
ORIGINAL RESEARCH
published: 17 February 2022

doi: 10.3389/fneur.2022.820267

Frontiers in Neurology | www.frontiersin.org 1 February 2022 | Volume 13 | Article 820267

Edited by:

Volker Rasche,

University of Ulm, Germany

Reviewed by:

Snehashis Roy,

National Institute of Mental Health,

National Institutes of Health (NIH),

United States

Timo Ropinski,

University of Ulm, Germany

Andrea Tangherloni,

University of Bergamo, Italy

*Correspondence:

Riccardo De Feo

riccardo.defeo@uniroma1.it

†These authors share senior

authorship

Specialty section:

This article was submitted to

Applied Neuroimaging,

a section of the journal

Frontiers in Neurology

Received: 22 November 2021

Accepted: 24 January 2022

Published: 17 February 2022

Citation:

De Feo R, Hämäläinen E, Manninen E,

Immonen R, Valverde JM,

Ndode-Ekane XE, Gröhn O,

Pitkänen A and Tohka J (2022)

Convolutional Neural Networks Enable

Robust Automatic Segmentation of

the Rat Hippocampus in MRI After

Traumatic Brain Injury.

Front. Neurol. 13:820267.

doi: 10.3389/fneur.2022.820267

Convolutional Neural Networks
Enable Robust Automatic
Segmentation of the Rat
Hippocampus in MRI After Traumatic
Brain Injury
Riccardo De Feo 1,2*, Elina Hämäläinen 1, Eppu Manninen 1, Riikka Immonen 1,

Juan Miguel Valverde 1, Xavier Ekolle Ndode-Ekane 1, Olli Gröhn 1, Asla Pitkänen 1† and

Jussi Tohka 1†

1 A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland, 2 SAIMLAL Department

(Human Anatomy, Histology, Forensic Medicine and Orthopedics), Sapienza Università di Roma, Rome, Italy

Registration-based methods are commonly used in the automatic segmentation of

magnetic resonance (MR) brain images. However, these methods are not robust to

the presence of gross pathologies that can alter the brain anatomy and affect the

alignment of the atlas image with the target image. In this work, we develop a

robust algorithm, MU-Net-R, for automatic segmentation of the normal and injured

rat hippocampus based on an ensemble of U-net-like Convolutional Neural Networks

(CNNs). MU-Net-R was trained on manually segmented MR images of sham-operated

rats and rats with traumatic brain injury (TBI) by lateral fluid percussion. The performance

of MU-Net-R was quantitatively compared with methods based on single and

multi-atlas registration using MR images from two large preclinical cohorts. Automatic

segmentations using MU-Net-R and multi-atlas registration were of excellent quality,

achieving cross-validated Dice scores above 0.90 despite the presence of brain lesions,

atrophy, and ventricular enlargement. In contrast, the performance of single-atlas

segmentation was unsatisfactory (cross-validated Dice scores below 0.85). Interestingly,

the registration-based methods were better at segmenting the contralateral than the

ipsilateral hippocampus, whereas MU-Net-R segmented the contralateral and ipsilateral

hippocampus equally well. We assessed the progression of hippocampal damage after

TBI by using our automatic segmentation tool. Our data show that the presence of TBI,

time after TBI, and whether the hippocampus was ipsilateral or contralateral to the injury

were the parameters that explained hippocampal volume.

Keywords: brain MRI, CNN, deep learning, rat, registration, segmentation, TBI, U-net

1. INTRODUCTION

In-vivo magnetic resonance imaging (MRI) is a key technology for tracking neuroanatomical
changes in brain diseases in both animal models and humans. Magnetic resonance imaging is non-
invasive and allows longitudinal studies to be performed in living animals, with brains imaged in
three dimensions (3D) at multiple time points. This enables monitoring of disease progression and
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therapeutic response in animal models of brain diseases. These
models are vital in drug discovery and development of new
treatments for brain diseases, in addition to their importance
in basic research. Region segmentation (1, 2), which identifies
specific brain regions of interest (ROIs) in 3D MRI scans, is an
important component of many MRI data processing pipelines.
In preclinical MRI, this step is often performed manually.
However, manual segmentation is time consuming and suffers
from considerable inter-rater and intra-rater variability (3).

A number of automated methods exist as alternatives to
manual segmentation. Typically, these methods are based on
registration, where a manually segmented template MR volume,
termed atlas, is aligned to a target MR volume either via affine or
deformable registration (4, 5). The segmentation of the template
image can then be propagated to the target MR volume to be
segmented using the found registration parameters. A single
atlas coupled with a deformation model is usually insufficient
to capture considerable anatomical variation (6). Therefore,
registration-based segmentation is often improved by utilizing
multiple atlases aligned to the same target volume and combining
the resulting segmentation maps, an approach known as multi-
atlas segmentation. The segmentation maps can be combined by
majority voting or by more complex methods, such as Similarity
and Truth Estimation for Propagated Segmentations (STEPS)
(7). However, the final segmentation is still influenced by the
registration quality. In addition, the heterogeneity introduced
by brain diseases or traumatic brain injury (TBI) is harder
to capture in a set of atlases. For example, depending on the
impact force and its direction, TBI can result in large and
multifocal lesions that significantly alter the brain anatomy
with high interindividual variability (8). Consequently, aligning
MRIs of the injured brain to the atlases can be challenging,
especially when the ROIs are in the proximity of the primary
brain lesion (9). While few methods have been proposed for the
anatomical segmentation of brain MRIs with lesions on human
data (10–13), the literature comparing the region segmentation
accuracy of different methods in lesioned brains is limited and
the potential biases arising from difference of the segmentation
accuracy between healthy and lesioned brains has been rarely
analyzed. In this regard (14) documented a significant drop
in the performance of registration-based segmentation of the
hippocampus due to atrophy, and (15) detected a drop in
segmentation quality as a consequence of Huntington’s disease
across different segmentation methods.

For the segmentation of lesion brains, Convolutional Neural
Networks (CNNs) (16) provide an interesting alternative to
registration-based methods. Convolutional Neural Networks
do not directly apply manually labeled atlases to the target
anatomy, but use them to train the algorithm. Consequently,
the information needed to segment a new image is encoded in
the parameters of the neural network, eliminating the need for

Abbreviations: BET, brain extraction tool; CNN, convolutional neural network;

CS, compactness score; HD95, 95th percentile of the Hausdorff distance; MR,

magnetic resonance; MRI, magnetic resonance imaging; ROI, region of interest;

SyN, symmetric image normalization; STEPS, similarity and truth estimation for

propagated segmentation; TBI, traumatic brain injury; VS, volume similarity.

image registration. Convolutional Neural Networks have been
successfully applied to a number of medical image segmentation
tasks, sometimes achieving a segmentation accuracy comparable
to that of human annotators. A prime example of CNNs in
medical imaging is U-Net (17), based on an encoder-decoder
architecture. U-Net inspired a large body of work such as
its 3D adaptation V-Net (18), SEGNET (19), and DeepNAT
(20), and has been combined with other architectural features
such as attention (21) or Squeeze-and-Excitation blocks (22).
Alternative approaches include work based on image-to-image
translation (23) or mixed-scale architectures (24). For murine
MRI, neural networks have been proposed for skull-stripping
(25, 26), lesion segmentation (27, 28), and region segmentation
(29). However, to our knowledge, CNNs have not been applied
to the task of anatomical region segmentation of MRI of lesioned
murine brains.

In this work, we develop a robust algorithm, MU-Net-R,
for the automatic segmentation of the normal and injured
rat hippocampus based on an ensemble of U-net-like CNNs.
We further quantitatively compare MU-Net-R with state-of-
the-art multi-atlas segmentation methods. We hypothesized
that the performance of CNNs would not be affected by the
presence of lesions to the same extent as in registration-based
methods, as long as sufficient anatomical diversity of lesions
was present in the training data. To ensure sufficient anatomical
variability, we used MRI scans acquired at different time points
after experimental TBI and obtained from two unusually large
preclinical animal cohorts, EpiBioS4Rx (30, 31) and EPITARGET
(32, 33). We focused on hippocampus segmentation because
(a) it is frequently damaged by experimental and human TBI
and (b) its damage has been associated with the development
of posttraumatic epilepsy and cognitive impairment in both
animal models and humans (34, 35). Because hippocampus
segmentation is complicated by the presence of adjacent
neocortical damage and atrophy, ventricular enlargements, and
hippocampal distortions, it represents an ideal scenario to test
our hypothesis. We additionally characterized the differences in
segmentation quality between healthy and non-healthy anatomy,
finding that the quality of segmentation maps generated by
registration-based methods was reduced in the hemisphere
ipsilateral to the lesion. We also show that CNNs reduce
these differences and produce high quality segmentation maps
under systematic visual inspection. Finally, we demonstrate an
application of our method for assessing hippocampus volumes in
a longitudinal study of TBI.

2. MATERIALS AND METHODS

2.1. Materials
2.1.1. EpiBioS4Rx Cohort
The Epilepsy Bioinformatics Study for Antiepileptogenic
Therapy (EpiBioS4Rx, https://epibios.loni.usc.edu/) is an
international multicenter study funded by National Institutes
of Health with the goal of developing therapies to prevent
posttraumatic epileptogenesis. The 7-month MRI follow-up
of the EpiBioS4Rx animal cohort has been described in detail
previously (30, 31). Here, we have analyzed the data from the
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TABLE 1 | Number of MRI scans per cohort (EpiBioS4Rx, EPITARGET) in different

time points and treatment groups [TBI, sham-operated experimental controls].

Timepoint TBI Sham

EpiBioS4Rx

2 d 43 (7,0) 12 (5,1)

9 d 42 (6,1) 13 (5,1)

30 d 42 (6,1) 13 (5,0)

150 d 40 (7,1) 13 (5,1)

EPITARGET

2 d 118 (4,0) 23 (2,2)

7 d 117 (4,2) 23 (2,0)

21 d 117 (4,0) 23 (2,2)

In parenthesis, the first number indicates the number of volumes used for manual

annotation of the hippocampus and the second indicates the number of volumes used

for manual annotation of brain masks. d, day; TBI, traumatic brain injury.

University of Eastern Finland subcohort. We describe only the
details that are important for the present study.

2.1.1.1. Animals
Adult male Sprague-Dawley rats (Envigo Laboratories B.V.,
The Netherlands) were used. They were single-housed in a
controlled environment (temperature 21–23◦C, humidity 50–
60%, lights on 7:00 a.m. to 7:00 p.m.) with free access to food and
water. Severe TBI was induced in the left hemisphere by lateral
fluid percussion under 4% isoflurane anesthesia (31). Sham-
operated experimental controls underwent the same anesthesia
and surgical procedures without the induction of the impact.

As summarized in Table 1, the entire cohort included 56 rats
(13 sham and 43 with TBI), of which the 12 (5 sham, 7 TBI)
first animals to complete follow-up were selected for manual
annotation of the hippocampus. Mean impact pressure was 2.87
± 0.82 atm in the entire cohort and 2.92± 1.37 atm in themanual
annotation subcohort.

2.1.1.2. MRI
Rats were imaged 2 days (d), 9 d, 1month, and 5months after TBI
or sham surgery (Table 1) using a 7-Tesla Bruker PharmaScan
MRI scanner (Bruker BioSpin MRI GmbH, Ettlingen, Germany).
During imaging, rats were anesthetized with isoflurane. A volume
coil was used as radiofrequency transmitter and a quadrature
surface coil designed for the rat brain was used as receiver. Local
magnetic field inhomogeneity was minimized using a three-
dimensional field map-based shimming protocol. All images
were acquired using a three-dimensional multi-gradient echo
sequence. A train of 13 echoes was acquired, where the first echo
time was 2.7 ms, the echo time separation was 3.1 ms, and the
last echo time was 39.9 ms. The voxel size was 0.16 × 0.16 ×

0.16 mm3, the repetition time was 66 ms, the flip angle was 16,
the number of signal averages was 1, and the imaging time was
10 min 44 s. Images with different echo times were summed to
produce a high signal-to-noise ratio image for segmentation and
image registration.

2.1.2. EPITARGET Cohort
EPITARGET (https://epitarget.eu/) was a European Union
Framework 7—funded, large-scale, multidisciplinary research
project aimed at identifying mechanisms and treatment targets
for epileptogenesis after various epileptogenic brain insults. The
6-month MRI follow-up of the EPITARGET animal cohort has
been described in detail previously (32, 33). We describe only the
details that are important for the present study.

2.1.2.1. Animals
Adult male Sprague-Dawley rats (Envigo Laboratories S.r.l.,
Udine, Italy) were used for the study. The housing and induction
of left hemisphere TBI or sham injury were as described for
the EpiBioS4Rx cohort. However, injury surgery was performed
under pentobarbital-based anesthesia instead of isoflurane. The
entire cohort included 144 rats, and images from the first six
rats (two sham, four TBI) were selected for manual annotation
of the hippocampus. Mean impact pressure was 3.26 ± 0.08
atm in the entire cohort and 3.22 ± 0.02 atm in the manual
annotation subcohort.

2.1.2.2. MRI
Imaging was performed as described for the EpiBioS4Rx cohort,
except that (a) imaging was performed 2, 7, and 21 days after
TBI or sham surgery (Table 1) and (b) all images were acquired
with a two-dimensional multislice multigradient echo sequence.
A train of 12 echoes was collected, where the first echo time was
4 ms, the echo time separation was 5 ms, and the last echo time
was 59 ms. In-plane image resolution was 0.15× 0.15 mm2, slice
thickness was 0.5 mm, number of slices was 24, repetition time
was 1.643 s, flip angle was 45◦, number of signal averages was
4, and imaging time was 11 min 37 s. Images with different echo
times were summed to produce a high signal-to-noise ratio image
for segmentation and image registration.

2.2. Manual Annotation
For outlining the ROIs, the 3D (EpiBioS4Rx) and multi-slice
2D (EPITARGET) T∗

2-weighted MRI images were imported as
NIfTI files (.nii) into Aedes 1.0 (http://aedes.uef.fi) - an in-house
tool with graphical user interface for medical image analysis.
Aedes is available at http://aedes.uef.fi/ and runs under MATLAB
(MATLAB Release 2018b, The MathWorks, Inc.).

2.2.1. Manual Segmentation of the Brain Mask
A trained researcher (E.H.) outlined the brain surface on 160µm-
thick (EpiBioS4Rx) or 150µm-thick (EPITARGET) horizontal
MRI slices, covering the entire dorsoventral extent of the
cerebrum (excluding the olfactory bulbs and cerebellum). In
addition, E.H. outlined the brain surface on 160µm-thick
(EpiBioS4Rx) or 500µm-thick (EPITARGET) coronal brain
slices to increase the accuracy of dorsal and ventral delineation
of the brain surface (Supplementary Figures 1, 2). In the
EpiBioS4Rx cohort, we drew the whole brain outline for 6 scans
from 6 different rats, outlining on average 33.7 ± 1.4 (range 31
– 37) horizontal slices for each MRI scan. In the EPITARGET
cohort, we prepared the whole brain mask for six rats and the
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mean number of MRI slices outlined per case was 10.8 ± 0.9
(range 10–12).

2.2.1.1. Manual Segmentation of the Hippocampus
Outlines of the ipsilateral (left) and contralateral hippocampus
were drawn by E.H. on each coronal MRI slice where the
hippocampus was present (slice thickness in EpiBioS4Rx
0.16 mm and in EPITARGET 0.50 mm). In addition to the
hippocampus proper and the dentate gyrus, the outlines
included the fimbria fornix, but excluded the subiculum
(Supplementary Figures 3, 4). Manual annotation was
performed with the help of thionin-stained coronal 30µm-
thick histological sections of the same brain available at the end
of follow-up, and with the Paxinos rat brain atlas (36). In the
EpiBioS4Rx cohort, we outlined the hippocampi of 15 rats (8
TBI, 7 sham) imaged at 2, 9, 30 days, and/or 5 months post-injury
or sham surgery. In the EPITARGET cohort, we outlined the
hippocampi of six rats (four TBI, two sham) imaged 2, 7, and/or
21 days after TBI or sham surgery.

2.2.1.2. Brain Mask Completion
As described above, only six brain masks were manually labeled
in the EpiBioS4Rx dataset and every second sagittal slice
was annotated. To reconstruct complete brain masks, we first
applied a binary closing operation with a hand-crafted kernel to
reconstruct the brain mask, and then filled any remaining hole
in the mask volume (Supplementary Figure 5). Morphological
operations were implemented using the scikit-image library (37).

To generate brainmasks for the complete training datasets, we
trained a single 3D CNN for each dataset as described in Section
2.3, using the same overall structure and number of channels, but
limiting the output to the brain mask. Using this network, we
generated brain-mask labels for the remaining animals, so that
our CNN could be trained on this data for both skull stripping
and hippocampus segmentation.

2.3. CNN-Based Segmentation
2.3.1. CNN Architecture
The architecture of our CNN (Figure 1) is based on MU-Net
(29), which in turn was inspired by U-Net (17) and DeepNAT
(20), to perform simultaneous region segmentation and skull
stripping of mouse brain MRI. Our network exhibits a U-Net-
like encoder/decoder structure, where the encoder and decoder
branches are connected by a bottleneck layer and by skip
connections between corresponding encoder and decoder stages.
Pooling operations connect shallower blocks on the encoder
branch to the deeper blocks, halving the size of the feature maps,
while unpooling layers (38) connect different decoder blocks to
the higher resolution ones, reversing the pooling operation.

Each block consists of three iterations of Leaky ReLU
activation (39), batch normalization (40) and convolution. From
the shallowest to the deepest convolution block, each convolution
within the block uses 16, 32, 64, and 64 channels, respectively
(Figure 1). Throughout the rest of this paper, we will refer
to the network we trained for rat hippocampus segmentation
as MU-Net-R.

We opted for a different choice regarding the dimension of
the filters for each dataset. Since the EPITARGET T∗

2 MRI data
are highly anisotropic, with higher resolution on coronal slices
than in the fronto-caudal direction, we used 2D filters (3 × 3) in
the coronal plane. This choice was based on our previous work
(29) as well as (41), which indicated that a 2D convolutions were
preferable for the segmentation of images with anisotropic voxel
size. Conversely, in the network trained on isotropic EpiBioS4Rx
T∗
2 data, we preferred 3D filters (3×3×3).
The architecture here described differs from MU-Net in

the number of convolution operations, as MU-Net always
employs 64-channels convolutions, and in the filter size, whereas
MU-Net utilized 5x5 convolutions. These modifications
reduce the total number of parameters from 2,087,944
(2D) and 10,286,344 (3D) to, respectively, 428,436 and
1,125,716. In this way we achieved the same segmentation
quality as MU-Net with a lower number of parameters. The
comparison with MU-Net and with a single network instead of
ensembling is displayed in the ablation studies outlined in the
Supplementary Table 1.

2.3.2. Loss Function
The loss function is an evaluation criterion minimized during the
optimization of the network. Our loss function is composed of
two terms, referring to the skull-stripping task (LBrain) and the
hippocampus segmentation task (LHC):

L = LHC + LBrain. (1)

Let the prediction for label l at voxel n be defined as pln, and
the corresponding ground-truth value as yln. For the anatomical
segmentation of the hippocampus, a task including three
classes (ipsilateral hippocampus, contralateral hippocampus,
and background), we employed the generalized Dice loss (42)
written as:

LHC = 1− 2

∑3
l=1 wl

∑

n ylnpln
∑3

l=1 wl

∑

n yln + pln
, (2)

with the weight parameters wl defined as wl =
(
∑

pln
)−2

following (42). In practice, the weight parameters favor
the hippocampus classes over the large background class.
Maintaining the naming conventions, for the skull-stripping task
we used the following Dice loss term:

LBrain = −

∑

n ynpn
∑

n yn + pn
. (3)

2.3.3. Training
We minimized L with stochastic gradient descent using the
RAdam optimizer (43). RAdam is an optimizer based on
Adam (44) designed to better avoid local optima, obtain more
generalizable neural networks, and train in fewer epochs. We
utilized RAdam with default parameters (learning rate of 0.001,
β1 = 0.9, β2 = 0.999 and no weight decay) and a batch size of
one, as constrained by the available GPUmemory. Networks and
training were implemented in PyTorch and ran on a workstation
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FIGURE 1 | The architecture of CNNs, indicating for each block the number of channels used in each convolution. The size of convolution kernels is 3×3×3 for the

EpiBioS4Rx data, and 3×3 for the EPITARGET data.

with a GeForce RTX 2080 Ti GPU, 64 GB RAM and an AMD
Ryzen 9 3900X 12- Core Processor. MU-Net-R networks were
trained for up to 250 epochs, or until the average validation loss
did not improve during the last 10 epochs.

During training, data were augmented online: each time an
image was loaded, we randomly applied with a 50% probability a
scaling transformation by a factor of α, randomly drawn from
the interval [0.95, 1.05]. Each MRI volume was independently
normalized to have a mean of zero and unit variance. To avoid
interpolation issues with the low-resolution data, and taking into
account that while biological variability is important the animal’s
orientation is strictly controlled during data acquisition, we did
not include rotations in our data augmentation scheme.

2.3.4. Post-processing
We applied a simple post-processing procedure to each CNN-
generated segmentation. We selected the largest connected
component of the MU-Net-R segmentation to represent each
segmented region (brain mask and hippocampus) using the
label function from scikit-image (37). We then filled all
holes in this component using binary_fill_holes from
scipy.ndimage (45).

2.4. Registration-Based Segmentation
2.4.1. Registration
We compared CNN-based segmentation maps with single
and multi-atlas-based segmentation maps. To do this, we
performed image registration using Advanced Normalization
Tools (46) to facilitate the transfer of manual segmentations of
the hippocampus to other brains with single- and multi-atlas

approaches. Before image registration, the images were skull-
stripped using FMRIB Software Library’s Brain Extraction Tool
[FSL BET (47)]. We selected FSL BET for this step instead of
using the masks generated by the CNN to keep the two pipelines
completely independent, and ensure registration-based methods
would be representative of typical registration-based results used
in preclinical research. The masked images were then used for
image registration. The brain masks for the EPITARGET dataset
computed using FSL BET included marked amounts of non-
brain tissue associated with the experimental TBI, which resulted
in inaccurate image registrations. To improve the brain masks,
we first registered the images to one of the brain images using
rigid-body and affine transformations. The FSL BET brain mask
of that image was then manually refined and transformed to the
rest of the brain images, resulting in more accurate brain masks
and registrations.

Image registration between a template brain and a target
brain volume included the computation of a rigid-body
transformation, an affine transformation, and a Symmetric
image Normalization (SyN) transformation. We used global
correlation as the similarity metric for the rigid-body and affine
transformations and neighborhood cross-correlation for the SyN
transformation. The computed transforms were then applied to
the template brain’s sum-over-echoes T∗

2-weighted image as well
as its manually labeled hippocampi. All operations described
in this section were performed on a 6-core AMD Ryzen 5
5600X processor.

2.4.2. Single-Atlas Segmentation
For each template registered to a target brain, we applied the
same transforms to the label map of the template, using nearest
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neighbor interpolation. Each measure reported for single-atlas
segmentation in this work was an average between that of
each individual single-atlas segmentation map for the same
target brain.

2.4.3. Multi-Atlas Segmentation
To label the hippocampus in each target volume by combining
the individually-registered atlases we applied two different label
fusion strategies: STEPS multi-atlas segmentation (48) and
majority voting. Similarity and truth estimation for propagated
segmentation combines multiple registered label maps by taking
into account the local and global matching between the deformed
templates and the target MRI volume. It does so by utilizing
at the same time an expectation-maximization approach and
Markov Random Fields to improve the segmentation based on
the quality of the registration.We applied STEPS implementation
distributed with NiftySeg (7, 48).

Similarity and truth estimation for propagated segmentation
depends on two variables: the standard deviation of its Gaussian
kernel and the number of volumes employed. Given the limited
size of our dataset, and to reduce the risk of overfitting, we
chose the standard deviation found in our previous work (29)
as a result of a grid search between volumes aligned using
diffeomorphic registration. When labeling each volume, we used
all available registered atlases in label fusion for both STEPS
and majority voting. The majority voting refers to choosing the
most commonly occurring label among all registered atlases for
each voxel.

For all atlas-based methods, i.e. single-atlas, STEPS, and
majority voting, we only used as atlases those scans acquired at
the same time-point.

2.5. Evaluation Metrics
We compared the segmentation maps to the manually annotated
ground truth using the following metrics: Dice score, Hausdorff
95 distance, volume similarity (VS), compactness score (CS),
precision, and recall.

2.5.1. Dice Score
The Dice score (49) is a measure of the overlap between two
volumes and is defined as:

D =
2 |Yt ∩ Y|

|Yt| + |Y|
, (4)

where Y is the automatic segmentation and Yt the ground truth.
A score of 1 corresponds to a perfect overlap and a score of 0 to a
complete absence of overlap.

2.5.1.1. Hausdorff 95
The Hausdorff distance (HD) (50) refers to the magnitude of the
largest segmentation error of the prediction when compared to
the ground truth:

HD(Y ,Yt) = max(h(Y ,Yt), h(Yt ,Y)) (5)

where

h(Y ,Yt) = max
y∈Y

min
yt∈Yt

∣

∣y− yt
∣

∣ . (6)

We evaluated the 95th percentile of the Hausdorff distance,
denoted as HD95, and measured it in millimeters. HD95 was
calculated using MedPy (51).

2.5.1.2. Volume Similarity
We measured the VS between prediction and ground truth,
following the definition provided by (52). Unlike the Dice score,
VS does not depend on the overlap between the two regions, and
only depends on their volumes:

VS = 1−
||Yt| − |Y||

|Yt| + |Y|
. (7)

2.5.1.3. Compactness Score
Compactness is defined as the ratio between area and volume
(53):

Compactness = area1.5/volume. (8)

We define a CS to indicate how close the compactness of the ROI
segmentation mask C is to the compactness of the ground truth
CGT . The CS is defined:

CS = 1− 2
C − CGT

C + CGT
, (9)

where CS = 1 indicates an identical compactness, and lower
values indicate the two regions display a different ratio between
surface and volume. To calculate the compactness, we used code
from (27).

2.5.1.4. Precision and Recall
Precision P and recall R evaluate, respectively, the ratio between
true positives and the total number of positive predictions, and
true positives and ground truth size. As such, increasing the
number of false positives reduces the precision, and increasing
the number of false negatives reduces recall. Both metrics vary
between 0 and 1, and are defined as:

P =
|Yt ∩ Y|

|Y|
, R =

|Yt ∩ Y|

|Yt|
. (10)

2.6. Cross-Validation
We used cross-validation to evaluate CNN-based segmentation
maps as well as the registration-based segmentation maps.
For both the EpiBioS4Rx and the EPITARGET datasets, we
applied six-fold cross-validation. The labeled samples from the
EpiBioS4Rx dataset were divided into six-folds, where each fold
contained two animals. Likewise, for the EPITARGET dataset, we
defined six-folds, each containing one animal.

2.6.1. Registration
For each test fold, the remaining data was utilized as atlases to
label the test fold according to the different methods outlined
in Section 2.4. Registrations were performed within each time
point. Thus for EpiBioS4Rx the brain of each of the 12 animals
was registered to 10 other brains at each of the four time points,
which would have resulted in 480 image registrations. However,
labeled images for one brain at two time points were missing in

Frontiers in Neurology | www.frontiersin.org 6 February 2022 | Volume 13 | Article 820267

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


De Feo et al. Robust Automatic Hippocampus Segmentation

the EpiBioS4Rx dataset (Table 1), reducing the total to 440 image
registrations. For the EPITARGET dataset, the brain of each of
the six animals was registered to the five other brains at each of
the three time points, resulting in 90 image registrations.

2.6.2. MU-Net-R
For MU-Net-R the results were evaluated by selecting each
fold as the testing data of one ensemble of networks, trained
using the remaining data. To train each ensemble with early
stopping we applied nested six-fold cross validation: the training
set was further randomly divided into six-folds, using one fold
as validation data during the training loop. In this way, we
trained an ensemble of six networks, one for each validation
fold. The final prediction for the test fold was the majority
voting prediction from all networks generated from the same
training set.

2.6.3. Tests of Statistical Significance
We evaluated the differences in average values of evaluation
metrics between different segmentation methods utilizing the
paired permutation test (54) implemented using the permute
library (https://statlab.github.io/permute/). We used 10,000
iterations for the permutation tests and applied Bonferroni’s
correction for multiple comparisons.

2.7. Visual Evaluation
After segmenting all hippocampi from the EpiBioS4Rx dataset
(56 animals across four timepoints), our annotator (E.H.)
evaluated every segmented volume according to the following
procedure: For each volume, one coronal slice at a time
was selected, starting caudally, and proceeding in the rostral
direction. For each slice, the annotator was asked to input four
numbers, corresponding to an evaluation for the dorsal and
ventral parts of the left and right hippocampus. The evaluation
scale, inspired by (55), was as follows:

1. Acceptable “as is”
2. Minor differences. Minor edits necessary. A small number of

voxels, or <20% of the area
3. Moderate edits required, 20–50% of the area would need to be

changed
4. Major edits required, >50% of the area would need to be

manually edited
5. Gross error, no resemblance to the anatomical structure.

We simultaneously displayed the unlabeled MRI slice side-
by-side with the same MRI slice overlaid with the ipsilateral
hippocampus highlighted in red, and the contralateral one
in blue. The volumes were presented to the annotator in a
randomized order.

In addition to every labeled slice, we evaluated two additional
slices in each direction, rostrally and caudally, to allow for
the detection of hippocampal regions erroneously labeled as
background. As the number of misclassified voxels was small in
these cases we classified errors in these slices with a score of 2, to
avoid introducing a bias because of the choice of performing this
evaluation on coronal slices.

2.8. Statistical Analysis of the Hippocampal
Volumes
Using the trained CNNs, we labeled every MRI volume in our
datasets (220 for EpiBioS4Rx and 424 for EPITARGET). As
a demonstration of the applicability of the segmentation, we
studied the effects of TBI on hippocampal volume through time
and across both hippocampi using a repeated measures linear
model, implemented using the linear mixed model function
in IBM SPSS Statistics for Windows, version 26.0 (SPSS Inc.,
Chicago, IL, United States). Every variable was considered as a
fixed effect and we assumed a diagonal covariance structure of
the error term. Let t indicate the time point in days as a scalar
variable, R be defined such so that R = 1 indicates the ipsilateral
hippocampus and R = 0 the contralateral hippocampus.
Additionally, let B = 1 indicate the presence of TBI, with B = 0
indicating sham animals, and let E be the error term. Then, our
linear model for the volume V can be written as:

V = α + βtt+ βRR+ βBB+ βtRtR+ βtBtB+ βRBRB+ E, (11)

where α,βi are parameters of the model.

3. RESULTS

We automatically annotated every manually-labeled image
in the EpiBioS4Rx and EPITARGET datasets using multi-
atlas segmentation (STEPS and majority voting), single atlas
segmentation, and MU-Net-R. On a qualitative level, both
multi-atlas methods and MU-Net-R showed visually convincing
segmentation maps, while single-atlas segmentation resulted in
the lowest-quality results (Figures 2, 3). Where the hippocampus
was markedly displaced by the injury, we noticed that
registration-based methods could mislabel the lesioned area as
hippocampus, as displayed in Figure 3.

3.1. EpiBioS4Rx Segmentation
MU-Net obtained excellent segmentation evaluation scores in
both hemispheres as illustrated in Figure 4. For the ipsilateral
and contralateral hippocampus MU-Net achieved, respectively,
average Dice scores of 0.921 and 0.928, HD95 distances of [0.30]
and 0.26mm, precision of 0.935 and 0.936, recall of 0.909 and
0.921, VS of 0.968 and 0.971, and CS of 0.974 and 0.979.

Quantitatively, we observed a marked difference in
performance between single-atlas segmentation and all other
methods in terms of Dice score, Precision, HD95, and CS
(p < 0.001 for all tests), with single-atlas segmentation obtaining
the worst scores. The performance measures of all other methods
were excellent. In terms of HD95 distance, the best performing
method was MU-Net on the ipsilateral hemisphere, and majority
voting in the contralateral one (p < 0.05 for both tests). The
same pattern held for the Dice score. MU-Net achieved the
highest precision in the ipsilateral hippocampus (p < 0.05).
We found no significant difference between the precision of
MU-Net and that of majority voting in the contralateral one
(p > 0.7). The precision of both methods was markedly higher
than STEPS and single atlas (p < 0.05). As an exception to
the general trend, single-atlas segmentation showed the highest
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FIGURE 2 | Segmentation maps in four representative slices from a randomly selected animal from the EpiBioS4Rx dataset, at the 2-days timepoint. Segmentation

maps were obtained with: (A) MU-Net; (B) STEPS, (C) Majority voting, (D) Single-atlas segmentation. (E) Displays the ground-truth segmentation. From left to right,

slices are located at approximately −2.2, −3.3, −5.0, −6.2mm from bregma. Red: hippocampus ipsilateral to the lesion; blue: hippocampus contralateral to

the lesion.

value of the recall metric in the contralateral hippocampus
(p < 0.001), while STEPS outperformed it in the ipsilateral one
(p < 0.02). We found again no significant difference (p > 0.8) in
the VS scores for majority voting and MU-Net in the ipsilateral
hippocampus, with these two methods achieving the highest
VS scores (p < 0.05). In contrast, majority voting achieved
higher VS in the contralateral hemisphere (p < 0.0005). Majority
voting also better preserved the compactness properties of the
hippocampal shape, achieving the highest CS among all the
methods (p < 0.0005).

3.2. EPITARGET Segmentation
For the EPITARGET dataset, we observed similar pattern of
the segmentation evaluation metrics to the ones of EpiBioS4Rx,
bilaterally recording good performance metrics for MU-Net-R
(see Figure 5). We measured, respectively, for the ipsilateral and
contralateral hippocampus, Dice scores of 0.836 and 0.838, HD95
distances of [0.46] and 0.43mm, precision of 0.897 and 0.881,
recall of 0.787 and 0.804, VS of 0.928 and 0.946, and CS of 0.992
and 0.991.

In terms of HD95 distance, on the contralateral hemisphere,
we found a significant difference between the under-performing
single-atlas method and all other methods (p < 0.0005), all
the other methods performing similarly according to HD95

metric. For the ipsilateral hemisphere, we additionally observed
a small advantage for MU-Net-R over STEPS (p < 0.05).
Similarly, there was no significant Dice score difference in
the ipsilateral hippocampus between MU-Net-R and multi-atlas
methods. Interestingly, for the contralateral hippocampus, both
STEPS and majority voting achieved higher Dice scores than in
the lesioned hemisphere (p < 0.001), obtaining also a higher
Dice score than MU-Net-R (p < 0.03). In contrast, MU-Net-R
produced similar Dice scores in the two hemispheres (p > 0.7).
We measured higher precision for majority voting and MU-
Net-R compared to all other methods (p < 0.001) and no
significant difference between the two in both the contralateral
and ipsilateral hippocampus (p > 0.1). We observed higher
recall bilaterally for single atlas segmentation compared to all
other methods (p < 0.01), with the exception of STEPS on the
ipsilateral hemisphere, where the difference was not significant
(p > 0.2). No significant difference was also detected for VS
between the different methods (p > 0.1) and for CS on the
contralateral hippocampus. Conversely, MU-Net-R performed
better than STEPS on the ipsilateral hippocampus (p < 0.05).

3.3. Inter-hemispheric Differences
We compared the quality of the automatic segmentations, by
comparing the evaluation metrics of Section 2.5 between
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FIGURE 3 | Segmentation maps in four representative slices from a randomly selected animal from the EPITARGET dataset, at the 21-days timepoint. Maps are

obtained with: (A) MU-Net; (B) STEPS, (C) Majority voting. (D) Single-atlas segmentation. (E) Displays the ground-truth segmentation. From left to right, slices are

located at approximately −3.5, −4.5, −5.5, −6.5mm from bregma. Red: hippocampus ipsilateral to the lesion; blue: hippocampus contralateral to the lesion. Note

how in this case all methods except MU-Net-R mislabel a portion of the lesion as hippocampus.

the ipsi and contralateral hemispheres, finding that all
segmentation methods obtained better results on the
contralateral hippocampus. However, the inter-hemispheric
differences for each metric (defined as the average difference
in each metric for each brain between the segmentation of the
ipsilateral and the contralateral hippocampus) were the smallest
for MU-Net-R (Figure 6). MU-Net-R achieved significantly
smaller inter-hemispheric differences than other methods in all
metrics (maximal p < 0.02) with the exception of recall, where
both MU-Net-R and STEPS performed better than all other
methods (p < 0.03), and CS, where majority voting compares
favorably to both STEPS and MU-Net-R (maximal p < 0.02).

For the EPITARGET dataset and for all evaluation metrics, we
observed a smaller average amplitude of the inter-hemispheric
differences for MU-Net-R than for other segmentation methods
(Figure 6), with a single exception of CS for majority voting.
However, differences were statistically significant only for the
Dice score (maximal p < 0.02), where MU-Net-R demonstrated
a stable performance between the two hemispheres. In this case,
the average Dice score difference of MU-Net-R was 0.003 with
a standard deviation of 0.040, while all other methods displayed
an average difference of 0.045 and standard deviations of at
least 0.044.

3.4. Segmentation Time
The inference time of MU-Net-R was lower than one second
per volume. The training of one ensemble of MU-Net-Rs with
early stopping required on average 124 min for EpiBioS4Rx
and 64 min for EPITARGET. Registering a single volume pair
required approximately 40 min for EpiBioS4Rx volumes and 6
min for EPITARGET volumes. After all volumes were registered,
applying majority voting and STEPS label fusion required
approximately 10 seconds per target volume. Thus, multi-atlas
segmentation with 10 atlases required 400 min for EpiBioS4Rx
and multi-atlas segmentation with five atlases required 30 min
for EPITARGET.

3.5. Visual Evaluation
We visually evaluated 33136 slices from the 220 volumes
in the EpiBioS4Rx dataset as described in Section 2.7. The
quality of the MU-Net-R segmentation in the ventral and
dorsal aspects of both hippocampi was evaluated on a scale
of 1–5, with 1 representing an accurate segmentation and 5
indicating a complete lack of resemblance to the anatomical
structure, as outlined in Section 2.7. In the vast majority of
cases, the reported score was 1 (Acceptable “as is”), with a
small reduction in accuracy for the ipsilateral hippocampus
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FIGURE 4 | Box plots of all measured quality metrics for the contralateral and ipsilateral hippocampus in the EpiBioS4Rx dataset. Single atlas CS measures (not

displayed) average at 0.60 for both hippocampi with a standard deviation of 0.01. Contrary to single-atlas segmentation, MU-Net-R and multi-atlas methods achieve

human-level performance.
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FIGURE 5 | Box plots of all measured quality metrics for the contralateral and ipsilateral hippocampus in the EPITARGET dataset. Single atlas CS measures (not

displayed) average at 0.67 for both hippocampi with a standard deviation of 0.02. While MU-Net-R and multi-atlas methods still outperform single-atlas segmentation,

in this anisotropic dataset, training MU-Net-R with a smaller dataset, we register a lower performance compared to the EpiBioS4Rx results.
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FIGURE 6 | Mean inter-hemispheric differences for all evaluation metrics in single-atlas, STEPS, Majority Voting and MU-Net-R segmentation. Error bars correspond

to 95% bootstrapped confidence intervals for the mean. MU-Net-R minimizes inter-hemispheric performance differences across all metrics and on both the

EpiBioS4Rx and EPITARGET datasets, with the exception of CS on the EpiBioS4Rx dataset.

(Figure 7). Overall, we found that 88.00% hippocampal regions
were labeled as 1, 10.64% labeled as 2, 1.09% labeled as 3,
0.22% labeled as 4, and 0.05% labeled as 5. As illustrated
in Figure 8, the accuracy of the segmentation was the
lowest in the most rostral and most caudal coronal slices.
Supplementary Figure 6 provides examples of segmented slices
of each score.

3.6. Hippocampal Volumes
Using MU-Net-R, we annotated every scan in both the
EpiBioS4Rx and EPITARGET dataset andmodeled hippocampus
volumes as outlined in Section 2.8. As displayed in Figure 9,
when comparing sham and TBI rats in EpiBioS4Rx we found
that all included factors were statistically significant in explaining
the volume: lesion status (sham or TBI), timepoint, and ROI,
as well as their pairwise interaction terms. With the exception
of the presence of lesions (p = 0.029), all other p-values
were smaller or equal to 0.001, for both single factors and
interaction terms. The same was true for the EPITARGET
dataset, where all factors were highly significant (p <

0.002).
Supplementary Table 1 provides the complete SPSS output,

including β coefficients, p-values, F, and t statistics.

4. DISCUSSION

We designed and trained a CNN-based approach (MU-Net-
R) to hippocampal segmentation in rat brain MRI after TBI.
We quantitatively evaluated MU-Net-R-based segmentation
and compared it with single- and multi-atlas registration-
based segmentation methods through a variety of metrics
(Dice score, VS, HD, CS, precision, and recall). These
evaluations demonstrated that MU-Net-R achieved state-of-
the-art performance in terms of segmentation quality while
reducing the bias for healthy anatomy, typical of registration-
basedmethods, and with amarked reduction in the segmentation
time compared to registration-based methods.

Single-atlas segmentation displayed the least satisfactory
results, with a marked decrease in segmentation quality in terms
of precision, Dice score, and HD95 distance compared to all
other methods. Conversely, STEPS, majority voting, and MU-
Net-R displayed excellent performance, with Dice coefficients
compatible with human inter-rater agreement (3, 56, 57).
Differences in each performance metric between these methods
were overall small, and different metrics would indicate a
different preference. Thus, a global preference between MU-
Net-R, STEPS, and majority voting did not emerge simply from
these measures.
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FIGURE 7 | Qualitative score distribution for both hippocampi, divided for the

dorsal and ventral aspects of the contralateral and ipsilateral hippocampus.

Counts are reported on a logarithmic scale. The overwhelming majority of

hippocampal regions were labeled as requiring no corrections (1), followed by

regions requiring minor corrections only (2).

FIGURE 8 | Average qualitative scores as a function of the relative position of

the slice across the hippocampus, with 0 indicating the most caudal and 1 the

most rostral coronal slice. Averages were obtained by dividing the interval in 30

bins. The vast majority of inaccuracies are located in the most rostral and

caudal slices.

In contrast, as illustrated in Figure 6, MU-Net-R
segmentation resulted in a marked reduction in the differences
between the two hemispheres in each metric quantifying the
agreement between the segmentation mask and the respective
ground truth. A small bias was still measured, both quantitatively
and qualitatively. In our qualitative evaluation of MU-Net-R
segmentations, we detected a larger number of slices evaluated
with scores of 3 (Moderate edits required, 20–50% of the
area would need to be changed) or higher for the ipsilateral
hippocampus. This difference was likely owed to the small size of
the training set; the presence of lesions manifesting in different
shapes and sizes implies a larger degree of variability that requires
more training data to capture this variability. Taking this small
difference into account, the vast majority of slices required no

correction regardless of ROI, with only 2% of slices requiring
moderate or larger edits.

A reduced performance of registration-based segmentation
methods in the presence of lesions has been documented in
human MRI (9). Here, as an additional contribution of our
work, we quantified and documented this difference in rat brain
MRI with TBI according to six different metrics. This reduced
performance might imply the presence of random or systematic
errors in terms of the shape or positioning of the segmentation of
the ipsilateral hippocampus.

The inference time for MU-Net-R was markedly faster
than that of registration-based methods, requiring less than
one second for a single MRI volume, whereas multi-atlas
segmentation required from 30 to 400 min depending on
the dataset. As for training, using the early stopping strategy
described in Section 2.3.3, with this dataset size, training one
ensemble of CNNs required a comparable amount of time to that
required by registration, with the added benefit of obtaining a
network that can then be used to quickly label a large number
of new volumes. For this reason, our method would be preferable
when processing large datasets, or where time constraints could
be relevant, for example, in an online system designed to quickly
provide a segmentation map to the user. The training time was
especially low in the case of the EPITARGET data, where the
number of training volumes is smaller, and the limited resolution
further reduces the amount of information present in each
data sample.

Compared to our previous work (29), MU-Net, the
architecture of MU-Net-R was adjusted to reduce the number
of parameters to better manage with the small training sets. The
size of all kernels was reduced from the 5 × 5 to 3 × 3, and the
overall number of convolution operations has been decreased in
the first two blocks of the neural network, whereas MU-Net used
64 kernels for each convolution. We further replaced the Dice
loss of MU-Net with the generalized Dice loss [see (42)] in the
loss function of MU-Net-R. Generalized Dice loss balances the
different classes against the background by introducing weights
based on the size of ROIs. In analogy withMU-Net, M-Net-R was
characterized by comparatively higher precision and lower recall.
While this difference was not large [for example as compared
to the decrease in precision, Equation (10) for single-atlas
segmentation] it may still indicate a bias for the background
class, which may not be entirely corrected by the weighting
parameters introduced by the generalized Dice loss. The large
decrease in precision for single-atlas segmentation was largely
corrected by combining multiple atlases throughmajority voting,
although this precision remained lower than that measured for
MU-Net-R and came at the price of a lower recall.

Consistently with (58), we observed a very small difference
between Dice scores of STEPS and majority voting multi-
atlas segmentation, of 0.012 on the contralateral hippocampus
and 0.003 on the ipsilateral one. Thus, STEPS and majority
voting appear to be largely equal according to this metric. In
contrast, in our previous work (29) we measured a larger (0.055)
and statistically significant Dice score difference in favor of
STEPS over majority voting for the segmentation of the healthy
hippocampus. Two possible reasons why this difference is not
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FIGURE 9 | Comparison between the hippocampal volumes (mm3 ) for each dataset and time point between sham and TBI animals. Note the different dynamics in

ipsilateral hippocampal volume changes between the EpiBioS4Rx and EPITARGET animals, particularly at 2 days post-injury. The rats in the EpiBioS4Rx cohort were

anesthetized with 4% isoflurane at the time of injury. The rats in the EPITARGET cohort were anesthetized with pentobarbital-based anesthesia cocktail, which

apparently reduced the acute post-impact seizure-related swelling better than isoflurane.

observed in our case may be found in the different MRI setup,
featuring a different coil and generating visibly different images.
Furthermore, it could be a consequence of having performed
diffeomorphic registration using a different method, FSL FNIRT
(59), while the present work implemented registration tools from
ANTs (46).

Concerning the per-sample computation time, replacing
registration-based methods with CNNs resulted in a vast
reduction from 40 min in EpiBioS4Rx and 10 in EPITARGET,
to <1 s. This comes at the price of an initial training procedure
requiring, respectively, 124 and 64 min. In those applications
where the labeled templates and the target images are sampled
from the same distribution then MU-Net-R becomes more time-
efficient compared to applying registration-based methods for
datasets larger than six samples.

Thanks to the segmentation maps generated by the CNN, we
were able to segment the entire EpiBioS4Rx and EPITARGET
datasets in a reasonable time. To exemplify a data analysis
pipeline, we evaluated the effect of the presence of the lesion on
the volume of both hippocampi, both in general and combined
with timepoint and ROI. The presence of TBI was an important
predictor of hippocampal volume both as a single factor and in
combination with timepoint and ROI, indicating that the volume
of both the ipsilateral and contralateral hippocampus changed as
a consequence of TBI.

Even though the size of the entire datasets were larger than
in most previous preclinical studies of TBI, the training datasets
were small due to the cost of manual segmentation of MRIs and

the modest size of the training sets are one of the limitations of
our work. It is reasonable to believe that larger training datasets
would further enhance the performance of our neural network.
Another unresolved problem is the high degree of specialization
of the CNNs to each MRI setup. While this problem can be
attacked with a variety of methods, e.g., transfer learning (60),
it is still an open question for CNNs.

In this work, we have demonstrated how replacing
registration-based methods with CNNs can simultaneously
increase the speed of segmentation and obtain more reliable
delineations of ROIs in the presence of anatomical alterations
due to brain injury. Although we have limited our analysis
to a specific network architecture, we do not assume that this
robustness to anatomical alternations due to brain injury to be
a unique feature of our neural network or even limited to the
U-Net-like architectures commonly applied in medical imaging.
Because CNNs eliminate reliance on registration and replace
it with encoding knowledge in the parameters of the network
itself, and given their intrinsic properties of spatial invariance,
we expect segmentation CNNs to be generally more robust to
anatomical change than registration-based methods.
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