
ORIGINAL RESEARCH
published: 01 March 2022

doi: 10.3389/fneur.2022.836683

Frontiers in Neurology | www.frontiersin.org 1 March 2022 | Volume 13 | Article 836683

Edited by:

Norbert Dillier,

University of Zurich, Switzerland

Reviewed by:

Katrien Vermeire,

Long Island University-Brooklyn,

United States

Antonio Greco,

Sapienza University of Rome, Italy

*Correspondence:

Hui Wang

wangh2005@alumni.sjtu.edu.cn

Zhuang Jiang

jiangzhuang0908@163.com

†These authors have contributed

equally to this work and share first

authorship

Specialty section:

This article was submitted to

Neuro-Otology,

a section of the journal

Frontiers in Neurology

Received: 15 December 2021

Accepted: 31 January 2022

Published: 01 March 2022

Citation:

Wang Y, Huang X, Zhang J, Huang S,

Wang J, Feng Y, Jiang Z, Wang H and

Yin S (2022) Bottom-Up and

Top-Down Attention Impairment

Induced by Long-Term Exposure to

Noise in the Absence of Threshold

Shifts. Front. Neurol. 13:836683.

doi: 10.3389/fneur.2022.836683

Bottom-Up and Top-Down Attention
Impairment Induced by Long-Term
Exposure to Noise in the Absence of
Threshold Shifts
Ying Wang 1,2,3†, Xuan Huang 1,2,3†, Jiajia Zhang 1,2,3†, Shujian Huang 1,2,3, Jiping Wang 1,2,3,

Yanmei Feng 1,2,3, Zhuang Jiang 4*, Hui Wang 1,2,3* and Shankai Yin 1,2,3

1Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital,

Shanghai, China, 2Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China, 3 Shanghai Key Laboratory of

Sleep Disordered Breathing, Shanghai, China, 4Department of Otolaryngology, The First Affiliated Hospital, College of

Medicine, Zhejiang University, Hangzhou, China

Objective: We aimed to assess the effect of noise exposure on bottom-up and top-

down attention functions in industrial workers based on behavioral and brain responses

recorded by the multichannel electroencephalogram (EEG).

Method: In this cross-sectional study, 563 shipyard noise-exposed workers with clinical

normal hearing were recruited for cognitive testing. Personal cumulative noise exposure

(CNE) was calculated with the long-term equivalent noise level and employment duration.

The performance of cognitive tests was compared between the high CNE group (H-

CNE, >92.2) and the low CNE group; additionally, brain responses were recorded with

a 256-channel EEG from a subgroup of 20 noise-exposed (NG) workers, who were

selected from the cohort with a pure tone threshold <25 dB HL from 0.25 to 16 kHz

and 20 healthy controls matched for age, sex, and education. P300 and mismatch

negativity (MMN) evoked by auditory stimuli were obtained to evaluate the top-down

and bottom-up attention functions. The sources of P300 and MMN were investigated

using GeoSource.

Results: The total score of the cognitive test (24.55 ± 3.71 vs. 25.32 ± 2.62, p

< 0.01) and the subscale of attention score (5.43 ± 1.02 vs. 5.62 ± 0.67, p <

0.001) were significantly lower in the H-CNE group than in the L-CNE group. The

attention score has the fastest decline of all the cognitive domain dimensions (slope

= −0.03 in individuals under 40 years old, p < 0.001; slope = −0.06 in individuals

older than 40 years old, p < 0.001). When NG was compared with controls, the P300

amplitude was significantly decreased in NG at Cz (3.9 ± 2.1 vs. 6.7 ± 2.3 µV, p

< 0.001). In addition, the latency of P300 (390.7 ± 12.1 vs. 369.4 ± 7.5ms, p <

0.001) and MMN (172.8 ± 15.5 vs. 157.8 ± 10.5ms, p < 0.01) was significantly

prolonged in NG compared with controls. The source for MMN for controls was in the

left BA11, whereas the noise exposure group’s source was lateralized to the BA20.
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Conclusion: Long-term exposure to noise deteriorated the bottom-up and top-down

attention functions even in the absence of threshold shifts, as evidenced by behavioral

and brain responses.

Keywords: noise, attention function, P300, mismatch negativity, bottom-up, top-down

INTRODUCTION

Noise is one of the most common types of pollution in both
occupational and non-occupational environments (1). Long-
term noise exposure that exceeds certain levels can harm the
auditory system, resulting in progressive hearing loss and an
increase in hearing sensitivity threshold (2, 3). Meanwhile,
evidence of the non-auditory effects related to noise exposure
is growing (4, 5), such as, annoyance (6), disturbed sleep (7),
cardiovascular disease (8), and anxiety (9). In addition to these
effects, noise exposure affects a variety of cognitive processes,
such as reaction time, memory, perception, and attention (10).
Human error and, in some cases, increased accidents may
result from the alteration of attention performance (11). A
previous study demonstrated that noise exposure could impair
performance on the focused attention task (12), while some
studies found that noise could increase arousal levels and
accuracy in computerized attention tests (13). The effect of noise
exposure on attention performance remain rather inconclusive
(14, 15).

One of the influential parameters in the effect of noise on
attention performance could be noise characteristics. Jafari et al.
(10) discovered the decreased attention in low-frequency noise-
exposed subjects (16) and a significant reduction of visual and
auditory attention when noise intensity was at 95 dBA level.
Smith and Miles (17) found that subjects who were exposed to
noise for 5 h made more errors than those who were exposed
for 2 h in a reaction time task. Pawlaczyk-Łuszczyńska et al.
(18) discovered that the low-frequency noise might affect the
concentration and attention function. Furthermore, exposure
duration, intensity, education years, gender, age, hearing level,
and even basic diseases could all be influential parameters
regarding the effect of noise on attention performance and might
lead to these apparently contradictory results.

Attention is not a monolithic process, and two types of
attention are commonly distinguished: top-down and bottom-up
attention (19, 20). The voluntary allocation of attention to certain
features or objects is referred to as top-down attention (21).
Attention, on the other hand, is not only voluntarily directed.
Salient stimuli can attract attention, even though the subject
has no intention of focusing on these stimuli (22). Bottom-up
attention refers to solely being guided by externally driven factors
to stimuli (22). The attention process can be modulated by “top-
down” specific task goals and expectations as well as “bottom-
up” external-driving factors (23). “Bottom-up” attention plays a
critical role during auditory processing in noisy environments
(24), which is capable of tracking certain auditory stimuli in
noisy environments without paying attention voluntarily to the
auditory modality. In tasks with several components, noise may

cause an increase in concentration on the dominant or high-
probability component at the expense of other features (12).
However, there is still a scarcity of solid evidence from people
who have documented the effects of noise exposure on top-down
and bottom-up attention performance.

In this study, we aimed to evaluate the effect of noise exposure
on bottom-up and top-down attention functions in industrial
workers in the absence of peripheral hearing loss based on
behavioral and brain responses recorded by the multichannel
electroencephalogram (EEG). First, we utilized the Montreal
Cognitive Assessment (MoCA) cognitive test to assess the
cognitive performance, particularly attention, in a large cohort
of shipyard workers with long-term noise exposure. In addition,
we measured the P300 and the mismatch negativity (MMN),
which reflect the brain’s sound encoding, in a subgroup of 20
noise-exposed workers with pure tone thresholds <25 dB HL
from 0.25 to 16 kHz, selected from the cohort and 20 healthy
controls matched for age, gender, and education; their hearing
functions were further evaluated by a comprehensive test battery
containing both subjective and objective measures (25).

METHODS

Participants and Study Design
A large-scale epidemiological survey was conducted from June
to July 2019 (25). A questionnaire was used to collect the
cross-sectional physical examination data from 807 sanding,
welding, metal, and cutting workers, such as demographics,
noise exposure duration, type of work, history of major diseases,
including genetic and drug-related hearing loss, diabetes,
hypertension, smoking, and alcohol consumption, and use of
hearing protection devices. Audiologic evaluations and personal
cumulative noise exposure (CNE) estimates were conducted, as
described in our previous study (25). By the median (92.2 dBA-
year) of CNE, all participants were divided into two groups:
high CNE (H-CNE) and low CNE (L-CNE). Then, recruited
participants completed cognitive tests to assess the cognitive
function by professional physicals (26). The procedures and
criteria for participant inclusion and exclusion are outlined in
Figure 1. Inclusion criteria include: (1) age < 50 years; (2) air
conduction thresholds < 25 dB HL at 0.25–8 kHz in bilateral
ear; (3) employment duration > 2 years; (4) right-handed; and
(5) nativeMandarin speaker. Exclusion criteria include abnormal
tympanograms, a history of otological diseases, or reading or
language difficulties.

Furthermore, 20 participants were selected at random from
L-CNE group as the noise-exposed group (NG) based on the
following criteria: (1) under the age of 40 years; (2) pure-tone
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FIGURE 1 | The flowchart illustrates the study design and participants.

average (PTA) < 25 dB hearing level at any frequency between
0.25 and 16 kHz; (3) right-handedness; and (4) native Mandarin
speakers. The NG group underwent more extensive auditory
processing tests, such as an electrocochleogram (ECochG) and
auditory brainstem responses (ABR). A control group (CG)
of 20 healthy subjects without a history of occupational noise
exposure was matched for age, gender, education level, and
hearing thresholds. On-site measurements of ECochG and ABR
were taken. The high-density EEG was performed during a
routine visit to our hospital.

This study was approved by the Institutional Ethics Review
Board of the Shanghai Sixth People’s Hospital affiliated with
Shanghai Jiao Tong University and was registered in the
Chinese Clinical Trial Registry (http://www.chictr.org.cn/index.
aspx, registration number: ChiCTR-RPC-17012580). Potential
consequences and benefits of the study were explained, and a
written informed consent was obtained from every subject before
this study.

Cognitive Test
The MoCA Beijing Version (MoCA-BJ) was administered
by professional geriatricians (26), which is considered as
an acceptable tool for lower education level groups in both
urban and rural areas (27). The MoCA-BJ scale contained

seven cognitive domains (5 points-visuospatial and executive
function, 3 points-naming, 6 points-attention, 2 points-
abstraction, 3 points-language, 5 points-delayed memory, and
6 points-orientation) ranging from 0 to 30, with a higher
number indicating better performance. One point was used
for education adjustment, in which an additional point can
be added to the total score if the individual education years
≤12 years.

ECochG and ABR
The SmartEP auditory evoked potential system (Intelligent
Hearing Systems; Miami, FL) was used to measure the ECochG
and ABR in a soundproof room. The acoustic stimulation was
delivered via ER-3A insertable earphones (Etymotic Research;
Elk Grove Village, IL). The recording electrode was placed
near the tympanic membrane for ECochG or the hairline
in the middle of the forehead for ABR, and the reference
electrode was on the mastoid. The amplitude and latency
of the compound action potential (CAP) in ECochG and
waves I and V in ABR were measured in the response to
80 dB HL clicks. The stimulating rate was 13.1Hz, and the
electrical resistance was <3 kΩ . The responses were band-pass
filtered between 200 and 2,000Hz and averaged 1,024 times in
each trial.
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FIGURE 2 | Event-related potentials (ERPs) procedure. (A) The continuous auditory stimulus comprised both rarely presented target sounds and frequently presented

standard sounds in two tasks. (B) The 2-tone auditory oddball task (P300, for top-down analyses). The participants were required to discriminate the target stimulus

from the standard tone by pressing a button. (C) The passive listening task (MMN, for bottom-up analysis). The participants were instructed to watch the silent movie

without responding to the presented auditory stimulus.

Event-Related Potential
EEG Acquisition
Electroencephalogram signals were collected in a soundproof
room using the Geodesic EEG System (GES 300, Electrical
Geodesics; Eugene, OR). A 256-channel HydroCel Geodesic
Sensor Net was used to place all the electrodes, and all electrode-
skin impedance values were kept below 50 k� during the
recording. Responses were recorded online relative to a vertex
reference electrode (Cz) at a sampling rate of 1,000Hz and then
digitally filtered (0.3–70Hz). Participants were instructed to keep
awake and avoidmoving their eyes or changing their posture, and
the EEG data were monitored for signs of drowsiness.

Event-Related Potential Procedure
The auditory oddball task required participants’ responses
based on a cognitive decision regarding the auditory stimulus
types. The results of this oddball task were interpreted as
auditory “top-down” effects, principally (28). Afterwards, in a
passive listening task, participants would hear the same stream
of auditory stimuli as in the oddball task, and this passive
listening task could reflect the “bottom-up” attention effect (28).
Therefore, participants engaged in the following two auditory
tasks during EEG acquisition (Figure 2): (1) a 2-tone auditory
oddball task. The oddball task consisted of two stimuli that
were presented in a random order. One stimulus is the quasi-
random sequence of frequent standard tones (1,000Hz, an 85%
occurrence probability), while another stimulus is infrequent
deviant (target) tones (2,000Hz, a 15% occurrence probability).

The whole task consisted of a total of 1,000 auditory stimuli
with random interstimulus intervals (ISIs) ranging from 850
to 1,450ms. In the oddball paradigm, all stimuli (75-dB sound
pressure level with 50-ms duration shaped by a 5-ms rise/fall
time window) were delivered through a loudspeaker (Micro-
DSP, Sichuan, China) placed 100 cm from the subject at an 180
degrees azimuth. The participants were required to discriminate
the target stimulus from the standard tone by pressing a button
with their eyes closed to minimize any destructive effects due to
alterations in visual attention. (2) A passive listening task used
the same series of stimuli in the auditory oddball task. During
this task, we showed a silent movie to the participants to divert
their attention away from the presented auditory stimuli. They
were instructed to watch the movie and not respond to the
simultaneously presented target auditory stimuli.

ERP Analysis
Event-related potential (ERP) data were analyzed offline with
the Net Station 4.3 software (EGI). The continuous EEG
signals were digitally filtered between 0.1 and 40Hz, and then
segmented using the event stimulus timestamp. All epochs
were calculated 100ms before and 700ms after stimulus onset.
After segmentation, artifact detection was performed using the
Net Station artifact detection tool, which automatically detects
eye blinks and eye movements and marks bad channels. Data
were baseline-corrected using a 100ms pre-stimulus period. A
single-trial examination was performed for each participant, and
artifacts were rejected before grand averages were computed. The
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TABLE 1 | Demographic characteristics of subjects in the high-cumulative noise exposure (H-CNE) and low-CNE (L-CNE) groups.

H-CNE group L-CNE group

Variable ≤40 yrs.

(n = 216)

>40 yrs.

(n = 55)

Overall

(n = 271)

≤40 yrs.

(n = 245)

>40 yrs.

(n = 47)

Overall

(n = 292)

P-value#

Age, mean (±SD), yrs. 32.5 ± 4.4 45.7 ± 4.0 35.2 ± 6.8 31.7 ± 4.6 44.5 ± 3.0 33.8 ± 6.4 0.012

Sex, male, (%) 202 (93.5) 51 (92.7) 253 (93.4) 228 (93.1) 41 (87.2) 269 (91.8) 0.483

Education years, mean

(±SD), yrs.

10.2 ± 2.1 9.4 ± 2.0 10.1 ± 2.1 10.5 ± 2.1 9.8 ± 2.2 10.4 ± 2.1 0.0 76

Exposure duration,

mean (±SD), yrs.

8.9 ± 4.1*** 12.0 ± 5.5** 9.5 ± 4.6 6.6 ± 3.7 8.7 ± 4.3 7.0 ± 4.0 <0.001

CNE, median (IQR),

dBA-year

94.8 (92.5–105.4)*** 96.4 (92.9–106.4)*** 95.2 (92.5–106.4) 90.4 (76.0–92.2) 90.1 (77.8–92.2) 90.4 (76.0.9–92.2) <0.001

Diabetes, n (%) 2 (0.9) 2 (3.6) 4 (1.5) 2 (0.8) 0 (0) 2 (0.7) 0.362

Hypertension, n (%) 191 (88.4) 43 (78.2) 234 (86.3) 203 (82.9) 38 (80.9) 240 (82.2) 0.176

Smoking, n (%) 105 (48.6) 23 (41.8) 128 (47.2) 116 (47.7) 17 (36.2) 133 (45.9) 0.745

Drinking, n (%) 96 (44.4) 24 (43.6) 120 (44.3) 103 (42.4) 19 (40.0) 122 (42.1) 0.597

PTA, mean (±SD), dB

0.25–8 kHz 17.0 ± 4.4*** 18.0 ± 4.0 17.16 ± 4.3 15.4 ± 5.0 17.2 ± 4.3 15.67 ± 4.9 <0.001

10–16 kHz 31.2 ± 14.0* 39.2 ± 12.6 32.8 ± 14.1 28.4 ± 13.3 38.7 ± 10.0 30.0 ± 13.4 0.016

# Indicates statistical significance between the H-CNE and L-CNE groups. The number of asterisks indicates statistical significance against the L-CNE in the same age group (*,<0.05;

**, <0.01; ***, p < 0.001). H-CNE, high cumulative noise exposure group; L-CNE, low cumulative noise exposure group; PTA, pure-tone average (dB HL); yrs, years.

P300 elicited by the target in this task is a large, positive-going
potential that peaks around 300ms post-stimulus in normal
young adults. The MMN was quantified from the deviant-
standard difference waveforms. Peak latency or peak amplitude
was determined as the most negative (for MMN) or positive (for
P300) point. The amplitude was measured from the baseline,
defined as the mean voltage of the pre-stimulus interval, while
the latency was measured from the point in time when the
deviance occurred (100ms). We analyzed three (Fz, Cz, and Pz)
electrodes to observe the distribution of the P300 and MMN
components. Furthermore, the ERP data were input to the
GeoSource module of the Net Station software (version 4.5.7) to
compute the standardized low-resolution brain electromagnetic
tomography (sLORETA) for the purpose of source localization
(29, 30).

Statistics
For parametric data, the results were presented as a mean (SD) or
median [interquartile range (IQR)], and for categorical data, as
a number (percentage). Depending on the data type, Pearson’s 2
test, independent samples t-test, andMann–WhitneyU-test were
used to determine intergroup differences. A linear regression
line was fitted to the data to determine the decline rate of
cognitive test scores (slope) from 70 to 110 dBA-year of CNE,
which was compared using the Mann–Whitney U–test. The
independent samples t-test or the Mann–Whitney U–test were
used to compare the latencies and amplitudes of AEPs and ERPs
between the NG and CG. The 2-tailed p< 0.05 was considered to
indicate statistical significance, and data analysis was performed
using the SPSS 24.0 (IBM, Armonk, NY) and Prism version 9
(GraphPad Software).

RESULTS

Baseline Characteristics of Participants
The overall median CNE was ∼92.20 dBA-year approximately.
In the H-CNE group (n = 271), the mean age was 35.2 ± 4.4
years old and the median CNE was 95.2 (92.5–106.4) dBA-year,
whereas the mean age of the L-CNE group (n = 292) was 33.8 ±
6.4 years and the median CNE was 90.4 (76.0.9–92.2) dBA-year.
The subjects in the H-CNE and L-CNE groups were matched well
in terms of age, gender, education years, smoking and alcohol
drinking habits, and basic diseases. Furthermore, there were no
significant differences regarding the terms mentioned above in
the same age group (≤40 years and >40 years) between the H-
CNE and L-CNE groups. An overview of the demographic and
clinical characteristics is shown in Table 1.

Cognitive Test Results
Figure 3A presents the results of the MoCA-BJ education
adjustment scores and cognitive domain scores in H-CNE and L-
CHE subjects. The H-CNE group performed significantly worse
than the L-CNE group in the education adjustment scores
(24.55 ± 3.71 vs. 25.32 ± 2.62) and domains of attention,
visual spatial/executive (5.34 ± 1.02 vs. 5.62 ± 0.67; 3.37 ±

1.37 vs. 3.60 ± 1.13). For subjects under 40 years old, almost
all cognitive test scores in the H-CNE group were similar to
those in the L-CNE group. Only attention subscales differed
significantly between the L-CNE (5.64 ± 0.67) and H-CNE
groups (5.40 ± 1.00) (t = −3.071, p = 0.002). For subjects aged
over 40 years, attention scores, visual spatial/executive scores,
and education adjustment scores in the H-CNE group were 5.11
± 1.07, 2.71 ± 1.32, and 22.73 ± 3.72, respectively, while in
the L-CNE group, scores were 5.48 ± 0.68, 3.33 ± 1.28, and
24.13±2.83, respectively. There were significant differences in
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FIGURE 3 | The between-group differences in Montreal Cognitive Assessment Beijing Version (MoCA-BJ) scores. (A) Group analysis of MoCA-BJ scores between

high-cumulative noise exposure (H-CNE) and low-CNE (L-CNE) groups. For subjects aged under 40 years old, attention function scores were significantly higher in the

(Continued)
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FIGURE 3 | L-CNE group compared with the H-CNE group. For subjects aged over 40 years old, attention, visuospatial and executive, and education adjustment

scores showed a difference between H-CNE and L-CNE. (B) The scatter plot depicted the decrease of MoCA-BJ scores with the increase of CNE among participants

aged over 40 years or younger. For educational adjusted scores, attention, visuospatial/executive, naming, and language scores, there were significant differences in

the rate of decrease in scores with CNE. The asterisks indicates statistical significance between the L-CNE and the H-CNE group in the same age group (*, <0.05; **,

<0.01; ***, p < 0.001).

FIGURE 4 | Averaged P300 (A) and mismatch negativity (MMN) (B) recorded at Cz electrode. Top: Original responses to the standard and deviant stimuli from the 20

subjects in the NG and CG groups. There is a difference between the responses to two types of stimuli. (Dotted lines reflected the response evoked by target stimuli

while solid lines reflected the response evoked by standard stimuli; red lines presented the response in NG while blue lines were in CG). Button: sLORETA images of

the MMN and P300 components of the two groups at the sagittal, coronal, and axial slices of the maximum current density.

attention scores, visual spatial/executive scores, and education
adjustment scores between these two groups (t = −2.123, p =

0.036; t =−2.436, p= 0.017; and t =−2.436, p= 0.017).
Scatterplots revealed a negative relationship between cognitive

test scores and CNE, as the values of CNE increased,
the corresponding cognitive total scores and subscale scores
decreased (Figure 3B). There were significant differences in the
rates of decrease in scores among all individuals for educational
adjusted scores (Z= 1.903, p= 0.05), attention scores (Z= 2.984,
p= 0.003), and naming scores (Z = 2.131, p= 0.033). Among all
dimensions of cognitive domains, attention scores were the ones
with the fastest decline (slope=−0.03 point/dBA-year, p< 0.001
in individuals under 40 years old; slope=−0.06 point/dBA-year,
p < 0.001 in individuals over 40 years old).

MMN and P300
Demographic and clinical characteristics of the NG and CG
subgroups are compared in Supplementary Table 1. The NG

subjects (n = 20) were exposed for 8 h/day for an average of 6.9
years, with a mean PTA at 0.25–8 kHz of 9.3 ± 3.1 and 9.8 ±

4.3 dB at 10–16 kHz. Subjects in the CG group (n = 20) worked
in silent conditions and the mean PTA at 0.25–8 kHz was 10.4
± 2.7 dB and at 10–16 kHz was 13.1 ± 6.8 dB. There were no
significant differences in the amplitude and latency of ABR waves
Iand V, as well as the ECochG wave AP between the NG and CG
groups (all p > 0.05). The other clinical characteristics, such as
age, gender, years of education, and cognitive test scores, were
not significantly different between the two groups (all p > 0.05).

The group-averaged waveforms at Cz are presented in
Figure 4 and group-averaged latency and amplitude at Cz, Pz,
and Fz are shown in Supplementary Table 2. Overall, deviant
stimuli elicited much larger responses from both subgroups in
both P300 and MMNmeasurements. The peak latencies for both
P300 and MMN were longer in the responses of NG subjects. In
the NG group, subjects’ responses had slightly smaller P300 and
MMN amplitudes. The P300 latency and amplitude at Cz were
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390 ± 12.1ms and 3.9 ± 2.1 µV, respectively, and the MMN
latency and amplitude at Cz were 172.8 ± 15.5ms and −2.7 ±

0.6 µV. In the CG group, the P300 latency and amplitude at
Cz were 369 ± 7.5ms and 6.7 ± 2.3 µV, respectively, and the
MMN latency and amplitude at Cz were 157.8 ± 10.5ms and
−3.2 ± 0.7 µV. The peak latency of MMN from all three sites
differed significantly between NG and CG groups (all p < 0.01),
while there was no significant between-group difference in the
amplitudes of MMN (p > 0.05).

The source localization was performed in both MMN and
P300 by using group-averaged EEG data from the 20 subjects in
each group (Figure 4). The maximum current strength of MMN
in CG was identified in the front lobe close to the left BA 11
(orbitofrontal area, voxel locations: −3, 52, −27), whereas the
maximum current strength of NG was considerably lateralized to
the right BA20 (inferior temporal gyrus, voxel locations: 39,−39,
−27). The source localization for the maximum current of P300
was in the left BA11, and there was not a significant difference
between the NG (locations:−3, 52,−27) and CG (locations:−10,
66,−13) groups.

DISCUSSION

The present study demonstrated that long-term noise exposure
impairs bottom-up and top-down attention functions in the
absence of threshold shifts, as evidenced by behavioral and
brain responses. The alterations of MMN and P300 suggested
impairments in bottom-up and top-down attention functions
in participants under long-term noise exposure. In the NG
subgroup, significantly lower MMN amplitudes were observed,
and the peak latencies of both MMN and P300 were considerably
longer. Furthermore, we found a shift of MMN source
localization in the right temporal lobe of the noise exposure
group, indicating a reorganization of the auditory cortex and
alterations of hemisphere dominance. In addition, CNE was
a significant factor in the impairment of cognitive function,
suggesting that the low-level noise was not as effective compared
with high levels of noise.

The association of ambient noise with attention function was
less investigated (31, 32), and nearly all early field studies of noise
exposure and cognitive performance had some weaknesses, such
as small sample sizes, inadequate noise measurement data, and
auditory evaluation of each subject accurately. On the other hand,
solid evidence from prospective and epidemiological studies (33)
revealed that hearing loss was an independent risk factor for
cognitive decline, containing the attenuated attention functions,
while the mechanism of this association has yet to be elucidated
(34). There was likely overlap among the peripheral auditory,
central auditory, and cognitive function (35). Animal studies
showed that even under a brief exposure to noise, there would
be a significant loss of cochlear afferent synapses (36–44). It
remained a concern whether such synapse loss could occur in
humans and lead to attention function deterioration. Further,
noise altered neuronal dendrites (45) and induced peroxidation
in specific areas of the lemniscal ascending auditory pathway
in mice (46). Noise exposure would result in the substantial

impairment of the auditory cortex function and behavioral
consequences in mice, regardless of the intensity and duration
of noise exposure (47). In the present study, the noise exposure
of each subject was documented by their employment duration
in the industrial environment, and by the noise survey in the
workplaces. All subjects were exposed to industrial noise for 8
h/day for more than 300 days/year. In addition, all individuals
maintained good hearing sensitivity over the frequency range
from 0.25 to 8 kHz (the hearing thresholds of NG subjects were
<25 dB from 0.25 to 16 kHz). The attention deficits observed in
this study could be attributable to hard-to-detect cochlea damage
and related central plasticity, as there was no interference from
hearing threshold or other confounders.

Besides top-down and bottom-up attention, attention could
be divided into arousal, sustained attention, selective attention,
and divided attention according to hierarchical models from
Sohlberg and Mateer (48). Selective attention might be a crucial
component of cognitive function (10). The altered amplitude
and latency of MMN and P300 could indicate a decrease in
not only bottom-up and top-down attention but also selective
attention, sustained attention, and divided function (49, 50). On
the one hand, the bottom-up and top-down attention models
claim that, although distinct processes mediate the attention
guidance based on bottom-up and top-down factors, both types
of attentional processes require a common neural apparatus, the
frontoparietal network (21). On the other hand, the anterior
attentional system (AAS), also known as the executive network,
oversees selective attention, sustained attention, and divided
attention. This system is related to the prefrontal dorsolateral
cortex, the orbitofrontal cortex, and the anterior cingulate cortex
(48), according to the Posner and Petersen neuroanatomical
model (48). The frontoparietal network is clearly the core area
of various attention models. Previous animal studies showed that
noise exposure could increase oxidative stress, decrease brain-
derived neurotrophic factor and synapse-associated protein
(51), and cause neuronal dendritic alteration and free radical
imbalance in the prefrontal cortex and hippocampus (45). In
the present study, we found a significant difference between the
NG and CG subgroups in the auditory oddball and the passive
listening tasks, indicating a decreased top-down and bottom-
up attention process as well as decreased selective, sustained,
and divided attention function. In addition, we found that the
source localization for maximal MMN was lateralized to the
right BA20 (inferior temporal gyrus) in NG subjects, while it
was the left BA11 (orbitofrontal area) in CG subjects. These
findings were consistent with previous studies, which discovered
that the frontal area was the source of MMN in subjects who
had not been exposed to noise, and the right temporal lobe
appeared to be more susceptible to functional reorganization in
subjects who had been exposed to noise (52, 53). Our findings
were consistent with that the speech-discrimination-induced
ERP was dominant in the right hemisphere in individuals
exposed to occupational noise, in contrast to the left hemisphere
dominance in control subjects (54). While there was no distinct
difference for the P300 source, the underlying mechanisms might
be that in noisy environments, bottom-up driven attention is
more important during auditory processing (24), and long-term
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noise exposure might deteriorate bottom-up driven attention
function first. Noise exposure induced the reorganization of
tonotopic areas (55), as well as structural and molecular changes
in human auditory (temporal gyrus) and non-auditory areas
(frontal area) (56). However, it was not clear whether similar
central plasticity occurs in association with difficult-to-test
cochlear damage, which could also reduce the auditory input
from cochleae to the auditory brain, although the thresholdmight
not be increased.

Our study has some limitations that should be taken into
consideration. We only compare the cognitive performances
between different levels of CNE and lack a set of data from the
control group of healthy subjects without noise exposure. Our
sample size for the EEG measurements remains small, and we
cannot completely rule out the existence of peripheral damage
in these subjects that requires more sensitive and reliable tests.
Due to the large sample size, no further cognitive assessments,
such as the Stroop test were performed to evaluate the
attention function.

CONCLUSIONS

In conclusion, we found that noise exposure deteriorated both
bottom-up and top-down attention functions, as evidenced
by the behavioral and brain responses. Behavioral test results
revealed that the higher cumulative noise exposure could
result in more severe damage to attention function, which
was also confirmed by the reduced ERP amplitude and
latency. The difficult-to-test cochlear damage, reorganization
of auditory and non-auditory areas, and hemisphere
dominance alteration might contribute to the significant
attention deficits.
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