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Purpose: Newly emerged or constantly enlarged contrast-enhancing (CE) lesions were

the necessary signs for the diagnosis of glioblastoma (GBM) progression. This study

aimed to investigate whether the T2-weighted-Fluid-Attenuated Inversion Recovery

(T2/FLAIR) abnormal transformation could predict and assess progression for GBMs,

especially for tumor dissemination.

Methods: A consecutive cohort of 246 GBM patients with regular follow-up and

sufficient radiological data was included in this study. The series of T2/FLAIR and T1CE

images were retrospectively reviewed. The patients were separated into T2/FLAIR and

T1CE discordant and accordant subgroups based on the initial progression images.

Results: A total of 170 qualified patients were finally analyzed. The incidence of

discordant T2/FLAIR and T1CE images was 25.9% (44/170). The median time-span of

T2/FLAIR indicated tumor progression was 119.5 days (ranging from 57 days-unreached)

prior to T1CE. Nearly half of patients (20/44, 45.5%) in the discordant subgroup suffered

from tumor dissemination, substantially higher than accordant patients (23/126, 20.6%,

p < 0.001). The median time to progression (TTP), post-progression survival (PPS), and

overall survival (OS) were not statistically different (all p > 0.05) between discordant and

accordant patients.

Conclusions: T2/FLAIR abnormity could be the sign of GBM progression, especially

for newly emerged lesions disseminating from the primary cavity. Physicians should cast

more attention on the dynamic change of T2/FLAIR images, which might be of great

significance for progression assessment and subsequent clinical decision-making.

Keywords: glioblastoma (GBM), isocitrate dehydrogenase (IDH), gross total removal of tumor (GTR), supratotal

maximal resection (SMR), T2/FLAIR, progression, dissemination, RANO

INTRODUCTION

The glioblastoma (GBM) is one of the most lethal malignancies and harbors profoundly
intratumoral and intertumoral heterogeneity (1–3). This heterogeneity encompasses substantially
molecular and spatial-temporal distinction and could be reflected on imaging (4). Though GBM
typically presents as contrast-enhancing tumors (CET) on MRI, components beyond CE margins,

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2022.819216
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2022.819216&domain=pdf&date_stamp=2022-02-02
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:xiaohuiren@aliyun.com
mailto:linsong2005@126.com
https://doi.org/10.3389/fneur.2022.819216
https://www.frontiersin.org/articles/10.3389/fneur.2022.819216/full


Li et al. T2/FLAIR Predicts Glioblastoma Dissemination

regarded as non-CE tumors (nCET), could also progress rapidly
and evolve to CET that severely threaten survival (5). Recently,
dozens of studies focusing on the nCET have proposed the
innovative surgical strategy that nCET should be considered to
be removed, which might be helpful to prolong prognosis (6–
8). This informed us that more attention should be attached to
the nCET.

Multicentric and multifocal GBM, consisting of 1–35%
newly diagnosed GBM, tend to portend a worse prognosis
than unifocal (9). In contrast to multicentric GBM, multifocal
GBM presents obvious communication on T2-weighted-Fluid-
Attenuated Inversion Recovery (T2/FLAIR) imaging. However,
both the definition of multicentric and multifocal GBMs require
CE rather than the non-CE (nCE) lesions as one of the centers or
focuses (10). Till now, few researchers reported GBMs with nCE
lesions as multi-focal or multicentric GBMs. Lasocki et al. firstly
reported that nine (6%) of 151 patients with GBM had isolated
nCE lesions and further proved GBM, which warned us to pay
more attention to this phenomenon (11).

Multifocal or multicentric lesions could not only be diagnosed
for primary GBM but for recurrent or progressed tumors.
Though local recurrence dominates the patterns of progression,
non-local progression, such as distant intracranial metastasis,
subependymal spread, and leptomeningeal dissemination, and
extracranial visceral metastasis, occurs in 2–34.5% patients with
GBM (12, 13). The Response Assessment in Neuro-Oncology
(RANO) and modified RANO criteria warrant new emerged or
significantly enlarged CE lesions as the necessary and essential
evidence to consider tumor progression for Bevacizumab-naïve
patients (14–16), nevertheless, non-local recurrence could be
similar to nCE multifocal or multicentric GBMs. They might
not be visible on T1CE but T2/FLAIR images. Till now, no
studies focused on this issue. Thus, we performed a retrospective
study to explore whether T2/FLAIR could be more sensitive in
distinguishing early progression than T1CE images, especially for
non-local progressed GBM.

METHODS AND MATERIALS

Patients
A cohort of 246 consecutive adult patients from March 1, 2013
to August 31, 2020, surgically treated and pathologically defined
as de novo supratentorial isocitrate dehydrogenase (IDH) wild-
type GBM based on 2021 WHO classification of brain tumors
was included in this retrospectively study (17). All tissue sections
were meticulously reviewed by 3 senior neuropathologists to
generate a consensus diagnosis. Patients with inadequate follow-
up, lethal comorbidity, or other malignancies were excluded.
Besides, patients without tumor progression were not included
for subsequent analysis. Clinical, radiological, and pathological
information was recorded.

Abbreviations: GBM, glioblastoma; IDH, isocitrate dehydrogenase; MGMT,

O6-methylguanine-DNA methyltransferase; KPS, Karnofsky Performance Status

score; GTR, gross total removal of tumor; SMR, supratotal maximal resection; TTP,

time to progression; OS, overall survival; PPS, post-progression survival.

Molecular Information
The 1p/19q codeletion, 7+/10–, epidermal growth factor
receptor (EGFR) amplification status were determined by
fluorescence in situ hybridization (FISH). For IDH1 R132
and IDH2 R172 mutations, telomerase reverse transcriptase
(TERT) promoter C228T/C250T mutation was tested by
Sanger sequencing (18, 19). The status of O6-methylguanine-
DNA methyltransferase (MGMT) promoter was determined by
pyrosequencing, and patients were divided into methylated and
unmethylated by the average methylation level of 12% (20).
BRAF V600E, fibroblast growth factor receptor 1 (FGFR1), and
H3K27M mutations were evaluated by Sanger sequencing for
exclusion when required.

Collection of Radiological Data
All MRI studies were performed on 3.0-T clinical scanners
(Siemens Trio Tim, or GE, Boston, MA USA) in the routine
clinical workup. The protocol included axial T1-weighted
(repetition time [TR] 1,750–2,250ms, echo time [TE] 9.4–
19.8ms, matrix 256 × 198, slice thickness 5mm), T2-weighted
fast spin-echo (TR 4,900–6,711ms, TE 97–116.6ms, FA = 150◦,
matrix 256 × 320, slice thickness 5mm, spacing 1mm, field of
view [FOV] = 220 × 220mm, number of excitations [NEX] =
3), T2 FLAIR (TR = 7,000–8,000 msec, TE 91–152.0 msec, TI
2,340ms, matrix 256× 186; slice thickness 5mm, spacing 1mm,
FOV= 220× 220mm,NEX= 3), and axial and coronal contrast-
enhanced T1-weighted images (CE-T1WI; TR 1,779.2–2,110ms,
TE 9.4–19.8ms, matrix: 320 × 288, FA = 15◦, FOV = 240 ×

188mm, slice thickness 5mm, spacing 1mm, NEX= 1) with the
administration of gadopentetate dimeglumine (0.2 mmol/kg).

MRI examinations were independently analyzed by 2
investigators (XHR, a neurosurgical oncologist with 15 years of
experience and HYC, a radiologist with 25 years of experience).
Both were blinded to clinical history, molecular status, and
histopathologic diagnosis. Reassessment was performed when
discordant results were acquired. If the disagreement persisted, a
third reviewer (XZC, a radiologist in brain imaging with 25 years
of experience), joined the discussion for final consensus.

Treatment and Follow-Up
All enrolled patients were surgically treated. After the operation
and a waiting period of about 3–5 weeks, the Stupp’s protocol,
radiation with guideline-recommended dose concurrent daily
temozolomide (TMZ; 75 mg/m2/d), was finished, and following
cycles of maintenance TMZ (150–200 mg/m2 for 5 days every 28
days) adjuvant chemotherapy was administered.

Contrast-enhanced-MRI was meticulously followed within 4
weeks after concurrent chemoradiotherapy (CCRT) and regularly
surveilled with an interval of 8–12 weeks or if necessary. The
patterns of tumor progression were classified as local or in situ
(obvious connection with the primary resection cavity), distant
intracranial metastasis (newly emerged parenchyma lesions
without a clear connection with the original tumor on T2/FLAIR
images), subependymal spread (lesions disseminated along with
the subependymal zone), and leptomeningeal dissemination
(diffuse leptomeningeal enhancement around the contours of
the gyri and sulci with/without multiple nodular deposited in
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the subarachnoid space) based on the initial MR images with
progression (12). We also employed the principles of RANO for
low-grade glioma to evaluate the dynamic change of T2/FLAIR of
this GBM cohort (21). MR spectrum (MRS), perfusion-weighted
MRI (PWI) by dynamic susceptibility contrast (DSC), and 18F-
FDG-PETMRI were available to some but not all patients during
the follow-up to provide valuable information to distinguish
treatment response (pseudoprogression and radiation necrosis)
from true progression.

To distinguish peritumor edema and true non-enhancing
tumor, we introduced these definitions from the Visually
Accessible Rembrandt Images (VASARI) feature set (https://wiki.
nci.nih.gov/display/CIP/VASARI). Edema should be greater in
signal than nCET and somewhat lower in signal than CSF.
Pseudopods are the canonical characteristics of edema. The entire
abnormality may be comprised of: (1) an enhancing component,
(2) a non-enhancing component, (3) a necrotic component, and
(4) an edema component for a typical GBM.

Time to progression (TTP) was defined as the duration from
the initial surgery to the time of true tumor progression, and
overall survival (OS) was termed as the duration between the
initial surgery and the death, or date of the last follow-up (19,
22). Post-progression survival (the time span between tumor
progression and death) was also calculated and documented
for further analysis. All assessments were performed prior to
Bevacizumab or other antiangiogenic therapy.

Statistical Analysis
The student’s t-test was used for continuous variables, and
the Mann-Whitney U-test was applied for non-parametric
data. The Chi-square test or Fisher’s exact test was used to
compare the categorical variables. Graphpad Prism (Version
8.0.1, GraphPad Software, San Diego, CA, USA) was used for
statistical analysis. The survival rate of patients was estimated
with the Kaplan-Meier plot, and differences between curves
were compared by the log-rank test. Probability values were
obtained using 2-sided tests with statistical significance defined
as p < 0.05.

RESULTS

Descriptive Characteristics and the
Incidence of Different Patterns of
Progression
A total of 246 patients were initially included in this study.
Patients with no recurrence, ambiguous diagnosis of progression,
or follow-up interval longer than 3 months were excluded
for subsequent analysis (Figure 1). In 170 qualified GBM
patients with assessable progression patterns, 25.3% (43/170)
demonstrated non-local progression, such as distant intracranial
metastasis (17/170, 10.0%), subependymal spread (20/170,
11.8%), and leptomeningeal dissemination (6/170, 3.5%), while
local or diffuse recurrence was present in the other 127 (74.7%)
patients (Table 1).

The Incidence of Discordant T2/FLAIR and
T1CE Images for GBM
We observed the dynamic change discordance between
T2/FLAIR and T1CE in a small subgroup of patients with GBM
(44/170, 25.9%). The abnormal finding of T2/FLAIR was prior
to T1CE in most cases (37/44, 84.1%), and the four of remaining
patients received re-operation before the new or constantly
enlarged T1CE lesions emerged, and the other three patients
were only found T2/FLAIR abnormal space-occupying lesions
without enhancement till the last follow-up.

The median time-span between T2/FLAIR and T1CE
indicated progression was 119.5 days (ranging 57 days
-unreached). In the discordant patients, two developed
leptomeningeal dissemination (2/44, 4.5%), nine presented
subependymal spread (9/44, 20.5%), nine showed distant
intracranial metastases (9/44, 20.5%), and the remnant 24
patients suffered in situ recurrences (54.5%). Generally speaking,
nearly half of discordant patients were observed with non-
local tumor progression (20/44, 45.5%), while in an accordant
subgroup, only 18.3% of patients suffered from non-local
progression (23/126, p < 0.001; Table 1). Therefore, newly
emerged non-CE lesions, especially for these distant from
the primary tumor cavity, should be cast more attention
because T2/FLAIR abnormal lesions could still be the sign of
GBM progression.

A total of 96 patients achieved gross total removal of tumor
(GTR), and in the discordant subgroups, the GTR rate was higher
than accordant patients (32/44, 72.7% for discordant and 64/126,
50.8% for accordant, respectively, p = 0.012). In addition, the
preoperative status was better in discordant than the accordant
group (preoperative Karnofsky Performance Status [KPS] score
>70: 36 of 44 (81.8%) patients for discordant and 81 of 126
(64.3%) patients for accordant, p = 0.031). The phenomenon
informed us that the discordant subgroup achieved better local
tumor control and resulted in a lower incidence of local
progression (Table 1). While the mean age, gender distribution,
preoperative KPS score, mean tumor volume, the incidence
of ventricle infringement, MGMT promoter status, EFGR
amplification, tumor location, and TERT promoter status was not
different between discordant and accordant patients (Table 1).

Radiological and Pathological Finding
Distinguishing treatment-induced response, such as
pseudoprogression and radionecrosis, from true progression is of
utmost importance for subsequent clinical decision-making and
prognosis assessment. In the whole discordant subgroup, eleven
performed advanced imaging checks, such as MR spectrum
(MRS), perfusion-weighted MRI (PWI), PET, or combined.
Significantly increased choline (Cho)/N-acetyl-aspartate (NAA)
ratio, relative cerebral blood volume (rCBV), and high glucose
uptake were observed in these nine patients (9/11, 81.8%)
while the other two showed mild-to-moderate perfusion and
metabolic transformation.

Eleven patients in the discordant subgroup (three of them
performed advanced imaging check, and seven of them
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FIGURE 1 | Patients included in this study. The final analysis showed that 25.9% of patients (44/170) presented discordant results between T2/FLAIR and T1CE

images.

were local recurrence) accepted reoperation, and eight of
them were reported with GBM (all accepted re-operation
till the tumor evolved into CE). The other three without
enhancement were histologically confirmed astrocytoma with

anaplastic characteristics (no obviousmicrovascular proliferation
or necrosis were observed though this diagnosis should be
refined as GBM based on the 2021 WHO brain tumor
classification examples in Figure 2), and all of them were distant
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FIGURE 2 | A representative case for the discordant subgroup with distant intracranial metastasis. (A) The patient presented unbearable headache with

contrast-enhancing (CE) lesion on left temporal (a–d). Craniotomy was performed and the tumor was totally removed. The final diagnose was primary GBM, IDH

wild-type, WHO grade 4 (e–f). (B) Forty-nine months after the operation, a non-CE lesion on the splenium of the corpus callosum with space-occupying effect (a–d)

was suspected tumor progression. The final pathology diagnosis was GBM, IDH wild-type, WHO grade 4 (e–f) based on the WHO 2021 brain tumor classification

system (Bars, 200µm). GBM, glioblastoma; IDH, isocitrate dehydrogenase.

metastasis. Therefore, highly aggressive GBM could transform
into entities with histologically indicated gentle tumor behavior.
This phenomenon was rare and has a close relationship with the
distant non-CE lesion. Though most non-CE lesions evolved to
CE lesions eventually, physicians should be aware that non-CE
lesions might be the early sign of tumor progression for GBM,
especially for distant lesions.

Similar Prognosis Between Discordant and
Accordant Patients
For the whole cohort, the median TTP, OS, and PPS were 6.0,
19.0, and 11.0 months, respectively. The comparison of TTP,
OS, and PPS between discordant and accordant patients was not
significant (discordant vs. accordant, median TTP: 8.0 vs. 5.0
months, p= 0.222, Figure 3A; medianOS: 21.0 vs. 19.0months, p
= 0.164, Figure 3B; median PPS: 11.5 vs. 10.5 months, p= 0.171,
Figure 3C). The results demonstrated that though the discordant
subgroup initially presented less aggressive tumor behavior with
non-CE lesions, they progressed as fast as the CE lesions in
accordant patients and harbored a lethal prognosis.

More discordant patients suffered from non-local tumor
progression, thus simple comparison between discordant and
accordant subgroups might overlook some critical information.
Survival comparison demonstrated that the prognosis of non-
local progression patients in the discordant subgroup was
superior to accordant patients (median TTP: 7.1 vs. 5.0 months,
p = 0.083, Figure 3D; median OS: 18.25 vs. 12.5 months, p
= 0.009, Figure 3E; median PPS: 10.7 vs. 6.0 months, p =

0.009, Figure 3F). This result implied that the occurrence of
tumor dissemination for discordant patients might be later
due to better local tumor control, and disseminated nCE
tumor cells might harbor a relatively gentle tumor behavior in
discordant patients.

DISCUSSION

The IDH wild-type de novo GBM is one of the most lethal
malignancies that embraces highly molecular, temporospatial,
and radiological intratumoral and intertumoral heterogeneity
(10). The RANO and modified RANO criteria for GBM request
newly emerged or constantly enlarged CE lesions as the basic
prerequisite to defining progression, regardless of T2/FLAIR
(14–16). Our longitudinal observation demonstrated that extra
attention should be paid to the dynamic change of T2/FLAIR,
which might be the early sign of progression, especially for
non-local progression GBMs.

Typically, GBM is highly aggressive, infiltrative, and invasive
brain malignancy with prominent blood-brain barrier disruption
(10). The canonical manifestation on radiology is pronounced
CE lesions with surrounding T2/FLAIR abnormity areas (23).
However, the inherently high heterogeneity renders neither all
GBMs nor the whole body of GBMs is aggressive and destructive
enough that could be reflected by CEMRI. Not only a minority of
GBMs were non-CE but the ratio of nCE/CE in the GBMs varied
significantly (24, 25). Both the CE and T2/FLAIR abnormal
regions are enriched with malignant tumor cells that could
reproduce and propagate rapidly (7, 26, 27). Contemporarily, no
assessment criterion focusing on GBMwas established according
to radiological alteration of T2/FLAIR, neither treatment effect
assessment for Bevacizumab-naïve patients nor progression
surveillance. The extent of resection (EOR) of GBM is based on
the percentage of CETs removed or the accurate resident volume
of enhancement, regardless of T2/FLAIR. Complete response,
partial response, stable disease, or progression after treatment for
GBM of RANO was defined by dynamic alteration CE lesions for
patients who did not receive antiangiogenic therapy (14, 28, 29).
Studies reported the sensitivity of FLAIR signal increase prior
to enhancement indicated in situ progression ranged from 34 to
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TABLE 1 | Clinical, demographic and radiological characteristics of patients

with/without discordant T2/FLAIR T1CE images.

Characteristics Discordant Accordant P-value

Number of patients 44 (25.9%) 126 (74.1%) -

Age at diagnosis (years)

Mean 46.3 ± 12.8 49.6 ± 12.1 0.130

Median 50.0 51.0 0.847

Gender

Male 30 (68.2%) 85 (67.5%) 0.930

Female 14 (31.8%) 41 (32.5%)

Preoperative KPS

>70 36 (81.8%) 81 (64.3%) 0.031

≤70 8 (18.2%) 45 (35.7%)

Extent of resection

GTR 32 (72.7%) 64 (50.8%) 0.012

Non-GTR 12 (27.3%) 62 (49.2%)

Tumor volume (cm3)

Mean 36.8±33.1 44.5±51.7 0.352

Median 31.7 38.0 0.330

Ventricle infringement

Yes 23 (52.3%) 79 (62.7%) 0.224

No 21 (47.7%) 47 (37.3%)

MGMT promoter

Methylated 19 (43.2%) 44 (35.8%) 0.384

Unmethylated 25 (56.8%) 79 (64.2%)

Tumor location

Frontal 13 (29.5%) 41 (32.5%) 0.926

Temporal 16 (36.4%) 40 (31.7%)

Insular 9 (20.5%) 22 (17.5%)

Parietal 4 (9.1%) 16 (12.7%)

Occipital 2 (4.5%) 7 (5.6%)

TERT promoter

Mutant 11 (37.5%) 49 (42.3%) 0.080

Wild 17 (62.5%) 35 (57.7%)

Patterns of progression

Local recurrence 24 (54.5%) 103 (81.7%) 0.003

Distant metastasis 9 (20.5%) 8 (6.3%)

Subependymal spread 9 (20.5%) 11 (8.7%)

Leptomeningeal dissemination 2 (4.5%) 4 (3.2%)

T1CE, T1 weighted contrast-enhancing images; KPS, Karnofsky Performance

Status score; GTR, gross total removal of tumor; MGMT, O-6-methylguanine DNA

methyltransferase. Bold: significant.

75% (27, 30–33), higher than ours, which might be accountable
due to the difference in inclusion criteria, GTR, and ventricle
infringement rate in our study. Our study firstly reported the
incidence of T2-FLAIR discordance in disseminationmonitoring
and revealed its poor clinical outcome.

Traditionally, multifocal or multicentric GBM refers to the
concept that synchronous multiple lesions at diagnosis, and
the former was defined as multiple CE lesions embedded
in a relatively large area with abnormal T2/FLAIR-weighted
signal while the latter usually invading different hemisphere

or lobe devoid of connection. Furthermore, multiple GBMs
occurred at a distinct time without connection on MRI
were also viewed as multicentric GBM (2, 34). However,
these definitions were established based on the CE lesions
with/without well-demarcated margins. Lasocki et al. firstly
reported that the incidence of multicentric nCE lesions of
GBM was 6% (9/151) at preoperative diagnosis, and the
survival was much worse than patients without multicentric
non-enhancement lesions. In four patients with follow-up
MRIs, all developed enhancement and necrosis within 1
year (11). This phenomenon informed us that nCE lesions
distant from the dominant lesion could be the reason for
disease progression and treatment failure, and much more
attention should be attached to the nCE lesions because
they could not only be multicentric GBMs at diagnosis but
at recurrence. Future response assessment criteria should
incorporate the dynamic change of T2/FLAIR especially distant
signal alteration to monitor GBM in situ recurrence or
intracranial dissemination.

Local recurrence dominates the patterns of GBM progression
(ranging from 60 to 85%) (12). The standard care of GBM
demands radiotherapy to eliminate the residual tumor cells
and postpone tumor recurrence. Demyelination caused by
radiation in target volume could lead to evident T2/FLAIR
abnormity (16). At the very early stage of progression, tumor-
related edema or infiltration effect was quite obscure and totally
covered by demyelination on T2/FLAIR images, but even tiny
CE lesion on MRI could be extraordinarily conspicuous on
T1CE images. Thus, for local recurrence and leptomeningeal
dissemination monitoring, the newly emerged or constantly
enlarged CE lesions could be more sensitive for recurrence
predicting. Tumor cells could also migrate into areas out of
beam target or the low dose of the target where demyelination
was less pronounced. Tumor cells from nCE areas of initially
dominant bulk could form new non-CE lesions out of the
original target zone, or at the very early stage of new lesion
forming, the transformation of T2/FLAIR was prior to T1CE
images. Our results showed that 25.9% of patients could be
found with an nCE lesion that eventually developed into CE
lesions with necrosis, and three of them were pathologically
confirmed as nCE GBM. Berzero et al. reported that histological
grading was important for IDH wild-type glioma prognosis
assessment (35), and our result confirmed this result in non-
local progressed discordant patients. Thus, T2/FLAIR should
be added to determine dissemination and predict prognosis for
GBM, especially in the very early stage.

Currently, the concept of supratotal maximal resection (SMR),
which is termed as total removal of both CE and T2/FLAIR
abnormal regions for eligible patients, has raised great interest
in neurosurgeons for GBM treatment. Some retrospective
studies demonstrated that patients with GBM might derive a
survival benefit from SMR while some were not (36–44). GBMs
appropriate for SMR are commonly located on the prefrontal
lobe, where a high percentage of GBMs was glioma-CpG island
methylator phenotype (G-CIMP) subtype and MGMT promoter
methylated (45, 46). The evidence level of SMR for GBM could
never be equal to a multicenter, prospective trial due to the
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FIGURE 3 | Prognosis comparison between T2/FLAIR and T1CE discordant and accordant patients. (A–C) The TTP, OS, and PPS were not different between the two

subgroups. (D–F) For non-local progression patients, the OS and PPS in discordant subgroup were favorable than accordant subgroup, but not for the TTP. TTP, time

to progression; OS, overall survival; PPS, post-progression survival.

impractical nature of exploring the impact of EOR on survival.
Though some results were contradictory, we still could not
entirely deny the benefit yielded from SMR. This is the initial
concern for T2/FLAIR abnormity for GBM, and we believe this
would be inspirable and enlightened.

Multiple recurrences in GBM indicated a more aggressive
and invasive tumor behavior and portended inferior prognosis
without exception. There still lacks efficient and effective
treatment modalities for GBM dissemination control. Some
polite studies revealed that stereotactic radiosurgery (SRS) might
be helpful for a single, small lesion with the satisfactory disease
control (19, 47). For eligible patients, SRS might be an ideal
choice to alleviate suffering and prolong survival.

Limitations do exist due to the nature of retrospective
studies within a single institute. Acquisition of consecutive
MRI data every 2–3 months in a large cohort of patients
was quite difficult. Different medical centers for follow-up,
poor compliance, and financial problems might be the major
reasons that impede us from sufficient data. Till now, this
is nevertheless one of the largest cohorts of studies with
a series of MRI to dynamic monitor treatment response.
Another limitation lies in that pathology confirmation was
only achieved in a small part of patients. Furthermore,
distinguishing peritumor edema from true non-enhancing
tumors was difficult under certain circumstances. These
limitations could not cover up the meaningful finding of this

study, and neuro-oncologist should shed more light on the
dynamic image change during follow-up, not only T1WI CE but
T2/FLAIR images.

CONCLUSION

T2/FLAIR abnormity could be the early sign of GBM
progression, especially for newly emerged lesions distant
from the primary tumor cavity. The subsequent modified
GBM assessment criterion should incorporate the T2/FLAIR
information for disease monitoring, and physicians
should cast more attention on the dynamic change of
T2/FLAIR images for progression evaluation and subsequent
clinical decision-making.
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