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Covert vascular brain injury in
chronic kidney disease

Kaori Miwa* and Kazunori Toyoda

Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan

Chronic kidney disease (CKD) contributes to the increased risk of stroke and

dementia. Accumulating evidence indicates that structural brain abnormalities,

such as cerebral small vessel disease, including white matter hyperintensities,

lacunes, perivascular spaces, and cerebral microbleeds, as well as brain

atrophy, are common in patients with CKD. All of these imaging findings have

been implicated in the development of stroke and dementia. The brain and

kidney exhibit similar impairments and promote structural brain abnormalities

due to shared vascular risk factors and similar anatomical and physiological

susceptibility to vascular injury in patients with CKD. This indicates that kidney

function has a significant e�ect on brain aging. However, as most results are

derived from cross-sectional observational studies, the exact pathophysiology

of structural brain abnormalities in CKD remains unclear. The early detection

of structural brain abnormalities in CKD in the asymptomatic or subclinical

phase (covert) should enable stroke risk prediction and guide clinicians on

more targeted interventions to prevent stroke in patients with CKD. This article

summarizes the currently available clinical evidence linking covert vascular

brain injuries with CKD.

KEYWORDS

chronic kidney disease, albuminuria, cerebral small vessel diseases, brain, stroke

Introduction

Chronic kidney disease (CKD) affects 9.1% of the global population (1). Patients

with CKD have an increased burden of cardiovascular disease, and the risk of dying

from a cardiovascular event is greater than the risk of end-stage renal disease (ESRD).

CKD has continued to rise in rank among the leading causes of death in relation to

aging and increased burden of vascular risk factors (1). Stroke is the leading cause

of death in patients with CKD worldwide, and is associated with a 5-fold increase

in stroke, and even mild reductions in glomerular filtration rate (GFR) are associated

with substantial increase in the risk of stroke (2, 3). Moreover, CKD is an independent

high-risk factor for neurological deterioration, disability, and mortality after stroke (4–

6). Given the overwhelming clinical impact of CKD, it is important to evaluate kidney

dysfunction to predict CKD progression. GFR and albuminuria are used to classify CKD;

GFR is a marker of renal excretory function, while albuminuria is an indicator of renal

barrier dysfunction.

The increased incidence of stroke in CKD is not only due to the aging process (7),

but also due to the high prevalence of vascular risk factors, including hypertension
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and diabetes, and CKD-induced factors, such as hyperuricemia

and anemia. Particularly, CKD increases vascular dysfunction

and accelerates endothelial dysfunction, arterial media stiffness,

and media calcification, which in turn increases the risk of

stroke (8). Even mild CKD accelerates endothelial dysfunction

and promotes vascular stiffness due to changes in the

proin?ammatory and pro-thrombotic microenvironment (9).

Specifically, abnormalities in the kidney measurements can be

associated with a chronic proinflammatory state, which may

accelerate microvascular damage by endothelial dysfunction,

resulting in blood-brain barrier (BBB) dysfunction and causing

microglial activation with subsequent neuronal injuries (10).

Thus, apart from clinically overt stroke, there is an

increasing interest in understanding the coexistence

of decreased GFR or increased albuminuria and brain

structural abnormalities. Adaptive changes in brain structural

abnormalities include cerebral small-vessel disease (SVD)

and large-vessel disease, all of which lead to an increased

risk of overt stroke and dementia with aging (11–14). Early

detection of structural brain abnormalities in CKD and

ESRD in the asymptomatic or subclinical phase (covert)

should provide crucial insights into the pathobiology of CKD,

improve stroke risk prediction, and guide clinicians regarding

better-targeted interventions to prevent stroke in patients with

CKD. We aimed to provide a narrative overview of the main

clinical manifestations of covert vascular brain injury and

its pathologies in patients with CKD. This review discusses

magnetic resonance imaging (MRI) markers of SVD, including

white matter hyperintensities (WMHs) of presumed vascular

origin, lacunes, perivascular spaces (PVSs), cerebral microbleeds

(CMBs), intracranial atherosclerotic stenosis, microstructural

changes in the white matter, brain atrophy, and impaired

cerebral blood flow (CBF) in patients with CKD.

Pathogenesis of vascular
abnormalities in renal impairment

The kidney and brain share similar microvasculature and

vasoregulation, leading to shared susceptibility to microvascular

dysfunction. They are both low-resistance end organs that are

continuously exposed to high-volume blood flow (15 and 20% of

resting cardiac output, respectively) and fluctuations in pressure,

and they have local autoregulation. Although the kidneys are

Abbreviations: ADPKD, autosomal dominant polycystic kidney disease;

BBB, blood-brain barrier; CBF, cerebral blood flow; CKD, chronic kidney

disease; CMBs, cerebral microbleeds; eGFR, estimated glomerular

filtration rate; ESRD, end-stage renal disease; PVSs, perivascular

space; GFR, glomerular filtration rate; IL, interleukin; MRI, magnetic

resonance imaging; STRIVE, Standards for Reporting Vascular

Changes on Neuroimaging; SVD, small-vessel disease; WMHs, white

matter hyperintensities.

relatively small and account for only 1% of the total body weight,

they have twice the oxygen consumption of the brain and receive

a 7-fold higher blood flow than that of the brain under resting

conditions (10).

Brain arterioles arising from perforating arteries are

morphologically similar to kidney juxtamedullary arterioles,

and both are responsible for maintaining a strong vascular

tone, leading to a sufficient pressure gradient from parent

vessels to capillaries (15). The perforating vessels in the brain

and the afferent arterioles of the glomerulus are short in

length and are exposed to blood pressure (BP) changes and

consequently sustain high-pressure loads over this length, and,

consequently, often branch out from large arteries at sharp

angles (16). The kidneys and brain are continuously and

passively perfused at a high-flow volume throughout systole

and diastole, leading to low microvascular resistance. These

similar hemodynamic characteristics make the brain and kidney

vascular beds vulnerable to fluctuations in BP; thus, both

organs are susceptible to microvascular damage (8). Moreover,

shared vascular risk factors, such as hypertension, lead to

endothelial dysfunction and vascular remodeling, creating a

vicious cycle that perpetuates end-organ damage and, in turn,

affects local autoregulation. Specifically, CKD narrows the

zone of renal autoregulation, which is regulated through the

myogenic reflex of the afferent glomerular arteriole and tubule-

glomerular feedback (17). Elevated BP variability may further

increase the susceptibility of the brain and kidney vasculature to

endothelial dysfunction. Current evidence suggests that elevated

BP variability is associated with cardiovascular events and death

in the CKD population (18–20).

Cerebral small-vessel disease

Cerebral SVD is the umbrella term used to describe

pathologies of vascular structures (small arteries, arterioles,

capillaries, small veins, and venules) that supply the brain (21).

The consistently identified risk factors for all forms of SVD

are advanced age and hypertension, adding to evidence from

genetic studies which have shown associations between SVD and

hypertension (22, 23). SVD is characterized by a heterogeneous

spectrum of histopathological features possibly initiated

by endothelial dysfunction, BBB disruption, inflammation,

oxidative stress, cerebrovascular reactivity decline, and

genetic predisposition (24). The Standards for Reporting

Vascular Changes on Neuroimaging (STRIVE) definitions were

developed to standardize terms that describe the appearance

of sequelae of cerebral SVD, including recent small subcortical

infarcts, lacunes, WMHs of presumed vascular origin, PVSs,

CMBs, cortical superficial siderosis, and brain atrophy on

imaging (25). All forms of SVD have a clinical impact on various

conditions such as stroke, cognitive impairment, dementia, and
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disabilities (motor and gait impairment, urination disorder, and

depression) (24).

Shared vascular risk factors, predominantly hypertension

and diabetes, either independently or in combination,

predispose patients with CKD to simultaneous systemic

endothelial impairment (26). Even in early renal impairment,

oxidative stress, low-grade inflammation, and reduced nitric

oxide availability make the endothelium more vulnerable

to slight vascular shifts, which, in turn, compromise the

BBB integrity and facilitate infiltration by white blood cells

(9, 27). There is an overlap between circulating inflammatory

markers, such as C-reactive protein, interleukin-1 (IL)-

1, IL-6, and tumor necrosis factor-α in patients with

CKD, suggesting a similar course of inflammation in both

organs (9, 28).

Although overt uremia is typically recognized when GFR

declines to <15 mL/min/1.73 m2, it is clear that metabolite

accumulation occurs at an earlier stage of CKD (26). Uremic

toxins have been reported to directly alter the integrity of

vascular endothelial cells and induce BBB disruption and

arterial stiffness through increased oxidative stress (9, 27).

Indoxyl sulfate decreases cerebral endothelial cell viability in

vitro, which is associated with a decrease in nitric oxide

production and an increase in the production of reactive oxygen

species, inducing arterial stiffness (29). The aryl hydrocarbon

receptor is the receptor of indoxyl sulfate in endothelial

cells and is widely expressed in the central nervous system,

such as the hippocampus. Activation of aryl hydrocarbon

receptor by indoxyl sulfate also causes BBB disruption,

which induces cognitive impairment in rodent models with

CKD (30). These findings suggest a pathogenic role for

uremic toxins in affecting BBB permeability and promoting

SVD development.

Accumulating evidence has indicated that cerebral SVD

is commonly observed in patients with renal impairment.

A meta-analysis of pooled results from 27 studies (largely

cross-sectional) confirmed the independent association between

microalbuminuria and SVD, including WMHs, lacunes, CMBs,

and PVSs in both the centrum semiovale and basal ganglia (31).

These articles provide compelling evidence that albuminuria is a

surrogate marker of microvascular disease and may be reflective

of systemic vascular endothelial damage (31).

CKD contributes to medial calcification, remodeling,

and stiffening of the large arteries. In a population-based

study (Atherosclerosis Risk In Communities [ARIC] study),

transcranial Doppler measurements revealed an inverse

association between the degree of cerebral artery stiffness

and CKD (32). When the pulsatility in large-artery disease

is compromised, the downstream pressure pulsatility can be

readily transmitted into the small vessels of the brain and kidney

and is characterized by a low hydrodynamic resistance, resulting

in subsequent vascular injury, SVD, and brain atrophy (33, 34).

In a retrospective hospital-based study involving post-stroke

patients, those with CKD were found to have a significantly

higher SVD burden and higher distal intracranial resistance

in the anterior cerebral circulation (35). In all, the small and

large vessels are likely to exhibit parallel impairments in patients

with CKD.

White matter hyperintensities

The predominant radiological manifestations of SVD are

WMHs in the periventricular and deep white matter, with

ischemic demyelination, axonal loss, and gliosis, corresponding

to the WMHs seen on T2-weighted MRI (36). The prevalence of

WMHs of presumed vascular origin increases exponentially with

age at any degree of severity, and occurs in 90% of individuals

older than 80 years. In addition to aging, WMHs are also more

common in individuals with a history of stroke or dementia.

In a recent meta-analysis involving 14,000 participants from

the general population and those with vascular risk factors,

WMHs burden was associated with more than a 2-fold risk

of ischemic stroke and a 3-fold higher risk of intracranial

hemorrhage than those patients with no or mild WMHs

burden (13).

Studies have reported that increased WMHs burden

was observed in the CKD population with or without a

history of stroke (37–45). As CKD worsens with age due to

exposure to vascular risk factors and the cumulative effects

of endothelial dysfunction and inflammation, WMHs are

generally manifested in patients with CKD, particularly patients

undergoing hemodialysis (41). In patients approximately 60

years of age undergoing hemodialysis, WMHs burden is

present in >50%, while WMHs was incidentally observed in

11–21% of the age-matched general population (41). Three

population-based cross-sectional studies demonstrated that

renal impairment (decreased estimated GFR [eGFR] and/or

albuminuria) at baseline was independently associated with

WMHs burden (37, 38, 40). This association has been replicated

in the population-based AGES-Reykjavik study (n = 2,671),

which considered a longitudinal change in kidney function,

and demonstrated participants with an eGFR decline of >3

mL/min/1.73 m2/year or incident albuminuria was associated

with the progression of WMHs volume (difference [95%

confidence interval]:8% [4–12%], 21% [14–29%], respectively)

(39). These results may indicate that SVD development could

simultaneously progress with renal function decline. In a recent

meta-analysis, pooling results from seven prospective cohort

studies (n= 2,796), systolic BP variability (per 1SD increase) was

associated with 1.26 higher odds of the presence or progression

of WMHs (46). Any time scale of BP variability (visit-to-

visit, day-to-day, hour-to-hour) has contributed to a higher

risk of the presence of SVD (46). However, it remains to

be elucidated whether this association suggests a target for
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therapeutic intervention or is the reflection of advanced systemic

vascular burden.

Lacunes

Lacunes are thought to result from the occlusion of

penetrating arteries predominantly due to lipohyalinosis or in

situmicroatheroma, which results in focal necrosis in the neural

tissue (47). According to the Trial of ORG 10172 in Acute

Stroke Treatment (TOAST) criteria, lacunar strokes are small

subcortical brain infarcts visible on MRI, <1.5 cm in the axial

diameter, and associated with one of the traditional clinical

lacunar syndromes (14). STRIVE proposed the term recent

lacunar infarcts to define the neuroimaging evidence of recent

infarction with an axial diameter of 2 cm in diffusion-weighted

imaging MRI sequences in the territory of one perforating

arteriole (deep cerebral white matter, basal ganglia, thalamus,

or pons), in addition to imaging features or clinical symptoms

consistent with a lesion (25). As the lesions are interrelated due

to the shared pathogenesis, acute small subcortical infarcts can

disappear, remain as WMHs, or form lacunes (25).

Previous studies on the association between renal

impairment and lacunar infarcts have been conflicting. Results

of a systematic review showed no specific association between

renal impairment (decreased eGFR and/or albuminuria) and

symptomatic lacunar stroke, but silent lacunar infarction

was associated with renal impairment (48). Similarly, in a

population-based study of 3,178 patients with acute stroke, a

lower frequency of symptomatic lacunar stroke was observed

in the CKD population with acute ischemic stroke, and the

association between CKD and lacunar stroke was diminished

after adjusting for age, sex, and hypertension (49). In the

population-based Rotterdam study, a higher albumin-to-

creatine ratio or lower cystatin C-based eGFR (eGFR-cystC) was

associated with a higher prevalence of asymptomatic lacunes

and with WMHs volume (38). Renal impairment was associated

with WMHs, CMBs, and PVSs in patients with lacunar infarcts

(50, 51). In a longitudinal study, involving 89 patients with

lacunar stroke, decreased eGFR was associated with new CMBs

progression (52).

Cerebral microbleeds

CMBs are small (2–10mm in diameter) round or ovoid

hypointense foci with associated blooming with enhanced

visibility on MRI sequences sensitive to susceptibility effects

(25). Histopathologically, CMBs represent hemosiderin-laden

macrophages. The risk factors for CMBs in elderly populations

largely differ according to the location of CMBs, suggesting

different underlying microangiopathies. Cerebral amyloid

angiopathy (CAA) primarily affects the superficial perforating

arteries, whereas hypertensive angiopathy mainly affects the

deep perforating arteries (25). Consistently identified risk

factors for CMBs are advanced age and hypertension. CKD has

been associated with an increased prevalence of CMBs. In a

single-center study for health screening, moderate to severely

decreased eGFR (<60 mL/min/1.73 m2) was associated with

the presence of CMBs, particularly deep/infratentorial CMBs

(53). As mentioned above, in the population-based Rotterdam

study with a cross-sectional design, the participants with the

highest quartile of albumin to creatine ratio at baseline, but not

decreased eGFR, had a higher frequency of CMBs compared

to those with the lowest quartile (38). These associations have

been replicated in the longitudinal population-based AGES-

Reykjavik study, indicating that participants with incident

albuminuria had 1.86 higher odds of developing deep CMBs

(39). Several small studies found CMBs in up to 35–50% of

patients undergoing hemodialysis (54–56). Apart from aging

and hypertension, experimental studies suggest that elevated

levels of urea may alter the cytoskeleton of endothelial cells and

tight junction proteins and may be partly responsible for CMBs

(57). Uremic serum potentially disrupts the cultured brain

endothelial monolayer due to disarranged actin cytoskeleton

and decreased tight junction proteins in the cells (57).

Perivascular spaces

PVSs are interstitial fluid-filled cavities surrounding the

small penetrating vessels and function as the brain drainage

system, such as the glymphatic system (58). Cerebral waste

clearance via the glymphatic system relies on the convective

movement of perivascular cerebrospinal fluid into the

parenchymal interstitial fluid space and adequate drainage

into the perivenular space (58). Increasing evidence suggests

that the topography of PVSs is characteristic of a specific

underlying SVD type: (1) when located in the basal ganglia,

PVSs are associated with hypertensive arteriolosclerosis, such

as arterial stiffening; and (2) PVSs in the centrum semiovale

are related to CAA. This highlights the possible mechanisms

behind the impaired clearance of vascular β-amyloid, consistent

with the role of PVSs as the brain glymphatic system (58). In

a single-center study involving 413 patients with a first-ever

acute lacunar stroke, proteinuria and eGFR<60 mL/min/1.73

m2 were correlated with PVSs severity in both the centrum

semiovale and basal ganglia (50). In a single hospital-based study

for acute stroke, white patients with CKD had higher odds of

severe centrum-semiovale PVSs when comparing patients with

and without CKD within racial groups (59). Among patients

with CKD, black patients had 2-fold higher odds of severe PVSs

in the basal ganglia and centrum semiovale compared to whites

and other racial groups (59). In a single hospital-based study

for 304 patients with autosomal-dominant polycystic kidney

disease (ADPKD), ADPKD was associated with a higher degree

of PVSs, but not with the WMHs severity, lacunes, or CMBs,
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compared to age-, sex-, and eGFR-matched controls, suggesting

that ADPKD-associated cilia dysfunction may induce chronic

cerebral glymphatic system dysfunction (60).

Intracranial atherosclerotic stenosis

The systemic arteriosclerotic process in CKD is

characterized by structural alterations in the intrinsic

stiffness of the media in the aortic wall (8, 61, 62). These

alterations occur during the early stages of renal impairment

and simultaneously progress to renal function decline,

leading to arterial enlargement and wall thickening. Although

the mechanism underlying arterial stiffening in CKD has

not been fully elucidated, metabolic abnormalities due to

renal impairment, such as uremic milieu-induced oxidative

and carbonyl stress, and the decreased clearance of pro-

inflammatory cytokines may contribute to the pathogenesis of

atherosclerosis (9).

Intracranial atherosclerotic stenosis of major cerebral

arteries is a common cause of ischemic stroke. Although

CKD affects stroke prognosis in large-artery atherosclerotic

stroke (63), studies evaluating the prevalence of intracranial

atherosclerotic stenosis remain scarce in both population-

and hospital-based cohorts. Previous hospital-based studies of

Caucasian patients with stroke/transient ischemic attack (TIA)

have reported a wide range of prevalence of symptomatic

intracranial stenosis, probably reflecting differences in the

definition of intracranial stenosis, imaging techniques, inclusion

criteria, and completeness of ascertainment. A population-

based study of stroke/TIA (Oxford Vascular Study [OXVASC])

showed symptomatic or asymptomatic 50–99% intracranial

stenosis in 17.6% of patients, with the highest rates at

older ages (64). The prevalence of any intracranial stenosis

(50–99%) increased with age from 7.0% at <50 years to

45.1% at ≥90 years (64). A population-based study (ARIC

study), involving 1,762 participants (mean age, 76.3 years),

found that eGFR-cysC (<60 mL/min/1.73 m2) was associated

with the presence of intracranial atherosclerotic stenosis on

high-resolution vessel-wall MRI (65). Albuminuria (urine

albumin-to-creatinine ratio ≥30) was associated with 50–70%

intracranial stenosis. In two Chinese population-based studies,

decreased eGFR (<45 mL/min/1.73 m2) was independently

associated with intracranial atherosclerotic stenosis assessed

by transcranial Doppler (66, 67). A causal relationship

between intracranial atherosclerotic stenosis and CKD was not

established because these previous studies were limited by their

cross-sectional design.

Microstructural changes

Diffusion tensor imaging is a molecular MRI technique that

allows the measurement of the diffusion of water molecules

along the nerve tracts. It can also be used to evaluate the

structural integrity of the white matter and is a sensitive marker

of microstructural changes in the brain. A population-based

study (Rotterdam study), involving 2,726 participants (mean

age, 56.6 years), found that a lower eGFR-cysC and higher

albumin-to-creatinine ratio were associated with worse global

white matter microstructural integrity (68). Microstructural

damage, such as decreased white matter integrity, was

consistently observed in patients with ESRD, particularly

those undergoing long-term hemodialysis. Previous studies

reported decreased fractional anisotropy and increased mean

diffusivity in patients undergoing hemodialysis compared

to age-matched controls, indicating insidious white matter

damage (69–73). Hemodialysis-specific circulatory stress,

intradialytic BP variation, and direct uremic toxins may

contribute to worsened white matter integrity. No longitudinal

study has allowed for the determination of causality between

hemodialysis and white matter microstructural integrity.

Nevertheless, in a study in which progressive WMHs burden

was demonstrated in patients undergoing hemodialysis,

improvements in cerebral anisotropic diffusion and CBF were

noted in the post-transplantation period, suggesting possible

reversibility (74). This result supports the hypothesis that CKD

may accelerate covert white matter damage independent of

vascular risk factors.

Brain atrophy

Imaging studies show a consistent positive association

between brain atrophy and renal impairment, particularly

in patients with ESRD undergoing hemodialysis (75–78)

although inconsistent results were observed in the early

stages of CKD (79–82). In a cross-sectional study of medical

check-up centers comprising 1,215 participants, albuminuria

contributed to cortical thinning, predominantly in the

frontal and occipital regions (83). The study also suggested

that albuminuria was associated with frontal lobe atrophy

partially mediated by WMHs burden [83. It is hypothesized

that systemic endothelial dysfunction accompanied with

albuminuria occurs in the brain, resulting in the extravasation

of serum proteins into the brain extracellular spaces and

causing brain injury (84). Moreover, brain atrophy could partly

occur based on the severity of SVD, which is prominently

observed in patients with CKD (85). In patients undergoing

hemodialysis, intradialytic hypotension may be involved in

brain atrophy. Progression in frontal atrophy, as assessed by

MRI, was found to be inversely correlated with the number

of intradialytic hypotensive episodes in a longitudinal study

(86). In addition, a cross-sectional study revealed that patients

with CKD had a lower hippocampal volume and smaller

cortical thickness than those in matched controls, providing

evidence of a potential link between Alzheimer’s disease-related
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pathology and kidney function, while the mechanisms of

hippocampal atrophy in the CKD population are largely

unknown (87, 88).

Cerebral blood flow

CKD is associated with a dysfunctional BBB due to

endothelial inflammation and vascular remodeling, which can

impair the regulation of local CBF. Impaired autoregulation

can lead to increased pressure across the capillary bed,

which could result in capillary damage and increased BBB

permeability (89). Hemodialysis can induce a transient

decline in CBF. Cerebral arterial mean flow velocity has been

shown to significantly decline during hemodialysis, and this

intradialytic hemodynamic instability could cause transient

cerebral stunning (90). Two prospective studies demonstrated

that hemodialysis induces decreased intradialytic cerebral

perfusion, partly due to intradialytic hypotension (91, 92). In

a study of the acute effect of conventional hemodialysis on

CBF, measured by positron emission tomography-computed

tomography, global CBF declined significantly by 10± 15% (92).

In contrast, previous hospital-based cohort studies assessed

CBF with SPECT or MRI (arterial-spin labeling or phase

contrast imaging) in patients undergoing hemodialysis and

reported higher CBF compared to patients with normal kidney

function (93–97). Regarding patients without hemodialysis,

in a large cohort of nondiabetic hypertensive adults in early

CKD stages, decreased eGFR (<45 vs. ≥90 mL/min/1.73 m2)

was associated with a higher total CBF as assessed by arterial

spin labeling, and albuminuria was associated with a large

WMHs volume (98). However, in the Rotterdam study which

excluded patients with ESRD, a cross-sectional analysis of

2,645 participants demonstrated that decreased eGFR was

independently associated with lower CBF measured by MRI

(99). These contradictory findings are possibly due to the

differences in the method of assessing CBF or in patents

characteristics such as the stages of CKD. Moreover, it remains

unclear whether these CBF changes subsequently lead to

cerebral structural changes.

Discussion

We briefly described the association between covert vascular

brain injury and CKD. This review includes an up-to-date

discussion of imaging findings in patients with CKD, which

may provide important insights into the early stages of

stroke and dementia. Our narrative review has limitations,

as it did not involve quality assessment of the included

study reports. Overall, results from the literature collectively

indicate that CKD is largely associated with structural brain

abnormalities. There is a multifactorial mechanism underlying

FIGURE 1

Proposed pathophysiology of chronic kidney disease–related covert brain injury.
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these brain injuries in the setting of CKD (Figure 1). The kidney-

brain association appears to represent greater impairment in

kidney function, which could lead to more severe SVD and

brain atrophy.

Recent experiments have highlighted that the direct

toxicity of uremic toxins, such as the indoxyl sulfate-aryl

hydrocarbon receptor pathway, may play an important role

in BBB disruption and subsequent cognitive impairment in

CKD (30, 57). A recent Mendelian randomization study

suggested that renal impairment assessed by higher urine

albumin-to-creatinine ratio and decreased eGFR are causally

involved in large-artery stroke and SVD (i.e., small-vessel

stroke, WMHs, and intracerebral hemorrhage), emphasizing the

shared common genetic mechanisms with CKD (100). However,

evidence regarding mechanistic pathways to demonstrate

the development of these imaging findings is still lacking,

since most results are derived from observational studies

with a cross-sectional design. The amount and quality of

evidence have been limited, especially in advanced CKD,

including patients undergoing hemodialysis, due to the small

sample sizes.

Apart from kidney transplantation, there is no direct

evidence to suggest that any intervention prevents or reduces

brain structural abnormalities in the CKD population. In the

context of SVD, given both organs are common targets of

vascular risk factors, we can speculate that people with CKD

could benefit from more intensive vascular risk reduction,

with a particular focus on hypertension and diabetes. There is

current evidence indicating that intensive BP lowering could be

associated with less WMHs progression in hypertensive patients

(101, 102). In contrast, there is no evidence for glucose control

in the absence of diabetes to prevent SVD progression (102).

The recently published ESOC guidelines recommend patients

with SVD and hypertension to have their BP well-controlled

for the management of SVD with low quality of evidence

(103). However, little to no data are currently available on

the impact of intensive BP lowering on SVD in patients with

CKD. There have been concerns that intensive BP treatment

results in a greater risk of acute kidney injury inferred to

reflect hemodynamic changes in kidney perfusion rather than

true kidney function loss (104, 105). Considering that the

pathophysiology of SVD remains incompletely understood and

the evidence on the benefits in SVD progression is limited,

there is still a research gap in elucidating how additional

mechanisms contribute to the development and deterioration

of SVD in general, as well as in the CKD population.

Thus, additional prospective population-based studies with

larger samples, across all CKD stages, and longer follow-up

periods are needed to investigate the impact of CKD on

SVD. Further experimental studies elucidating the observed

association between CKD and SVD are required to identify

molecular mechanisms that may enable the development of

novel therapeutic approaches beyond the management of

vascular risk factors.

Conclusion

Patients with CKD consistently show a high prevalence

of covert vascular brain injuries, such as SVD, brain atrophy,

intracranial artery stenosis, microstructural changes, and

impaired CBF. These brain injuries, especially endothelial

impairment, and BBB disruption are supported by rodent

models pointing to CKD-specific causes such as the direct effect

of uremic toxicity. Genetic variants that predispose patients to

CKD have also been linked to large artery stroke and SVD.

However, there is still a dearth of evidence regarding the

mechanisms underlying these brain injuries in patients with

CKD. Studies are needed for the CKD population to focus on

how to prevent the development and progression of these brain

injuries, which may be a potential strategy to protect against

stroke, vascular cognitive impairment, or dementia.
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