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Fetal brain diffusion magnetic resonance images (MRI) are often acquired with a lower

through-plane than in-plane resolution. This anisotropy is often overcome by classical

upsampling methods such as linear or cubic interpolation. In this work, we employ an

unsupervised learning algorithm using an autoencoder neural network for single-image

through-plane super-resolution by leveraging a large amount of data. Our framework,

which can also be used for slice outliers replacement, overperformed conventional

interpolations quantitatively and qualitatively on pre-term newborns of the developing

Human Connectome Project. The evaluation was performed on both the original

diffusion-weighted signal and the estimated diffusion tensor maps. A byproduct of our

autoencoder was its ability to act as a denoiser. The network was able to generalize

fetal data with different levels of motions and we qualitatively showed its consistency,

hence supporting the relevance of pre-term datasets to improve the processing of fetal

brain images.

Keywords: unsupervised learning, autoencoders, super-resolution, diffusion-weighted imaging, magnetic

resonance imaging (MRI), pre-term neonates, fetuses, brain

1. INTRODUCTION

The formation and maturation of white matter are at their highest rate during the fetal stage
of human brain development. To have more insight into this critical period, in utero brain
imaging techniques offer a unique opportunity. Diffusion weighted-magnetic resonance imaging
(DW-MRI) is a well-established tool to reconstruct in vivo and non-invasively the white matter
tracts in the brain (1, 2). Fetal DW-MRI, in particular, could characterize early developmental
trajectories in brain connections and microstructure (3–6). Hence, fetal DW-MRI has been of
significant interest for the past years where studies (7–9) have provided analysis using diffusion
tensor imaging (DTI) by computing diffusion scalar maps such as fractional anisotropy (FA) or
mean diffusivity (MD), using a limited number of gradient directions. A recent study focused on
reconstructing fiber Orientation Distribution Functions (fODF) (10) using higher quality datasets
and rich information including several gradient directions (32 and 80), higher b-values (750 and
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1,000 s/mm2), and signal-to-noise ratio (SNR) (3 Tesla magnetic
field strength). Additionally, the datasets were acquired in a
controlled and uniform research setting with healthy volunteers,
which can hardly be reproduced in the clinical environment.

Albeit promising results, acquiring high-quality data remains
the main obstacle in the field of fetal brain imaging. First,
unpredictable and uncontrollable fetal motion is a major
challenge. To overcome this problem, fast echo-planar imaging
(EPI) sequences are typically used to freeze intra-slice motion.
However, intra- and inter-volume motion still have to be
addressed in the post-processing steps using sophisticated
slice-to-volume registration (SVR) (11–13). Moreover, EPI
sequences generate severe non-linear distortions that need
adapted distortion correction algorithms (14). Additionally, the
resulting images display low SNR due to at least three factors: the
inherently small size of the fetal brain, the surrounding maternal
structures and amniotic fluid, and the increased distance to the
coils. In order to compensate for the low SNR in EPI sequences,
series with thick voxels (i.e., low through-plane resolution) are
often acquired. Finally, to shorten the acquisition time, small b-
values (b = 400 − 700s/mm2) and a low number of gradient
directions (10–15) (8, 9) are commonly used in fetal imaging,
which in turn will result in a low angular resolution.

Clinical protocols typically acquire several anisotropic
orthogonal series of 2D thick slices to cope with high motion and
low SNR. Then, super-resolution reconstruction techniques that
have been originally developed for structural T2-weighted images
(15–20) by combining different 3D low resolution volumes have
also been successfully applied in 4D fetal functional (21) and
diffusion MRI contexts (10, 12). Still, despite these two pioneer
works, super-resolution DW-MRI from multiple volumes has
been barely explored in vivo. In fact, the limited scanning time to
minimize maternal discomfort hampers the acquisition of several
orthogonal series, resulting in a trade-off between the number
of gradient directions and orthogonal series. Thus, DW-MRI
fetal brain protocols are not standardized from one center to
another (Supplementary Table S1) and more experiments have
to be conducted in this area to design optimal sequences (22, 23).
Sequence-based super-resolution methods that were applied in
adult brains (24–27) could also be explored and adapted to fetal
brains such as in Ning et al. (24) that acquire same orientation
shifted low-resolution images in the slice encoding direction
and in a non-overlapping gradient scheme to reconstruct one
high-resolution volume using compressed sensing. The term
super-resolution is used by both the image processing and the
MR sequence development communities, though in a slightly
different way. While the former works mainly on image space
and the latter works on k-space, both aim at increasing the image
resolution at different stages either using multiple volumes or
single volumes.

In fact, fetal DW-MRI resolution enhancement could also
benefit from single image super-resolution approaches, i.e., either
within each DW-MRI 3D volume separately or using the whole
4D volume including all diffusion measurements. It has indeed
been demonstrated that a linear or cubic interpolation of the
raw signal enhances the resulting scalar maps and tractography
(28). In practice, this is typically performed either at the signal

level or at DTI scalar maps (29). We believe that single volume
and multiple volumes super-resolution can also be performed
together, i.e., where the output of the former is given as the
input of the latter. This aggregation could potentially lead to
a better motion correction and hence to a more accurate final
high-resolution volume.

Several studies have proposed single image super-resolution
enhancement methods for DW-MRI but, to the best of our
knowledge, none of them has been applied neither to anisotropic
datasets nor to the developing brain. In Coupé et al. (30),
the authors utilized a non-local patch-based approach in an
inverse problem paradigm to improve the resolution of adult
brain DW-MRI volumes using a non diffusion weighted image
(b = 0s/mm2) prior. Although this approach yielded competitive
results, it was built upon a sophisticated pipeline which made it
not extensively used. The first machine learning study (31) have
used shallow learning algorithms to learn the mapping between
diffusion tensor maps of a downsampled high-resolution image
and the maps of the original image. Recently, deep learning
models which can implicitly learn relevant features from training
data were used to perform single image super-resolution with
a convolutional neural network (32, 33) and a customized U-
Net (34, 35). Both approaches produced promising results in
a supervised learning scheme. Supervision needs however large
high quality datasets that are scarce for the perinatal brain for the
reasons enumerated above.

The specific challenge of fetal DW-MRI is 3–5 mm acquired
slice thickness, with only a few repetitions available. Hence,
our main objective is to focus on through-plane DW-MRI
resolution enhancement. This would be valuable not only for
native anisotropic volumes but also for outlier slice recovery.
In fact, motion-corrupted slices in DW-MRI is either discarded,
which results in a loss of information, or replaced using
interpolation (36–38). We approached this problem from an
image synthesis point of view using unsupervised learning
networks such as autoencoders (AEs), as demonstrated in cardiac
T2-weighted MRI (39) and recent works in DW-MRI (40).
Here, we present a framework with autoencoders that are neural
networks learning in an unsupervised way to encode efficient
data representations and can behave as generative models if
this representation is structured enough. By accurately encoding
DW-MRI slices in a low-dimensional latent space, we were able
to successfully generate new slices that accurately correspond to
in-between “missing” slices. In contrast to the above referred
supervised learning approaches, this method is scale agnostic,
i.e., the enhancement scale factor can be set a posteriori to the
network training.

Realistically enhancing the through-plane resolution would
potentially help the clinicians to better assess whether the anterior
and posterior commissures are present in cases with complete
agenesis of the corpus callosum (6). It can reduce partial volume
effects and thus contribute to the depiction of more accurate
white matter properties in the developing brain.

In this work, we present the first unsupervised through-
plane resolution enhancement for perinatal brain DW-MRI.
We leverage the high-quality dataset of the developing Human
Connectome Project (dHCP) where we train and quantitatively

Frontiers in Neurology | www.frontiersin.org 2 May 2022 | Volume 13 | Article 827816

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Kebiri et al. dMRI Super-Resolution in Developing Brain

TABLE 1 | Pre-term newborns and fetal attributes of the processed data that were used in our experiments.

GW Resolution (mm3) #directions b-value (s/mm2) Scanner #subjects

Pre-terms [29.3,37.0] 1.17x1.17x1.5 88 0 and 1,000 Philips 3T 31

Fetal

Sub-1 35 1x1x5 15 0 and 700 GE 1.5T –

Sub-2 29 1x1x4 15 0 and 700 GE 1.5T –

Sub-3 24 1x1x5 15 0 and 700 GE 1.5T –

Sub-4 23 1x1x4 15 0 and 700 GE 1.5T –

Sub-5 24 1x1x5 15 0 and 700 GE 1.5T –

Sub-6 27 1x1x5 15 0 and 700 GE 1.5T -

The distribution of gestational ages is shown in Supplementary Figure S1.

validate pre-term newborns that are anatomically close to
fetal subjects. We finally demonstrate the performance of our
approach in fetal brains.

2. MATERIALS AND METHODS

2.1. Data
2.1.1. Pre-term dHCP Data
We selected all the 31 pre-term newborns of 37 gestational
weeks (GW) or less at the time of scan (range: [29.3,37.0], mean:
35.5, median: 35.7) from the dHCP dataset (41) (subject IDs in
Supplementary Table S2). Acquisitions were performed using a
3T Philips Achieva scanner (32-channel neonatal head-coil and
70 mT/m gradients) with a monopolar spin-echo EPI Stejksal-
Tanner sequence (1 = 42.5 ms, δ = 14 ms, TR = 3,800 ms,
TE = 90,ms, echo spacing = 0.81ms, EPI factor = 83) and a
multiband factor of 4, resulting in an acquisition time of 19:20
min. In a field of view of 150x150x102mm3, 64 interleaved slices
were acquired with an in-plane resolution of 1.5 mm, a slice
thickness of 3 mm, and a slice overlap of 1.5 mm. An isotropic
volume of 1.5 mm3 was obtained after super-resolution. The
dataset was acquired with a multi-shell sequence using four b-
values (b ∈ {0, 400, 1, 000, and 2, 600}s/mm2) with 300 volumes
but we have only extracted the 88 volumes corresponding to
b = 1, 000s/mm2 (b1000) as a compromise of high contrast-to-
noise ratio (CNR), i.e., b1000 has a higher CNR than b400 and
b2600 (42), and proximity to the b = 700s/mm2 that is typically
used in clinical settings for fetal DW-MRI. The main attributes
of the pre-term data are summarized in Table 1. Brain masks
and region/tissue labels segmented using a pipeline based on the
Draw-EM algorithm (43, 44) were available in the corresponding
anatomical dataset. All the images were already corrected
(42) for inter-slice motion and distortion (susceptibility, eddy
currents and motion). After pre-processing, the final image
resolution and FOV were, respectively, 1.17x1.17x1.5 mm3

and 128x128x64mm3.

2.1.2. Fetal Data
Fetal acquisitions were performed at 1.5T (MR450, GE
Healthcare, Milwaukee, WI, USA) in the University Children’s
Hospital Zürich (KISPI) using a single-shot EPI sequence (TE
= 63 ms, TR = 2200 ms) and 15 gradient directions at b =
700s/mm2 (b700). The acquisition time was approximately 1.3

min per 4D volume. The in-plane resolution was 1x1 mm2, the
slice thickness was 4–5 mm, and the field of view 256x256x14 −
22 voxels. Three axial series and a coronal one were acquired
for each subject. Brain masks were manually generated for
the b0 (b = 0s/mm2) of each acquisition and automatically
propagated to the diffusion-weighted volumes. Between 8 and 18,
T2-weighted images were also acquired for each subject where
corresponding brain masks were automatically generated using
an in-house deep learning based method using transfer learning
from Salehi et al. (45). Manual refinements were needed for a few
cases at the brain boundaries.

2.1.3. Fetal Data Processing
We selected three subjects with high quality imaging and
without motion artifacts (24, 29, and 35 GW) and three
subjects with a varying degree of motion (23, 24, and 27 GW).
Supplementary Figure S1 shows the distribution of gestational
age of both 31 pre-term newborns and the 6 fetal subjects used
in this study. A DW-MRI volume of a motion-free case (Sub-
2, 29 GW) and a pre-term of equivalent age are illustrated in
Figure 1. By performing quality control, we discarded highly
corrupted volumes due to motion resulting in severe signal
drops in two moving subjects and very low SNR volumes in one
motion-free subject. Table 2 presents the different characteristics
of each subject as well as its corresponding discarded volumes.
The coronal volume was not used to avoid any interpolation
confounding factor while co-registering different orientations.
All the subjects were pre-processed for noise, bias field
inhomogeneities, and distortions using the Nipype framework
(46). The denoising was performed using a Principal Component
Analysis based method (47), followed by an N4 bias-field
inhomogeneity correction (48). Distortion was corrected using
an in-house implementation of a state-of-the-art algorithm for
the fetal brain (14) consisting in rigid registration (49) of a
structural T2-weighted image to the b0 image, followed by a non-
linear registration (49) in the phase-encoding direction of the b0
to the same T2-weighted image. The transformation was then
applied to the diffusion-weighted volumes. A block matching
algorithm for symmetric global registration was also performed
for two subjects (sub-4, sub-6) with motion [NiftyReg, (50)]. The
b0 image of the first axial series was selected as a reference to
which we subsequently registered the remaining volumes, i.e.,
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FIGURE 1 | Illustration of the three orientations of a Diffusion weighted-magnetic resonance imaging (DW-MRI) volume from a still fetal subject (29 GW) and pre-term

newborn of the same gestational age.

TABLE 2 | Fetal motion level and discarded directions for each 4D volume.

Motion Discarded

level Axial-1 Axial-2 Axial-3 Coronal

Sub-1 No – – – All

Sub-2 No – – – All

Sub-3 No All except b0 – All except b0 All

Sub-4 High Vol 2,3,4,5,6,7 Vol 11,14 Vol 14 All

Sub-5 Average – Vol 6,7,15 Vol 11 All

Sub-6 Low Vol 11 Vol 11 Vol 11,14 All

the non b0 images from the first axial and all volumes from
the two others. Gradient directions were rotated accordingly.
Supplementary Figure S2 shows an example of a DWI volume
(from sub-4) of original, pre-processing, and motion correction.

2.2. Model
2.2.1. Architecture
Our network architecture, similarly to Sander et al. (39), is
composed of four blocks in the encoder and four in the decoder
(Figure 2). Each block in the encoder consists of two layers made
of 3 x 3 convolutions followed by a batch normalization (51) and
an Exponential Linear Unit non-linearity.

The number of feature maps is doubled from 32 after each
layer and the resulting feature maps are average-pooled. We

further added two layers of two 3 x 3 convolutions in which
the feature maps of the last layer were used as the latent-space
of the autoencoder. The decoder uses the same architecture as
the encoder but by conversely halving the number of feature
maps and upsampling after each block using nearest-neighbor
interpolation. At the final layer a 1 x 1 convolution using the
sigmoid function is applied to output the predicted image. The
number of network parameters is 6,098,689.

2.2.2. Training and Optimization
Wehave trained our network solely on b0 images (15 per subject),
using an 8-fold nested cross validation where we trained and
validated on 27 subjects and tested on four. The proportion
of the validation data was set to 15% of the training set. The
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FIGURE 2 | Illustration of the network architecture (top): Each box is a multi-channel feature map. The number of channels is denoted on top of each box. The violet

box represents the latent space of the autoencoder (BN: Batch Normalization. ELU: Exponential Linear Unit). An illustration of how we generated middle slice(s) is

shown in the bottom panel (Testing), for the case of an equal slice weighting (w = 0.5) and b1000.

training/validation set contains 25,920 slices of a 128 x 128 field of
view, totaling 424,673,280 voxels. Our network was trained in an
unsupervised manner by feeding normalized 2D axial slices that
are encoded as feature maps in the latent space. The number of
feature maps, and hence the dimensionality of the latent space,
was optimized (optimal value to 32) using Keras-Tuner (52).
The batch size and the learning rate were additionally optimized
and set to 32 and 5e-5, respectively. The network that was
initialized using (53) was trained for 200 epochs to minimize the
mean squared error loss between the predicted and the ground
truth image. We have utilized for this aim the Adam optimizer
(54) with the default parameters β1 = 0.5, β2 = 0.999, and the
network corresponding to the epoch with the minimal validation
loss was then selected. The implementation was performed in

the framework of TensorFlow 2.4.1 (55) and an Nvidia GeForce
RTX 2080 GPU was deployed for training. Network code and
checkpoint examples can be found in our Github repository1.

2.2.3. Inference
The network trained on b0 images was used for the inference
of b0 and b1000 volumes. Two slices were encoded in the
latent space and their N “in-between” slice(s) (N = 1,2 in our
experiments) were predicted using weighted averages of the
latent codes of the two slices. The weights for N = 1 and N =
2 were set proportionally to their distance to the neighboring

1www.github.com/Medical-Image-Analysis-Laboratory/Perinatal_SR_Auto

encoder
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original slices [as performed in Sander et al. (39)], i.e., an equal
weighting for N = 1 and { 13 ,

2
3 }, {

2
3 ,

1
3 } for N = 2. Performing a

grid search on ten weights (0.1–0.9 with a step of 0.1) confirmed
the optimality of the previous choice. An example of pre-term
b1000 data for a weight of 0.5 is shown in Figure 2 (Testing).
Similarly, the same b0 network was also used to enhance the
through-plane resolution of fetal b0 and b700 volumes. Finally,
since the network outputs were normalized between 0 and 1,
histogram normalization to the weighted average of the input
images was performed.

2.3. Experiments and Evaluation
2.3.1. Pre-term Newborns
Our network was separately tested on b0 images and the 88
volumes of b1000 using an 8-fold cross validation where 7-folds
contain four subjects and 1-fold contains three subjects. We
removed N intermediate slices (N = [1,2]) from the testing set
volumes in alternating order and used the (weighted) average
latent space featuremaps of the to-be adjacent slices to encode the
Nmissing slice(s) using the autoencoder (Figure 2, Testing). The
resulting latent representation was then decoded to predict the N
slices in the voxel space, which were compared to the previously
removed N slices, i.e., the ground truth (GT). The same N slices
were also generated using three baseline approaches: trilinear,
tricubic, and B-spline of 5th order interpolations [using Tournier
et al. (56) andAvants et al. (49)] for comparison.We denote them,
respectively, for removing one or two slices: Linear-1, Cubic-1,
Spline-1 and Linear-2, Cubic-2, Spline-2.

Latent space exploratory analysis - In order to have an intuitive
idea of the latent space representation, we have compared the
latent space representations between different gradient directions
of all possible pairs from the 88 volumes of the b1000 4D volume.
As two volumes with closely aligned gradient directions are more
similar than two volumes with orthogonal directions, we aimed
to check whether this property is globally preserved in the latent
encoding of our input images.

Robustness to noise - We have added different low levels
of Rician noise (57) to the original signal as follows: for each
pixel with a current intensity Sclean, the new intensity Snoisy =
√

(Sclean + GN1)2 + GN2
2 , where GN1 and GN2 are random

numbers sampled from a Gaussian distribution with zero mean
and a SD of Sclean(b = 0)/SNRout and SNRout is the desired SNR
we aim to simulate. Three SNRs of {27, 25, 23} and {20, 16, 13}
were simulated for b0 and b1000, respectively. We have used
higher noise levels for b1000 to better simulate the inherently
lower SNR in this configuration.

Scalar maps - By merging the b0 and b1000 using the
autoencoder enhancement, we reconstructed FA, MD, axial
diffusivity (AD), and radial diffusivity (RD) fromDTI using Dipy
(58) separately for AE-1 or AE-2, i.e., where we, respectively,
remove one (N = 1) or two slices (N = 2). We further
subdivided the computation in specific brain regions (cortical
gray matter, white matter, corpus callosum, and brainstem
as provided by the dHCP). Region labels were upsampled
and manually refined to match the super-resoluted/interpolated
volumes. We performed similar computation of the diffusion

maps generated using the trilinear, tricubic, and B-spline
interpolated signals.

2.3.2. Fetal
For each subject and each 3D volume (b0 or DW-MRI), we
generated one or two middle slices using the autoencoder, hence
synthetically enhancing the resolution from 1 x 1 x 4–5mm3 to a
simulated resolution of 1 x 1 x 2–2.5 mm3 and 1 x 1 x 1.33–1.67
mm3, respectively. We then generated whole-brain DTI maps
(FA, MD, AD, and RD) and showed the colored FA. Splenium
and genu structures of the corpus callosum were additionally
segmented on FA maps for subjects in which these structures
were visible. The mean FA and MD were reported for these
regions for original and autoencoder enhanced volumes.

2.3.3. Quantitative Evaluation
Raw diffusion signal - We computed the voxel-wise error
between the raw signal synthesized by the autoencoder and the
GT using the mean squared error (MSE) and the peak SNR
(PSNR). We compared the autoencoder performance with the
three baseline approaches: trilinear, tricubic, and B-spline of 5th

order interpolations.
Latent space exploratory analysis - We have computed the

average squared Euclidian voxel-wise distance between slices of
all 3D b1000 volume pairs. This was performed both at the input
space and at the latent space representation. The images were
flattened from 2D to one-dimensional vectors and compared
as follows:

d(Eu, Ev) = ‖Eu− Ev‖

=

√

(u1 − v1)
2 + (u2 − v2)

2 + . . . + (un − vn)
2 (1)

Where Eu and Ev are the vectors to be compared for all the n
corresponding pixels. The final distance between each two 3D
volumes is the average distance of all 2D distance computed in 1.

Robustness to noise - We computed with respect to the GT
signal, the error of the signal with noise, and the output of the
autoencoder using the signal with noise as input. We compared
the results using MSE separately for b0 and b1000.

Scalar maps - We computed the voxel-wise error between the
diffusion tensor maps reconstructed with the GT and the one by
merging the b0 and b1000 using the autoencoder enhancement.
We computed the error separately using either AE-1 or AE-
2. We used the MSE and the PSNR as metrics and the same
diffusion maps generated using the trilinear, tricubic, and B-
spline interpolated signal as a baseline.Moreover, we qualitatively
compare colored FA generated using the best baseline method,
autoencoder, and the GT.

3. RESULTS

3.1. Pre-term Newborns
First, we inspected the latent space and how the 88 DW-
MRI volumes are encoded with respect to each other. We can
notice in Figure 3 (right panel) that as two b-vectors’ angle
approaches orthogonality (90◦), the difference between the latent
representations of their corresponding volumes increases. On
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FIGURE 3 | Average pair-wise slice distance between gradient direction volumes in input space (left) and latent space (right).

FIGURE 4 | Illustration of the error difference in b1000 with respect to the ground truth (GT) for the best baseline method (trilinear, left) and autoencoder (AE, middle)

enhancement.

the contrary, the difference decreases the more the angle tends
toward 0◦ or 180◦. Although the pattern is more pronounced
in the input space (Figure 3, left panel), this trend is a
fulfilled necessary condition to the generation for coherent
representations of the input data by our network.

Moreover, our network that was exclusively trained on b0
images was able to generalize to b1000. In fact, the signal
similarity between b0 and DW images was also used in Coupé
et al. (30) in an inverse problem paradigm in which a b0 prior
was incorporated to reconstruct b700 volumes.

Figure 4 illustrates qualitative results and absolute
errors for N = 1 with respect to the GT (right) between
the best interpolation baseline (trilinear, left) and the
autoencoder enhancement (middle) for b1000. We overall
saw from these representative examples, higher absolute
intensities in the Linear-1 configuration than in the AE-
1. However, ventricles are less visible when using an
autoencoder. We hypothesize this is because of their
higher intensity in b0 images on which the network
was trained.
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The average MSE with respect to the original DW-MRI
signal within the whole brain is shown in Figure 5 for both
the autoencoder enhanced volume and the baseline methods

(trilinear, tricubic, and B-spline), for the configurations where
one (Method-1) or two (Method-2) slices were removed. The first
observation was the expected higher error for the configuration

FIGURE 5 | Mean squared error (MSE) between the three baseline methods (linear, cubic, and B-spline 5th order) and autoencoder (AE) enhancement both for b0 (left)

and b1000 (right). Two configurations were assessed: either N = 1, i.e., removing one slice and interpolating/synthesizing it (Linear-1, Cubic-1, Spline-1, AE-1) or N =

2, i.e., the same approach with two slices (Linear-2, Cubic-2, Spline-2, and AE-2). The autoencoder has a significantly lower MSE when compared to each respective

best baseline method (paired Wilcoxon signed-rank test p < 1.24e-09).

FIGURE 6 | MSE and peak signal-to-noise ratio (PSNR) between the best baseline (Linear) and the autoencoder (AE) enhancement for whole-brain diffusion tensor

maps, when removing and synthesizing/interpolating one or two slices. FA, Fractional Anisotropy; MD, Mean Diffusivity; AD, Axial Diffusivity; RD, Radial Diffusivity.
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where two slices are removed (N = 2), independently of the
method used. Additionally, the autoencoder enhancement clearly
outperformed the baseline methods in all configurations (paired
Wilcoxon signed-rank test p < 1.24e-09). Particularly, the more
slices we remove, the higher the gap between the baseline
interpolation methods and the autoencoder enhancement. For
b0, the MSE gain was around 0.0005 for N = 1 and 0.0015 for
N = 2 between the autoencoder and the average baseline method
(Spline-1 v.s. AE-1 and Linear-2 v.s AE-2). For b1000, the gain

between AE-1 and Cubic-1 was 0.0007 and 0.0015 between AE-2
and Cubic-2.

The overperformance of the autoencoder is also shown
overall in the DTI maps, where MD, AD, and RD were better
approximated when compared to the best baseline method
(linear interpolation), particularly in the configuration where
two slices were removed (Figure 6). However, the FA showed
the opposite trend, especially for the configuration, where
one slice was removed (AE-1 v.s. Linear-1). However, FA

FIGURE 7 | Mean squared error (MSE) with respect to the GT of the best baseline method (Linear) and the autoencoder (AE) enhancement in the different brain

structures [Cortical Gray Matter (GM), White Matter (WM), Brainstem, and Corpus Callosum] for each diffusion tensor map (FA, MD, AD, and RD) for one slice removal

(N = 1) and two slices removal (N = 2). Comparing the DTI maps of the merged brain region labels, we found that the AE-2 significantly outperforms other

conventional methods for MD, RD, and AD. (Paired Wilcoxon signed-rank test: **p < 0.0018 and *p < 0.017).
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FIGURE 8 | Qualitative comparison of colored FA in the one slice removed configuration for the best baseline interpolation method, i.e., Linear-1 (left), autoencoder

enhancement AE-1 (middle), and GT (right). The red frame area highlight a region where the linear interpolation shows a more accurate result.

for white matter-like structures (“WM”, corpus callosum, and
brainstem) showed higher performance with the autoencoder
as depicted for each structure in Figure 7. In fact, by plotting
colored FA for these two configurations, we observed that
the autoencoder generates tracts that were consistent with the
GT. For instance, autoencoder enhancement showed higher
frequency details around the superficial WM area (Figure 8,
top row) and removed artifacts between the internal capsules
better than the linear method (Figure 8, bottom row). However,
in some cases, the baseline method better depicted tracts
such as in the corpus callosum (Figure 8, middle row).

ODFs generated using spherical harmonics order 8 are also
depicted in Supplementary Figure S3 where the autoencoder
enhanced data show little qualitative differences with the
GT ODFs. Figure 9 shows similar comparisons for MD in
different brain regions between the baseline method (Linear), the
autoencoder, and the GT. Overall, quantitatively, for structures
in the case where two slices were removed, the autoencoder
enhancement outperformed the best baseline method in 15
out of 16 configurations (Figure 7). However, it is not always
the case when one slice is removed, such as in the AD of
the brainstem.
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FIGURE 9 | Qualitative comparison of mean diffusivity (MD) in the one slice removed configuration for the best baseline interpolation method, i.e., Linear-1 (left),

autoencoder enhancement AE-1 (middle), and GT (right).

FIGURE 10 | Mean squared error between noisy images and the GT vs. encoded-decoded noisy images and the GT. SNR_out is the desired SNR of the output in the

Rician noise formula (Subsection 2.3.1). We notice the robustness of the autoencoder to growing levels of noise both for b0 images (left) and b1000 images (right).

Figure 10 shows how our autoencoder was robust
to reasonable amounts of noise. In fact, simply
encoding and decoding the noisy input generates a

slice that was closer to the GT than the noisy slice,
as depicted for different levels of noise for both b0
and b1000.
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FIGURE 11 | Illustration of inter-volume motion in five different gradient directions of sub-4 (Table 2). Note the severe signal drop in the seventh direction because of

motion.

FIGURE 12 | Colored FA and FA (top row) illustration of autoencoder enhancement between two original adjacent fetal slices in a still subject (sub-1, 35 GW). The

bottom row shows a similar illustration of MD and FA for a moving subject (sub-4, 23 GW).

3.2. Fetuses
Figure 11 illustrates inter-volume motion between five diffusion-
weighted volumes where we also notice a severe signal drop in
the seventh direction (sub-4, 23 GW).

The autoencoder trained on pre-term b0 images was able
to coherently enhance fetal acquisitions both at b0 and DW-
MRI volumes at b700. The network was able to learn low-level
features that could generalize over anatomy, contrast, and b-
values. Corresponding FA and colored FA for a still subject
(sub-1, 35 GW) are illustrated in Figure 12 (top) where we
clearly see the coherence of the two synthesized images as we
go from one original slice to the next one. In fact, both the
corpus callosum and the internal/external capsules follow a
smooth transition between the two slices. Similarly, Figure 12
(bottom) exhibits MD and FA for a moving subject (sub-4, 23
GW) where we also notice, particularly for the MD, the smooth
transition between the originally adjacent slices. FA and MD for
the remaining subjects are shown in Supplementary Figure S4.
Tractography on a fetal subject (sub-1, 35 GW) using both the
original and autoencoder enhancement AE-1 DW-MRI is shown
in Supplementary Figure S5.

The splenium and genu of the corpus callosum were only
sufficiently visible in the three late GW subjects (sub-1, sub-2,
and sub-6). Figure 13 shows quantitative results for FA and MD
in the two structures. Both maps fall into the range of reported
values in the literature (59) for the respective gestational age, for
original and autoencoder enhanced volumes.

4. DISCUSSION

In this work, we have shown that (1) autoencoders can be used
for through-plane super-resolution in diffusionMRI, (2) training
on b0 images can generalize to gradient diffusion volumes of
different contrasts, and (3) as a proof of concept, training on
pre-term anatomy can generalize to fetal images.

In fact, we have demonstrated how autoencoders can
realistically enhance the resolution of DW-MRI perinatal brain
images. We have compared it to conventionally used methods
such as trilinear, tricubic, and B-spline interpolations both
qualitatively and quantitatively for pre-term newborns of the
dHCP database. Resolution enhancement was performed at the
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FIGURE 13 | FA and MD in genu and splenium of the corpus callosum for three subjects (sub-1, sub-2, and, sub-6 of, respectively, 27, 29, and 35 GW).

diffusion signal level and the downstream benefits propagated to
the DTI maps.

Additionally, our network that was solely trained on non-
diffusion weighted images (b0) was able to generalize to a b1000
contrast. In fact, the most intuitive approach is to infer b1000
images using a network trained on b1000. We have indeed tried
but the network did not converge for the majority of the folds.
This might be due to the high variability of b1000 images across
directions and their inherently low SNR. However, in the 1-
fold that the network converged, it slightly underperformed the
network that was trained on b0 only, on both b1000 pre-term
and b700 fetal images. Moreover, being b-value independent is
a desirable property since different b-values are used in different
centers, in particular for clinical fetal imaging (400, 500, 600,
700 s/mm2) (6, 10, 12, 29, 60). In fact, the same b0 network
trained on pre-term data was generalized to b700 fetal images
where we qualitatively show its advantage, hence supporting the
utility of pre-term data for fetal imaging, such as in Karimi
et al. (61), where they have used pre-term colored FA and DW-
MRI fetal scans to successfully predict fetal colored FA using a
convolutional neural network. Furthermore, FA and MD of the
corpus callosum, which were generated using the autoencoder
enhanced volumes, are in the range of values provided by a recent
study (59). This is a necessary but non sufficient condition for the
validity of our framework in fetal data.

Notably, our trained network was able to reduce the noise
from the data by learning the main features across images for
different noise levels. This can be explained by two points. First,
our autoencoder was exposed to different low levels of noise (as
the dHCP data was already denoised) and hence the encoded
features of the latent space are ought to be noise independent.
Second, generative autoencoders intrinsically yield high SNR

outputs due to the desired smoothness property of the latent
space (62).

The proposed framework could be applied to correct for
anisotropic voxel sizes and can be used for slice outliers
recovery in case of extreme motion artifacts for example. In
fact, the artificially removed middle slices in our experiments
can represent corrupted slices that may need to be discarded
or replaced using interpolation (36–38). Our autoencoder
can hence be used to recover these damaged slices using
neighboring ones.

The power of our method compared to conventional
interpolations resides in two points. First, the amount of data
used to predict/interpolate the middle slice. While only two slices
will be used in traditional interpolation approaches, our method
will in addition take advantage of the thousands of slices to which
the network has been exposed and from which the important
features have been learned (without any supervision) in the
training phase. Second, based on the manifold hypothesis, our
method performs interpolations in the learned encoding space,
which is closer to the intrinsic dimensionality of the data (63),
and hence all samples from that space will be closer to the true
distribution of the data compared to a naive interpolation in the
pixel/voxel space.

Although our network performed quantitatively better than
conventional interpolation methods in pre-term subjects, its
output is usually smoother and hence exhibits lesser details. This
is a well-known limitation of generative autoencoders, such as
variational autoencoders, and the consequence of the desirable
property of making the latent space smooth (62). Generative
Adversarial Networks (64) can be an interesting alternative
to overcome this issue. However, they have other drawbacks
as being more unstable and less straightforward to train (65)
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than autoencoders. But if trained properly, they can achieve
competitive results.

In this work, qualitative results only were provided on fetal
DW-MRI. We are limited by the lack of ground truth in this
domain, hence our results are a proof of concept. The future
release of the fetal dHCP dataset will be very valuable to
further develop our framework and proceed to its quantitative
assessment for fetal DW-MRI.

In future work, we want to add random Rician noise in
the training phase to increase the network robustness and
predictive power. We also want to extend the autoencoding to
the angular domain by using spherical harmonics decomposition
for each 4D voxel and hence enhancing both spatial and angular
resolutions (66).

Although unsupervised learning via autoencoders has
been recently used in DW-MRI to cluster individuals
based on their microstructural properties (67), this is to
the best of our knowledge, the first unsupervised learning
study for super-resolution enhancement in DW-MRI
using autoencoders.

As diffusion fetal imaging suffers from low through-
plane resolution, super-resolution using autoencoders is an
appealing method to artificially but realistically overcome
this caveat. This can help depict more precise diffusion
properties through different models, such as DTI or ODFs,
and potentially increase the detectability of fiber tracts that
are relevant for the assessment of certain neurodevelopmental
disorders (29).
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