regression
was plotted.

RESULTS

Neurosynth Decoding for Hubs Word Cloud
Generation
As noted in the introduction, in a prior study of resting state
networks, we assessed the developmental trajectory of the graph
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theoretic metrics of local and global efficiency from age 7
to age 29 by frequency band (22). Specifically, we tested the
maturation of these two graph theoretic efficiency metrics for
each of the 5 intrinsic cortical rhythms—delta (1–4Hz), theta (4–
8Hz), alpha (8–12Hz), beta (13–30Hz), and gamma (31–80Hz).
We found no significant age-dependent differences for either of
these metrics in the three slower frequency bands (delta, theta,
and alpha). In contrast, we found significant age dependence
of network efficiency in both the beta and gamma frequency
bands. More specifically, we found that resting state networks
mediated by the beta brain rhythm become more locally efficient
with maturation, i.e., more organized into clusters and connected
with nearby regions (Figure 2A), while networks mediated by
the gamma brain rhythm become more globally efficient with
maturation, i.e., prioritizing faster signal transmission between
distant cortical regions (Figure 2B). In the same prior study, we
used the betweenness centrality graph metric to identify which
of the hubs associated with each of the two networks changed
significantly in efficiency with age. Two categories of hubs
emerged from this analysis: hubs that grew—i.e., gained nodes—
with maturation, and hubs that shrunk—i.e., lost nodes—with
maturation. The distribution of the hubs that grew or shrunk
significantly with age in the beta band network is shown in
Figure 2C, and the distribution of the hubs that grew or shrunk
significantly with age in the gamma band network is shown in
Figure 2D.

In order to test our hypothesis regarding the functional roles
of the hubs found to grow or shrink with maturation within
each of the two identified networks (in Figures 2C,D), and
thus gain a better understanding of their functional significance,
we then tested which Neurosynth terms were most associated
with these hubs, for networks mediated by either the beta or
gamma bands. To that end, we extracted from Neurosynth the
list of terms associated with each of the regions marked in
Figures 2C,D, as ranked in order of their relevance for that
region, as ranked by Neurosynth. The statistically generated
word cloud associated with these hubs is shown in Figure 2E

for beta band-mediated networks and, in Figure 2F, for gamma
band-mediated networks. The word clouds within each panel
are further broken down by whether the hubs are growing with
maturation (red), or shrinking with maturation (blue), signifying
greater or reduced reliance on these hubs with maturation,
respectively. The larger text corresponds to a higher combined
statistical rank within Neurosynth across the corresponding
regions (growing/shrinking hubs).

Maturation of Resilience, Tested Using
Neurosynth-Derived Hubs
Network resilience is a metric that assesses the relative
significance of a hub for maintaining the network’s capacity to
integrate information by removing hubs from the network, from
largest to smallest in descending order and evaluating network
efficiency relative to the number of nodes removed. Because
resilience is evaluated using hubs, it is very well-suited to assess
the potential functions of hubs. We have previously shown that
resilience in beta band-mediated networks decreased with age,

while resilience in gamma band-mediated networks increased
with age, as illustrated in Figure 3 (22).

To further investigate the functional roles of the mapped
maturing hubs, we statistically mapped and identified the hubs
associated with specific meta-analytic terms and then tested
whether and how their removal from the network affected
the resilience of each of the two networks. To that end, 12
Neurosynth terms were chosen, with a focus on terms that
could help in differentiating bottom-up functions from top-
down functions. We began by selecting three terms associated
with basic visual or motor functions and, therefore, bottom-
up processes: “dorsal visual” stream, “ventral visual” stream,
and “motor system.” We hypothesized that these sensory-
centered networks are more strongly dependent on feedforward
connectivity, and, therefore, should show greater age-dependent
impacts in the gamma band. Indeed, we found that, for all
these terms, removing their associated hubs resulted in no
significant beta-mediated age effects. However, the removal of
these same hubs resulted in highly significant differences in the
gamma band-mediated age-dependent network resilience. More
specifically, for both the dorsal visual stream and the motor
system, removal of the associated hubs resulted in significantly
age-dependent resilience, with greater resilience (i.e., relatively
less decrease in global efficiency) in children relative to adults in
the gamma band. In contrast, removal of the hubs associated with
the ventral visual stream resulted in significantly age-dependent
resilience in the opposite direction in the gamma band, with
adults showing a significantly reduced impact on global efficiency
with removal of the hubs relative to children (Figures 4A–C).

We then repeated the same analysis with three terms
associated with cognitive functions known to be mediated
by top-down processes: “Attention,” “Executive” (for executive
function), and “Decision.” We hypothesized that networks
associated with these terms are more strongly dependent
on feedback connectivity and, therefore, should show greater
age-dependent impacts in the beta band-mediated networks.
Networks associated with these processes are also known
to mature substantially during adolescence. Contrary to our
hypothesis, the results for this group of cognitive terms were
mixed. Using the hubs from the attention network to test
resilience resulted in reduced resilience with age in both the
beta and gamma bands. This means that the younger age groups
were less severely impacted by the removal of the hubs than the
older age groups. Using the hubs from the executive function
network resulted in no effect of age and using the hubs from the
decision network resulted in age-dependent resilience in the beta
band only, with the older age group being less impacted than the
younger age group (Figures 4D–F).

Lastly, we tested resilience using the hubs associated with
DSM-5 disorders that are common in adolescence. This part
of the analysis was data driven rather than hypothesis driven,
and the aim was to test whether resilience changes associated
with each of these terms manifest differentially in the networks
mediated by the beta vs. the gamma bands. Specifically, we
tested the changes in the resilience of the networks, with
the removal of the hubs associated with the following terms:
“Autism,” “Obsessive-Compulsive,” “Eating Disorder,” “Anxiety,”
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FIGURE 2 | Spatial distributions of growing and shrinking hubs and their associated word clouds. (A) The LOESS plot (the solid white line) for the relationship

between age and local network efficiency of beta band-mediated networks. The individual data points are represented using a normalized density color map, where

each data point corresponds to one realization of the bootstrap procedure. (B) Like (A), for gamma band-mediated networks, and global efficiency instead of local

efficiency. (C) The spatial distribution of growing and shrinking hubs in the beta band-mediated networks. (D) Like (C), for the gamma band-mediated networks. (E)

Word clouds generated using wordle for the first 100 terms from Neurosynth for the beta band network- growing and -shrinking hubs. Larger font size reflects higher

probabilistic association. The top (red) cloud was generated using the growing hubs, and the bottom (blue) cloud was generated using the shrinking hubs. (F) Like (E),

for the gamma band-mediated networks. (A–D) have been adopted from Khan et al. (22).

FIGURE 3 | Resilience in beta and gamma-mediated networks follows opposite developmental trajectories. (A)-Left panel: Hubs identified from the beta band

network (Figure 2C) were first transformed to Neurosynth coordinates then and ranked by size. Approximately, 448 nodes in total were identified, and the order of

node removal for testing resilience, by node size, is color coded on the purple color bar, thresholded to avoid saturation. (A)-Right panel: After each removal of a

node, in ranked order, we evaluated whether there was a significant effect of age generated by the removal of that node. Shown is the LOESS plot for one instance of

the effect of age at 54% of nodes removed, where significance of age effect was maximal. The individual data points are represented using a normalized density color

map, where each data point corresponds to one realization of the bootstrap procedure. The top bar, labeled “Beta,” shows how significant the effect of age was at

any number of nodes removed, where significance is color-coded using the “p-value” color bars on the bottom (red for relatively increased resilience with age, blue for

relatively decreased resilience with age). The white notch on the bar under “Beta” is the snapshot, i.e., number of nodes removed at that point; we chose to plot to

show the weakening of resilience with age. (B)-Left panel: Same as (A)-left panel for the gamma band-mediated networks, using the hubs identified for the gamma

band-mediated network (Figure 2D). (B)-Right panel: Same as (A)-right panel for the gamma band-mediated networks.
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FIGURE 4 | Resilience in gamma and beta-mediated networks for relative networks associated with sensory and cognitive terms. This analysis replicated the process

shown in Figure 3, but instead of using the actual hubs of each network, it used the largest 90 hubs determined by Neurosynth to be associated with the term being

tested in descending order of size. The same hubs were used for both the beta and gamma-mediated networks. (A) Left side (subtitled with the relevant term): a

representation on the cortex of the cortical Neurosynth nodes associated with the term “Dorsal Visual,” with a rank indicated by the purple color bar at the bottom,

and thresholded as in Figures 3A,B. The middle panel (subtitled “Beta”): Resulting resilience for the beta band network for one “snapshot” of percentage of nodes

removed, marked by the notch in the bar under the word “Beta.” The right panel (subtitled “Gamma”): Same as the middle panel, but for the gamma band-mediated

network. (B) Same as (A) for the term “Ventral Visual.” (C) Same as (A) for the term “Motor.” (D) Same as (A) for the term “Attention.” (E) Same as (A) for the term

“Executive.” (F) Same as (A) for the term “Decision.” P-value color bars: red indicates resilience increased significantly with age, and blue indicates resilience

decreased significantly with age.

Depression,” and “Substance Abuse.” Removal of the hubs
associated with all of these disorders, with the exception of
autism, resulted in increased resilience in the older participants
relative to the younger participants in the beta band, similarly to
the cognitive decision network. In other words, the removal of
the hubs resulted in less decrease in global efficiency for the older
age group relative to the younger age group. In the gamma band,
an age-dependent change in resilience was observed for the terms
“autism” and “anxiety”; for both of these terms, in the gamma
band, resilience was significantly more impacted in the younger
age groups than in the older ones by the removal of the hubs
(Figures 5A–F).

DISCUSSION

This study aimed to test the hypothesis that maturing (growing or
shrinking) hubs associated with resting state networks mediated
by the beta frequency band are more likely to be associated
with top-down processing while maturing hubs associated with
resting state networks mediated by the gamma frequency band
are more likely to be associated with bottom-up processing. The
results showed that the hubs that we have previously shown

to change during maturation in the gamma band-mediated
network, which increased in global efficiency with age, were
more likely to be statistically associated with sensory and motor
terms in Neurosynth, and thus more likely to be associated
with feedforward, i.e., bottom-up processes. In contrast, the hubs
that we have previously shown to change during maturation
in the beta band-mediated network, which increased in local
efficiency with age, were more likely to be statistically associated
with more terms in Neurosynth that reflect more complex
cognitive function, and thus more likely to be associated
with feedback, i.e., top-down processes. These findings support
the hypothesis that intra-areal beta rhythm synchronizations
preferentially mediate top-down functions, while intra-areal
gamma rhythm synchronizations preferentially mediate bottom-
up functions.

These emergent patterns are consistent with the literature
in the field, showing a preferential role for the gamma band
in mediating bottom-up processes, even if not exclusively so,
and a preferential role for the beta band in mediating top-
down processes, even if not exclusively so. More specifically,
the pattern of shrinking the frontal hubs observed in the
beta band is consistent with studies showing reduced frontal
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FIGURE 5 | Resilience in gamma and beta-mediated networks for relative to networks associated with psychiatric terms. The same as Figure 4, but for the following

6 terms: (A) Autism. (B) Obsessive Compulsive. (C) Eating Disorder. (D) Anxiety. (E) Depression. (F) Substance Abuse.

task-related activation with maturation, for instance, for
inhibitory control, potentially due to increased efficiency of top-
down communication, putatively mediated by the beta band
(25). In line with this, the top Neurosynth terms emerging
from our decoding analysis for the beta band hubs were
“orbitofrontal” (shrinking hubs), “frontoparietal,” and “inferior
parietal” (growing hubs). These regions are associated with
processes that are generally considered to be top-down, such as
attentional control (70), executive control (71), and decision-
making. Gamma-mediated networks showed an increase in
global efficiency with maturation, which is consistent with the
putative role of gamma for mediating bottom-up connectivity
(17, 72) as new connections would have to be formed to
carry information forward to developing frontal brain regions.
Indeed, two of the top Neurosynth terms emerging from
our decoding analysis for the gamma band hubs that were
shrinking or growing with maturation were “primary motor”
(growing) and “lingual gyrus” (shrinking). The observation that
the motor, dorsal visual, and ventral visual systems showed age-
dependent resilience only in the gamma band may reflect the
fact that all of these processes rely heavily on feedforward inputs.
In other words, these regions are associated with processes
that are generally considered to be bottom-up, such as the
generation of motor movements (primary motor), and the
processing of visual inputs (lingual gyrus). Indeed, MEG in
humans (73) and non-human primate studies (72, 74, 75)
demonstrate that gamma rhythms flow up in a bottom-up
direction, spreading from lower-order visual sensory regions to

higher-order regions, while Beta rhythms flow in a top-down
direction, spreading from higher-order multimodal regions to
lower-order sensory regions.

The mixed results in the cognitive domain terms we tested for
overlap in the resilience-based analysis likely reflect the far more
complex processing and complex networks associated with the
chosen terms—attention, executive function, and decision. The
attention network is, indeed, known to be mediated heavily by
both feedforward and feedback inputs in line with our results
and reflects the significance of both beta and gamma to higher-
order functions. The executive function network showed no
age effect likely because, unlike the other terms, there were
no hubs associated with it in the reverse influence analysis,
which may reflect that the meta-analytics maps associated with
it in Neurosynth’s ranking are ambiguously defined. In contrast,
the decision network clearly relies most heavily on feedback
connectivity and, indeed, showed age-dependent resilience only
in the beta band. The differentiation between the three analyzed
groups of terms confirms that the presented results, indeed, have
implications for cognitive function.

The pattern observed for terms describing psychiatric
disorders using this analysis also suggests that the mediating
frequency bands have specific and differential roles. Notably, five
of the six chosen disorder terms are more commonly associated
with the later onset (adolescence to early adulthood) and showed
age-dependent resilience in the beta band. In contrast, the only
disorder on the list that is considered neurodevelopmental, i.e.,
early origin, autism, showed age-dependent resilience only in
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the gamma band. This suggests that beta band networks might
not undergo normal development in autism during adolescence,
and thus are particularly or more severely impacted in line with
prior findings (12, 22, 76, 77). Anxiety was the only term that
corresponded to networks showing age-dependent trajectories
in both the beta and gamma bands differentiating it from the
other tested terms. It is possible that these anxiety networks
are relatively poorly defined when anxiety type is not specified,
and, thus, multiple networks are captured by this term in
Neurosynth. Indeed, there aremany subtypes of anxiety disorders
that were not differentiated in our Neurosynth search (e.g., social
anxiety, performance anxiety, generalized anxiety, etc.). While
the other disorders tested are typically associated with specific
onset times windows (e.g., childhood for autism, adolescence
for eating disorders or depression), anxiety can arise at any
age, and, therefore, a maturation trajectory for its corresponding
networks may not be as well-defined as it is for the other disorder
terms tested.

A potential limitation of this paper is that it sought to build on
prior results to further refine our understanding of these results.
Because the prior results only showed age-dependent changes in
the beta and gamma band-mediated networks, we only focused
on these two networks here too and did not examine the hubs
associated with the delta, theta, and alpha bands. It is possible
that specific hubs within those networks do show age-dependent
differences even if the network as a whole does not. It is also
possible that age-dependent bandwidth changes within specific
bands, which were not considered in the prior study, might have
an impact on maturation trajectories in the slower frequency
bands in particular. Future studies are needed to further elucidate
these questions.

This study added meta-analytic tools to our prior study of
frequency-specific maturation of resting state networks. The goal
of these additional analyses was to assess the potential functional
significance of the hubs identified in the prior study. While it
is clear that both beta band and gamma band-mediated resting
state network networks are highly complex and contribute to
processing in a multitude of ways that are not necessarily or
exclusively direction specific, the Neurosynth-derived results are,
overall, consistent with our prior hypotheses that beta band-
mediated networks are likely to be more heavily weighted toward
top-down processing, while gamma band-mediated networks
are likely to be more heavily weighted toward bottom-up

processing. Mechanistically, both of these cortical rhythms are

mediated by GABAergic systems (15, 78); the maturation of
GABAergic processes extends well into adolescence and early
adulthood (79), and the maturation of GABAergic systems
likely also underlie the maturation of these cortical networks,
and thus hub topology. Thus, the maturation of GABAergic
systems is highly likely to influence the maturation of both
networks and mediates developmental changes in both bottom-
up and top-down processing. Lastly, this study demonstrates
that Neurosynth can be employed to investigate the functional
role of networks and their hubs, even in the absence of direct
functional data.
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