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There are many ways to acquire and process diffusion MRI (dMRI) data for group studies,

but it is unknown which maximizes the sensitivity to white matter (WM) pathology.

Inspired by this question, we analyzed data acquired for diffusion tensor imaging (DTI)

and diffusion kurtosis imaging (DKI) at 3T (3T-DTI and 3T-DKI) and DTI at 7T in patients

with systemic lupus erythematosus (SLE) and healthy controls (HC). Parameter estimates

in 72 WM tracts were obtained using TractSeg. The impact on the sensitivity to WM

pathology was evaluated for the diffusion protocol, the magnetic field strength, and

the processing pipeline. Sensitivity was quantified in terms of Cohen’s d for group

comparison. Results showed that the choice of diffusion protocol had the largest impact

on the effect size. The effect size in fractional anisotropy (FA) across all WM tracts was

0.26 higher when derived by DTI than by DKI and 0.20 higher in 3T compared with

7T. The difference due to the diffusion protocol was larger than the difference due to

magnetic field strength for the majority of diffusion parameters. In contrast, the difference

between including or excluding different processing steps was near negligible, except for

the correction of distortions from eddy currents and motion which had a clearly positive

impact. For example, effect sizes increased on average by 0.07 by including motion and

eddy correction for FA derived from 3T-DTI. Effect sizes were slightly reduced by the

incorporation of denoising and Gibbs-ringing removal (on average by 0.011 and 0.005,

respectively). Smoothing prior to diffusion model fitting generally reduced effect sizes.
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In summary, 3T-DTI in combination with eddy current and motion correction yielded

the highest sensitivity to WM pathology in patients with SLE. However, our results also

indicated that the 3T-DKI and 7T-DTI protocols used here may be adjusted to increase

effect sizes.

Keywords: diffusion MRI, DTI, DKI, ROI-based analysis, ultra-high magnetic field strength (7T), diffusion

processing, white matter fiber-tracts, effect sizes

1. INTRODUCTION

Diffusion MRI (dMRI) can be used to characterize the
microstructure of white matter (WM) fiber tracts by parameters
obtained with for example diffusion tensor imaging (DTI).
Examples of such parameters include the mean, axial, and radial
diffusivity (MD, AD, and RD, respectively) and the fractional
anisotropy (FA). Changes in these parameters have been detected
in numerous conditions, including aging (1), traumatic brain
injury (TBI) (2, 3), schizophrenia (4, 5), Parkinson’s disease (6, 7),
multiple sclerosis (MS) (8), and systemic lupus erythematosus
(SLE) (9–12), (13–15). Diffusion kurtosis imaging (DKI) is an
extension to DTI that provides information complementary to
DTI (16–18), but requires a more comprehensive acquisition
protocol and, thus, longer scan times. Whether to accept the
longer scan times of a DKI protocol or to opt for a shorter
DTI protocol is just one of the many questions scientists face
when designing a dMRI protocol. Other questions may be what
magnetic field strength to use, as it can also influence the outcome
of a study (19). In addition, there are many questions concerning
the choice of the processing pipeline, which can also impact
the sensitivity of dMRI to pathology (20). An evaluation of all
these aspects would enable a more informed choice of methods.
Here, we evaluated three aspects: the diffusion protocol (DTI vs.
DKI), the magnetic field strength (3T vs. 7T), and the processing
pipeline (seven different options). The evaluation was based
on a groupwise comparison of dMRI data from patients with
SLE. This is a disease with a broad variety of symptoms of
both a neurologic and psychiatric nature (21). Previous studies
have reported reduced FA in the corpus callosum and a wide
range of association fibers (14, 22, 23). In this study, our goal
was to analyze the degree to which the more resource-intensive
approaches such as DKI, 7T, or computationally expensive
processing bring benefits in terms of increased sensitivity to WM
pathology in patients with SLE, and analyze the degree to which
the results align with other studies on different dMRI protocols
and processing pipelines.

Concerning the diffusion protocol, the main difference
between DTI and DKI is that the latter allows for the estimation
of the mean, axial, and radial kurtosis (MK, AK, and RK,
respectively) in addition to the parameters obtained with DTI
(MD, AD, RD, and FA) (24). The kurtosis parameters characterize
the diffusional heterogeneity that might be present in tissues
consisting of compartments with different diffusivities (18, 25,
26). This benefit comes at a cost: DKI needs a multi-shell
acquisition protocol with at least two non-zero and different
b-values, in contrast to DTI where a single-shell acquisition is
sufficient (27). Moreover, DKI requires the acquisition of images

with higher b-values (in the range of 2,000–2,500 s/mm2). This,
in turn, necessitates diffusion encoding with longer gradient
pulses, and therefore, DKI is performed with longer echo
times than DTI, which reduces the baseline signal-to-noise-ratio
(SNR). This is often compensated for by reducing the spatial
resolution in DKI compared with DTI. DKI and DTI have been
applied together before (28–38). Generally, these studies point
to a rise in FA, MK, AK, and RK and a decrease in MD, AD,
and RD in the early development of cerebral WM (29, 30).
Then a reverse process takes place later either due to aging
(28) or due to neurodegenerative disease in conditions such as
schizophrenia (32), MS (31), Alzheimer’s disease (33, 34, 36, 37),
and Parkinson’s disease (38, 39). However, it is not clear whether
DTI or DKI is most sensitive toWMpathology (40). For example,
in Alzheimer’s disease, MD and MK seem to be most sensitive,
but some studies highlight the former [e.g., (41)] and others the
latter [e.g., (42)]. Overall, MD is often reported to have high
sensitivity to neurodegeneration, followed by MK and to a lesser
degree FA, RD, and RK (40).

How the magnetic field strength influences the sensitivity of
dMRI to pathology has been less extensively investigated than
the effect of the diffusion protocol, possibly because ultra-high-
field (UHF) imaging (e.g., 7T) has only recently become relatively
widely available for clinical research (43–45). For similar image
resolution, 7T-DTI offers increased contrast-to-noise-ratio and
SNR compared to 3T-DTI (46–48). However, 7T-DTI suffers
from increased spatial heterogeneity in brain regions such as the
temporal lobes (49, 50). A recent investigation on the impact of
the magnetic field strength in a small population of seven MS
patients and six healthy controls (HC) showed that both 3T and
7T are viable options for imaging WM tissue change in MS (31).

Apart from the diffusion protocol and the magnetic field
strength, image processing can also affect sensitivity to pathology
(20, 51–53). Optimizing the processing pipeline has the potential
to increase the sensitivity to pathology (54–57). For example,
age-related WM changes seem to be best revealed when a
combination of all the state-of-the-art processing steps are
applied (20).

In this study, we investigated the dependence of the sensitivity
to WM pathology in patients with SLE on the diffusion protocol
(DTI or DKI), the magnetic field strength (3T or 7T), and the
inclusion of various processing steps (denoising, Gibbs-ringing
removal, eddy-current andmotion correction, and smoothing, in
different combinations). Data was acquired with three protocols:
3T-DTI, 3T-DKI, and 7T-DTI. The hypothesis was that 3T-DKI
and 7T-DTI would show benefits compared with 3T-DTI, as
these protocols are more resource-intensive in terms of either
time (3T-DKI) or the use of a scarce but SNR-boosting resource
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(7T-DTI). We also hypothesized that a more extensive and, thus,
computationally intensive processing pipeline that incorporates
several state-of-the-art processing steps would be beneficial. To
test these hypotheses, we performed a region-based effect-size
analysis. Cohen’s d was used as a measure of effect size, as
it evaluates the difference in means between two populations
normalized by their joint SD (58). The effect size analysis was
applied to analyze the difference between patients with SLE and
HC in 72 major WM fiber tracts obtained from TractSeg (59, 60).

2. MATERIALS AND METHODS

Figure 1 shows the workflow of this study. In this section, we
describe each of those steps from data acquisition to effect size
estimation.

2.1. Data Acquisition and Participants
Imaging was performed on two different systems (3T Siemens
Skyra and 7T Philips Achieva) with three different protocols,
referred to as 3T-DTI, 3T-DKI, and 7T-DTI. The image
resolutions, b-value scheme, and repetition and echo times
(TR and TE) were adjusted for each protocol and system
independently, and are reported inTable 1. Generally, TE and TR
were minimized. The resolution and other imaging parameters
were adjusted to minimize artifacts such as signal bias due to
the rectified noise floor (61). Specifically, as 3T-DKI includes the
acquisition of high b-value data with lower SNR, the 3T-DKI was
performed with a lower resolution than the 3T-DTI protocol in
order to avoid noise-floor effects. A 7T-DKI protocol was not
included due to limitations in total scan time per patient. The
7T-DTI protocol featured fewer encoding directions than the 3T-
DTI protocol, also due to scan time prioritizations. The extent
to which these protocol differences affected the results will be
considered in the discussion.

In total, 106 female subjects were scanned. Out of these, 76
were SLE patients and 30 HC. The Regional Ethical Review Board
in Lund, Sweden approved the studies on 3T and 7T (#2012/254,
#2014/778, #2016/30, #2019/01953) and all participants gave
written informed consent prior to the examinations. None of
the controls had a history of neurologic, neurodegenerative, or
psychiatric disorders. The 106 subjects were investigated with at
least one of the acquisition protocols (refer toTable 3). Out of the
30 HC, 13 were scanned with all the three different protocols, 20
with at least 3T-DTI, 20 with at least 3T-DKI, and 21 with at least
7T-DTI. Out of the 76 patients with SLE, 59 were scanned with all
the three acquisition protocols, 63 with at least 3T-DTI, 56 with
at least 3T-DKI, and 54 patients with at least 7T-DTI.

2.2. Processing Pipeline
To analyze the effect of the processing pipeline on the
effect size in a group comparison, we built seven processing
pipelines. These comprise some or all of three processing steps:
denoising, correction for Gibbs-ringing artifacts, and correction
of distortions due to head motion and eddy currents. For
denoising, we used the method proposed by Veraart et al.
(73), termed Marchenko-Pastur principal component analysis
(MPPCA). This method is based on the idea of applying principal

component analysis (PCA) within a local neighborhood of
the voxel, in order to shrink the redundant components over
which thermal noise is spread and instead reveal the signal-
carrying principal components (74). In contrast to previous
local PCA denoising approaches by Manjón et al. (75), MPPCA
automatically estimates the number of eigenvalues associated
with noise by using random matrix theory for noisy covariance
matrices (76). For removal of Gibbs-ringing artifacts, which
appear due to a k-space truncation (77), we used the method
presented in Kellner et al. (78). In that study, Gibbs-ringing
artifacts, most often appearing on sharp edges, are minimized by
finding the optimal subvoxel-shift for pixels in the neighborhood
of such sharp edges. Finally, dMRI data also suffer from subject
motion as well as eddy current-induced artifacts due to the strong
and rapidly switching diffusion encoding gradients. To correct
for such distortions, we used eddy from FSL (79).

The seven pipelines that were examined in this study consisted
of MPPCA for denoising, Gibbs for removal of Gibbs-ringing
artifacts, Eddy for correction of motion and eddy current-
induced distortions,MPPCA and Gibbs in combination,MPPCA
and Eddy in combination, Gibbs and Eddy in combination and
MPPCA and Gibbs and Eddy in combination (refer to phase
2 in Figure 1). For reference, we also investigated the effect
of applying no processing at all (i.e., none). We also evaluated
the impact of Gaussian smoothing, by smoothing the diffusion-
weighted imaging data using kernels with SDs ranging from 0 to
1 in units of 0.1 (refer to phase 4 in Figure 1). The purpose of
smoothing is to increase SNR prior to the estimation of diffusion
scalar metrics (20). All three processing methods (MPPCA,
Gibbs, and Eddy) were incorporated in recently published articles
(20, 52) and smoothing has often been applied in studies
involving DTI or DKI (20, 39, 68, 80–84).

2.3. Segmentation of WM Tracts
To obtain tract-specific parameter values, WM tract
segmentation was performed using TractSeg (59, 60). This
is a convolutional neural network-based segmentation approach
that automatically segments 72 major WM tracts in the native
space of the diffusion-weighted images. The algorithm was
pretrained on reference segmentations of tracts for 105 subjects
from the Human Connectome Project (85). The main benefit of
TractSeg is that it is both fast and accurate (60). It achieves that
by directly segmenting the tracts in the field of fiber orientation
distribution function peaks without using tractography and
image registration. A list of all 72 tracts can be found online
(https://github.com/MIC-DKFZ/TractSeg).

2.4. Diffusion Parameter Estimation
We estimated the diffusion parameters using two approaches:
DTI (86), which provided FA, MD, AD, and RD, and DKI (18),
which provided MK, RK, and AK in addition to the parameters
provided by DTI. For DTI, we used DTIFIT in FSL with weighted
linear least squares. For DKI, we used the package dipy and its
module DiffusionKurtosisModel, again with weighted linear least
squares. Examples of parameter maps are shown in Figure 2.
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FIGURE 1 | The workflow. The diffusion MRI (dMRI) data were acquired using three different acquisition protocols: 3T-diffusion tensor imaging (DTI), 3T-diffusion

kurtosis imaging (DKI), and 7T-DTI (left- most block). The three slices in the left block correspond to the same axial view of the dMRI volume with a b-value of 1,000

s/mm2 in each of the three protocols. Subsequently, dMRI data were processed by seven different processing pipelines (a second block from the left). The processed

data were then used by TractSeg to segment 72 major white matter (WM) tracts (top right most block). The processed dMRI data were also fitted using either DTI or

DKI (depending on the initial acquisition) to extract dMRI parameters. To assess the impact of smoothing prior to model fitting, this fitting step was performed with

different degrees of smoothing, ranging from no to substantial smoothing (right most block second from top). Finally, Cohen’s d was computed from the average and

SD of the parameters within the 72 WM tracts segmented earlier (bottom block).

TABLE 1 | Demographics and image acquisition parameters.

Image acquisition #SLE, #HC Mean age (std)

of HC, SLE

Image resolution

(isotropic, in mm3)

b-values in s/mm2 (# of directions) TR/TE in ms/ms

3T-DTI 63, 20 37 (9) , 36 (9) 2.0 0 (8), 1,000 (64) 7,300/73

3T-DKI 56, 20 37 (9) , 35 (9) 2.3 0 (3), 250 (6), 500 (6), 1,000 (20), 2750 (30) 7,500/103

7T-DTI 54, 21 40 (10) , 40 (9) 2.0 0 (3), 1,000 (30) 8,816/62

Rows show the three protocols: # corresponds to the number of, SLE, patients with systemic lupus erythematosus; HC, human controls; TR, repetition time; TE, echo time. In total

106 subjects participated in this study: 76 patients with SLE and 30 HC. Out of the 106 subjects, 47 were scanned with all three image acquisition protocols (3T-DTI and 3T-DKI and

7T-DTI): 37 patients with SLE and 10 HC.
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FIGURE 2 | Examples of parameter maps. The maps derived by 3T-DTI are labelled in cyan, the ones derived by 7T-DTI in green, and the ones derived by 3T-DKI in

gold color.

2.5. Effect Size Estimates
We evaluated for each tract and diffusion parameter the
groupwise difference between SLE patients and HC by Cohen’s
d (58), which provides an effect size measure (87) defined as:

d = (uHC − uSLE)/s (1)

with

s =

√

((nHC − 1)s2HC + (nSLE − 1)s2SLE)/(nHC + nSLE − 2) (2)

where uHC and uSLE are the mean values of the parameters within
the tract for the HC and SLE groups, respectively, and s is the
pooled SD of the two groups. Moreover, nHC and nSLE are the
sizes and s2HC and s2SLE the variances of the HC and SLE groups,
respectively. To make it easier to compare effect sizes across
parameters, we changed the sign of the effect size estimate in
MD, RD, and AD so that all parameters had positive effect size

estimates. As Cohen’s d is a standardized effect size measure, it
can be more easily compared across studies and populations (88).
Of note, for an unbalanced dataset like ours (more patients than
controls), the pooled SD in the above Cohen’s d formula mostly
reflects the SD of the larger group (i.e., the patients), which tends
to be more heterogeneous and, thus, have higher SD than the
controls group. This will, in turn, provide lower effect sizes than
was would have been observed in a balanced setting. However,
this does not affect the comparison of effect sizes, which is the
main topic of the study.

To assess statistical significance, we note that the 95% CI for
Cohen’s d in the absence of a true effect (a true d of zero) for
group sizes of 56 and 20, as in 3T-DKI spans the range where the
magnitude of d is below 0.54. Effect sizes larger than this can,
thus, be considered significant on a 5% significance level (89).
In the case of both 3T-DTI and 7T-DTI, the level of significance
was set to 0.53, based on the corresponding sizes of the cohorts.
Effect sizes were estimated in 72 tracts and, thus, multiple
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comparison problem arises. We did not correct this, but note that
a Bonferroni-like correction can be applied (90–92). Correcting
for 72 independent tests corresponds to using the 99.9% CI (1
- 0.05/72), which in turn corresponds to a minimum threshold
for a significant effect at d = 0.84. Another way to approach the
multiple comparisons problem is to note that in the absence of
a true effect in all 72 tracts, the probability to still identify more
than seven tracts as significant on the uncorrected significance
level (5%) is less than 5% (93). This means that observing more
than seven tracts as significant on the uncorrected level indicates
a true effect in at least some of those tracts.

3. RESULTS

The results that are primarily reported have been derived from
comparisons using all subjects, but complementary analyses
were also performed using only subjects with data from
all three protocols. These latter results are reported in the
Supplementary Material. For the effect size analysis using
Cohen’s d, we computed mean and SDs of each diffusion
parameter (e.g., FA), that were weighted by each tract probability-
mask. However, before the abovemultiplication, we first excluded
the voxels that in the probability map had a probability value of
less than 0.5.

3.1. WM Fiber-Tracts Segmentation
Figure 3 shows example segmentations of the cingulum and
the fornix across different subjects. While the cingulum was
segmented consistently, a large variation in segmentation
performance is seen for the fornix. Figure 4 shows the
segmentation performance for all tracts in terms of the coefficient
of variation of the tract volume. The analysis was applied
to HC only, as we expect the least variation in that cohort
(Figure 4). The values were averaged for tracts found in both
the left and right hemispheres, resulting in 41 rows. Three
tracts exhibited excessively high variation in tract volume for
data acquired with all three protocols (the fornix, the inferior
cerebellar peduncle, and the superior cerebellar peduncle). For
7T-DTI, another two tracts showed high volume variation (the
anterior commissure and the middle cerebellar peduncle). High
variation in volume was defined as a coefficient of variation
exceeding 0.25, which is considerably larger than expected from
pure variation in anatomy (94). For reference, the coefficient
of variation of the total brain volume, the total intracranial
volume, the total WM volume, and the total gray matter
volume extracted via MRI volumetry is approximately 0.07,
0.12, 0.08, and 0.07, respectively (95). The excessively large
volume variation in the aforementioned tracts indicates that
TractSeg struggled to reliably segment these across the cohort.

FIGURE 3 | Demonstration of how a tract’s volume change across six exemplar human controls for each of the three examined acquisition protocols. We chose to

present the variation in the cingulum (top 3 rows) and in the fornix (bottom three rows), as an example of a tract that does not and does, respectively, challenge

TractSeg in segmenting it. Note that the fornix is a very small tract in contrast to the cingulum that has a more recognizable shape, faciliating in that way TractSeg on

segmenting it and vice-versa for the fornix.
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FIGURE 4 | Evaluation of volume variation in the tracts. The tract segmentation was based on data acquired with 3T-DTI (cyan), 3T-DKI (gold), and 7T-DTI (green)

data. In cases where TractSeg provides the left and right part of one fiber-tract as two different tracts (e.g., in case of left and right arcuate fasciculus), the left and right

parts of the tract were averaged. The vertical dashed line shows the threshold of 0.25, which corresponds to a high variation.

The fornix and the anterior commissures are two of the
smallest tracts and are known to be challenging to segment
with TractSeg (60), as these are both small structures. The
cerebellar peduncles, although larger than the fornix and the
anterior commissure, also presented a segmentation challenge
probably because the diffusion tensors change dramatically
in the region where the peduncles cross (96). Due to the
unreliable segmentation, these five tracts were excluded from
further analysis (i.e., the fornix, commissure anterior, superior,
inferior, and middle cerebellar peduncles). Note that high
volume variation was associated mainly with 7T, as 7T-DTI
gave a higher volume variation among the three protocols in
most of the tracts regardless of the choice of the pipeline
(results shown in Figure 4 were derived by pipeline VII,
however, highly similar results were obtained with all seven
pipelines). Some possible explanations for this are given later in
the discussion.

3.2. Effects of Individual Pipelines
Figure 5 shows effect size estimates for different processing
pipelines. Rows show results for different parameters (mean FA
and mean MD), while columns show results from the three
protocols (3T-DTI, 3T-DKI, and 7T-DTI). The figure shows
that the choice of processing pipeline had a smaller effect than
the choice of acquisition protocol. MPPCA on average (across
all tracts and acquisition protocols) reduced the effect sizes
(by 0.005, 0.018, 0.014, and 0.018 for FA, MD, AD, and RD,
respectively). However, MPPCA had a positive impact on all
diffusion kurtosis parameters, with the strongest effect in RK
(+0.023). Gibbs-ringing removal had amixed impact on the effect
sizes for DTI parameters (-0.010, +0.003, +0.023, and -0.007 for
FA, MD, AD, and RD, respectively), but a positive effect on all
DKI parameters related to diffusivity (MD, AD, and RD), with
the highest increase seen in AD (+0.022). Finally, eddy current
and motion correction on average had a positive effect on all
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FIGURE 5 | Impact of the processing pipeline. The impact of the processing pipelines (x-axis) is evaluated through effect size estimates (Cohen’s d scores, y-axis).

Top row: effect size estimates in mean fractional anisotropy (FA) from 3T-DTI (top left), 3T-DKI (top center), and 7T-DTI (top right). Bottom row: effect size estimates

with mean diffusivity (MD) from 3T-DTI (top left), 3T-DKI (top center), and 7T-DTI (top right). No smoothing was applied. Each dot represents one tract. An orange

dotted line in each plot defines the threshold in effect size above which the result is considered significant.

TABLE 2 | The impact of each processing step (Marchenko-Pastur principal

component analysis (MPPCA), Gibbs, and Eddy) on the effect size.

Parameter Protocol MPPCA Gibbs Eddy

FA 3T-DTI –0.005 –0.028 +0.069

3T-DKI –0.003 –0.013 +0.059

7T-DTI –0.009 –0.017 –0.039

MD 3T-DTI –0.026 +0.009 +0.068

3T-DKI –0.011 +0.006 0.000

7T-DTI –0.029 –0.015 –0.013

AD 3T-DTI –0.019 +0.027 +0.029

3T-DKI –0.011 +0.018 –0.021

7T-DTI –0.020 +0.004 +0.022

RD 3T-DTI –0.026 –0.010 +0.081

3T-DKI –0.010 –0.005 +0.021

7T-DTI –0.024 –0.020 –0.026

MK 3T-DTK +0.020 –0.025 –0.022

AK 3T-DKI +0.005 –0.002 +0.016

RK 3T-DKI +0.010 –0.002 –0.009

Mean effect

over all

parameters

Over all protocols –0.011 –0.005 +0.016

A positive value denotes an increase in effect size, whereas a negative value denotes a

decrease. The rows correspond to the mean of each diffusion parameter.

DTI parameters and increased their effect sizes by 0.031, 0.0003,
0.006, and 0.010 for FA, MD, AD, and RD, respectively. Table 2
shows another overview of the influence of the processing steps
on effect sizes, where the effect of each specific step can be judged
by comparing pipelines with and without that step. Overall, the
incorporation of eddy current and motion correction increased
the effect size by 0.016 on average, while the incorporation of
Gibbs-ringing removal and MPPCA reduced effect sizes by 0.005
and 0.011 on average, respectively.

Figure 6 depicts the change in effect sizes over the whole brain
due to each method. Among all tracts, the strongest negative
impact of MPPCA on the effect size was seen in the isthmus,
the middle longitudinal fascicle, and the thalamo-parietal (top
panel of brains in Figure 6). In these tracts, effect sizes decreased
by more than 0.04 due to MPPCA. Moreover, the inclusion of
MPPCA did not lead to a substantial increase in effect sizes
in any of the tracts. The inclusion of Gibbs removal caused a
slight increase in effect size in the corticospinal tracts (+0.018)
and had a less detrimental effect on effect sizes in general
compared with MPPCA. The inclusion of Eddy reduced effect
sizes in the splenium and the left middle longitudinal fascicle
by more than 0.03. However, it also increased effect sizes by
more than 0.06 in the left striato-fronto-orbital, the left thalamo-
posrcentral, and the left striato-premotor (bottom panel of brains
in Figure 6).
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FIGURE 6 | Depiction of the impact on effect sizes of each processing method. Impact is demonstrated in shades of blue (positive impact) and red (negative impact),

with the former colors denoting an increase in effect size on that tract due to the method and the latter a decrease in effect size due to the method. The top panel

refers to the impact of MPPCA method, the middle panel to the impact of Gibbs method, and the bottom panel to the impact of Eddy method. The depicted results

were obtained by averaging over the mean diffusion tensor and kurtosis parameters, as well as the acquisition protocols.

Overall, Eddy was the most impactful processing step.
Therefore, we performed the subsequent analysis with a pipeline
that included Eddy. Four pipelines met that criterion (pipelines
III, V, VI, and VII). In the end, we chose pipeline VII, which
combines all three tested processing steps, since that pipeline
was the closest among the four to the most preferable processing
scheme in the literature (20, 52).

3.3. Effect of Smoothing
Figure 7 shows the influence of smoothing on the effect size. Four
main patterns were identified. The first and dominant pattern
comprised a decline in effect size with greater smoothing. This
pattern applied to the mean FA (Figure 7A), the SD of FA,
the mean MD (Figure 7C), the SD of AD, and the mean MK
(refer to Figure 7D) and RK. The second pattern was one where
smoothing had little influence on the effect size and applied
to the SD of MD, the mean and SD of RD, and the mean
AK (refer to Figure 7E). The third pattern was one where the
effect size increased slightly with greater smoothing up to a
kernel with a SD of 0.4–0.5 followed by a decline for greater
smoothing. This applied to the SD of the three DKI parameters
(MK, AK, and RK, refer to Figure 7F). The fourth pattern

comprised a slight increase with smoothing and was noted only
for the case of mean AD (refer to Figure 7B). Note that the
smoothing only affected parameter estimation but not the tract
segmentation as smoothing was applied after TractSeg and before
parameter estimation. This analysis suggests that smoothing was
overall detrimental for the effect sizes for all three protocols
and, therefore, subsequent analyses were performed without
smoothing.

3.4. Effects of Magnetic Field Strength and
Acquisition Protocol
Figure 8 shows effect sizes for data acquired with different
diffusion protocols (DTI and DKI) and different magnetic field
strengths (3T and 7T) using the mean (Figure 8A) and the SD
(Figure 8B) of the parameters within the tracts.

Among all parameters from all protocols, the three that had
the largest number of tracts with an effect size above 0.54
(significant before correction for multiple comparisons) were the
mean and SD of FA and the mean RD, all derived by 3T-DTI.
3T-DTI yielded clearly higher effect sizes than 3T-DKI and 7T-
DTI for the mean FA, with an average difference of 0.26 and 0.20,
respectively. The FAwas the parameter with the highest effect size
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FIGURE 7 | Influence of Gaussian smoothing. Different levels of Gaussian smoothing (sigma, x-axis) were evaluated by the effect size estimates (Cohen’s d, y-axis).

(A–F) shows the effect on mean FA from 3T-DTI, mean axial diffusivity (AD) from 3T-DTI, mean MD from 7T-DTI, mean MK from 3T-DKI, mean AK from 3T-DKI, and SD

of RK from 3T-DKI. The box plots show Cohen’s d scores among tracts. Overall, smoothing had a detrimental influence on effect sizes. An orange dotted line in each

plot defines the threshold in effect size above which the result is considered significant.

overall. Among the DKI parameters, RK showed on average the
largest effect sizes (refer to far right plots of Figures 8A,B).

Furthermore, the within-tract SD of the FA and RK exhibited
similar if not higher effect sizes than the mean (Figure 8B). In
some tracts, the SD of FA was the only parameter that exhibited
effect sizes above the significance threshold. The SD of FA, when
derived by the 3T-DTI protocol, was the parameter for which
the most tracts showed significant effects (31 out 41 or 76%
of all tracts), followed by the same parameter when derived by
7T-DTI and 3T-DKI (51 and 32% of all tracts, respectively; see
Figure 8B). In 35 out of the 41 tracts, the effect size from 3T-DTI
was higher than that derived by 3T-DKI. Effect sizes from 3T-
DTI were also higher than those from 7T-DTI in 37 out of the 41
WM tracts. The fact that 3T-DTI yielded the highest number of
tracts with a significant effect size can be appreciated also from
Figures 9, 10, where brighter colors indicate higher effect sizes.

Finally, we also evaluated all results using only the subjects
that were scanned with all three protocols (refer to Figures 11–
15 in Appendix). The outcome of that evaluation was similar to
the one presented in this section (3T-DTI yielded on average the
highest effect sizes), although the margin between 7T-DTI and
3T-DTI was smaller.

4. DISCUSSION

Our analysis of WM pathology in SLE assessed by dMRI
showed that the diffusion protocol had the strongest influence

on effect sizes among the ones examined: diffusion protocol,
magnetic field strength, and processing pipeline. The two DTI
protocols (3T-DTI and 7T-DTI) yielded higher effect sizes
than the 3T-DKI protocol for most parameters. In only three
out of the eight parameter-wise comparisons, did DKI yield
higher effect sizes: the mean AD and the SD of MD and RD
(refer to Figure 8). Overall, FA was the parameter displaying
the highest effect sizes in all the protocols. Using 3T-DTI to
compute FA, 76% of all tracts showed significant effects. The
corresponding number for 7T-DTI was 51% and 32% for 3T-
DKI. The 3T-DKI protocol provided three unique parameters
(MK, AK, and RK), but these generally showed low effect
sizes. Only RK exhibited effect sizes as high as any of the
DTI parameters. These results were consistent across the seven
tested processing pipelines. Interestingly and opposite to our
initial hypothesis, no substantial increase in sensitivity came
with the use of more demanding acquisitions (DKI and 7T).
Does this finding generalize across pathologies and across
variations in the acquisition protocols? This will be discussed
below.

Our observation that DKI is less sensitive than DTI to WM
pathology in SLE is not in accordance with findings in other
pathologies. For example, DKI parameters revealed differences
to a broader extent than DTI parameters across age groups (30),
between patients with Parkinson’s disease and HC (68), and
between patients with MS and HC (31). DKI also demonstrated
a sensitivity superior to that of DTI in Alzheimer’s disease (34)
and temporal lobe epilepsy in children (62). On the other hand,
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FIGURE 8 | Evaluation of the acquisition protocol on the effect size. Columns show different diffusion parameters obtained with different protocols 3T-DTI, 3T-DKI, or

7T-DTI, shown in cyan, gold, and green, respectively. The mean (A) and SD (B) of each diffusion parameter, derived for each protocol were examined. Pipeline VII was

used in all cases. No smoothing was applied. The swarm and box plots show the distribution and quartiles (together with the median) of Cohen’s d values among

tracts, respectively. Overall, 3T-DTI was the acquisition protocol that yielded the three most sensitive diffusion parameters [mean FA, SD of FA, and mean radial

diffusivity (RD)], and exhibited effect sizes above 0.54 a threshold of significance before correcting for multiple comparisons) in the largest number of tracts. Moreover,

the results between 3T-DTI and 7T-DTI were more similar than those between 3T-DTI and 3T-DKI, which implies that the choice of the diffusion protocol impacted the

effect size analysis more than the choice of the magnetic field strength. Kurtosis parameters did not yield significant effect sizes, with the exception of the SD of RK,

which had significant effects in a small number of tracts. An orange dotted line in each plot defines the threshold in effect size above which the result is considered

significant.
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FIGURE 9 | Effect size of diffusion tensor parameters (FA, MD, AD, and RD) over the whole brain, when derived by the different acquisition protocols (3T-DTI, 3T-DKI,

and 7T-DTI). Effect sizes in the depicted brains range from 0.0 (deep purple areas) to 1.0 (yellow areas). Overall, FA and RD were the parameters with the highest

effect sizes across all three acquisition protocols, but the FA derived by 3T-DTI was the diffusion indices with the highest number of areas in the brain exceeding the

value 0.54 of effect size. In the case of FA, 3T-DTI (top panel, first row) yielded the highest number of tracts with significantly large effect size than 3T-DKI (top panel,

second row) and 7T-DTI (top panel, third row) since the brains in the top panel appear brighter than the brains in the second and third panels.
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FIGURE 10 | A summary of the spatial distribution of effect sizes over the whole brain, taking the maximum voxel-wise effect sizes across all diffusion tensor and

kurtosis parameters (FA, MD, AD, and RD for all three acquisition protocols plus MK, AK, and RK in case of 3T-DKI). Effect sizes in the depicted brains range from 0.0

(deep purple areas) to 1.0 (yellow areas). Overall, 3T-DTI was the protocol with the highest effect sizes among all three acquisition protocols, with more voxels with an

effect size exceeding the value 0.54, which was the threshold for significance (turquoise colors).

MD from DTI showed a greater extent of differences across a
WM skeleton than any DKI parameter in subjects with sport-
related concussion (35). Overall, there seems to be a discrepancy
in findings among different diseases (refer to Table 3). This
discrepancy could be due to the specific effect of the pathology
on the WM microstructure. For example, any tissue alteration
that results in constant FA and MD but different MK would be
detected by DKI but not DTI. This could for example happen
due to axonal degeneration in regions with high orientation
dispersion when the intra and extra axonal water have similar
isotropic diffusivities. In such situations, FA would be low due to
the orientation dispersion and MD would be insensitive to the
axonal water fraction. However, MK would be sensitive as the
diffusion heterogeneity would change. Although not considering
this situation exactly, Szczepankiewicz et al. (98) considers
similar scenarios. Finding a scenario in which FA and/or MD
are sensitive while MK is not, as was the case in the present
study, is more challenging and may point to another reason as
an explanation of our findings.

A second reason for a discrepancy in findings with DTI and
DKI could be specific differences in the acquisition protocol. In
our case, the image resolution was lower in the DKI protocol than

in the DTI protocol (2.3 mm × 2.3 mm × 2.3 mm vs. 2 mm ×

2 mm × 2 mm). Voxel size is known to affect group level results
for DTI parameters (99). An increase in voxel size results in a
decrease in FA and an increase inMD, AD, and RD due to both an
increase in partial volume effects and an elevated SNR (100). In
this study, we found that synthetically reducing the resolution by
smoothing generally reduced effect sizes. Whether DTI is more
sensitive than DKI when acquired in the same resolution needs
to be further investigated, however, this is not trivial as the high
b-values employed in DKI attenuate the signal considerably. This
often necessitates a reduction in the spatial resolution to avoid the
noise floor (101). In turn, this may result in reduced effect sizes.
However, as DKI demands a higher baseline SNR thanDTI, this is
an inherent limitation of DKI. High-performance gradient coils
can partially alleviate this limitation by enabling shorter echo
times and, thus, higher baseline SNR (102).

The field-strength analysis showed that 3T-DTI yielded
smaller variation in tract volume and higher effect sizes than
7T-DTI. It could be argued that the latter was due to the
shorter scan time of the 7T-DTI protocol, which featured fewer
diffusion encoding directions than the 3T-DTI protocol (30 vs.
64, respectively). It, thus, had a slight disadvantage in terms
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TABLE 3 | Overview of studies comparing 3T-DTI to 3T-DKI.

References Pathology DKI resolution

in mm

Processing

pipeline

Analysis

method

Sensitivity metric Most sensitive Comment

Gao et al. (62) Epilepsy 2.5 x 2.5 x 2.5 Eddy TBSS PASW Statistics (patients vs

controls)

DKI Small number of subjects

Kamagata et al.

(38)

PD 3.0 x 3.0 x 3.0 - TBSS Student’s t-test (PD vs. HC) DKI DKI useful for evaluating crossing

fibers

Zhu et al. (32) Schizophrenia 2.0 x 2.0 x 2.0 Eddy TBSS % of significantly different

skeleton-voxels (schizophrenia

vs. HC)

none DKI complementary to DTI

Coutu et al. (28) aging 2.0 x 2.0 x 2.0 Eddy TBSS correlation of diffusion

parameters with aging

none DKI complementary to DTI

Zhang et al. (63) PD 1.9 x 1.9 x 3.0 - ROI-based student’s t-test (PD vs. HC) DKI ROIs manually drawn

Billiet et al. (64) aging 2.5 x 2.5 x 2.5 Eddy ROI-based quadratic correlation coefficients

of metrics with age

DTI ROIs based on population-based

template

Lancaster et al.

(35)

mTBI 3.0 x 3.0 x 3.0 Eddy TBSS significant different

skeleton-voxel values (mTBI vs.

HC)

DTI dMRI acquired 6 months after

injury

Chen et al. (34) AD 1.8 x 1.8 x 1.8 Eddy ROI-based classification accuracy (AD, HC) DKI ROIs manually drawn

Grinberg et al.

(30)

aging 1.9 x 1.9 x 1.9 BckgNoise-Eddy TBSS Cohen’s d DKI DTI, DKI varied depending on

anatomy

Chung et al. (65) IWM 2.5 x 2.5 x 2.5 MPPCA-Gibbs-

Eddy-Outliers

TBSS voxel-wise correlation with LNS DKI MK and AWF the only sensitive

parameters

Karlsen et al.

(66)

mTBI 2.5 x 2.5 x 2.5 Eddy TBSS Welch’s t-test (mTBI vs. HC) none Combined utility of DTI and DKI

suggested

Tan et al. (67) Astrocytomas 2.5 x 2.5 x 6.0 Eddy ROI-based t-test (patients vs. HC, via SPSS) DKI Manual estimation of each

parameter’s value

De Santis et al.

(31)

MS 1.5 x 1.5 x 1.5 Eddy TBSS ANOVA DKI -

Kamiya et al. (68) PD 3.0 x 3.0 x 3.0 MPPCA-Gibbs-

Eddy-B1

TBSS and

ROI-based

significant skeleton-points,

correlation with age

DKI Multidimensional diffusion

encoding used

Yang et al. (69) BD 2.0 x 2.0 x 2.0 Eddy TBSS Independent-samples t-test (BD

vs. HC)

DKI Higher fidelity in widespread

regions in DKI than DTI

TBSS, Tract-based Spatial Statistics; PASW, Predictive Analytics Software; PD, Parkinson’s Disease; HC, human controls; Eddy, eddy-current and motion correction; LNS, Letter Number Sequencing; AD, Alzheimer’s Disease; mTBI,

mild Traumatic Brain Injury; BckgNoise; correct for background noise (70); IWM, Impaired Working Memory; MPPCA, Marchenko-Pastur Principal Component Analysis; Gibbs, Gibbs’ artefact removal; Outliers, a processing step to

remove outliers in DTI or DKI fitting (71); AWF, Axonal Water Fraction; MS, Multiple Sclerosis; ANOVA, ANOVA statistical package; BD, Bipolar Disorder; B1, corrected for B1 inhomogeneity (72).
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of protocol performance. An additional analysis of a version
of the 3T-DTI data subsampled to have only 30 directions did
not substantially degrade its performance, however (refer to
Figure 17 in Appendix). Note that studies have investigated the
effect the number of gradient directions has on the accuracy
of direction-sensitive diffusion parameters such as FA, AD, and
RD (99, 103, 104). These studies show that above a certain
number of directions [approximately 25 (103)] the accuracy in
those parameters does not seem to improve substantially from an
increased number of encoding directions (99). We, thus, expect
both protocols to be equally accurate in terms of parameter
estimation. Another aspect that could have contributed to lower
effect sizes at 7T-DTI compared to 3T-DTI is the shorter T2*
relaxation times at 7T. This reduces the intensity of k-space
lines far from the center and, thus, leads to some image blurring
already in the image acquisition step, which reduces effect sizes.

Regarding the high values of coefficient variation in tract
volume in 7T-DTI, one possible reason could be the higher B1
heterogeneity at higher fields (49). This effect causes low signal
intensities especially inferior in the brain and the lateral sides
of the insula. This might explain why we notice the biggest
difference in variation in volume between 3T and 7T acquisitions
in the inferior cerebellar peduncle, the inferior longitudinal
fascicle, the uncinate fascicle, and the striato-fronto-orbital tracts
(Figure 4). Factors other than B1 homogeneity could also be
considered, such as the field-of-view or the number of encoding
directions. For example, Güllmar et al. (105) reported that the size
ratio of the structure to-be-segmented and the size of the input
samples (field-of-view) might have an effect on the performance
of TractSeg. An additional analysis on the variation in tract
volume, comparing the aforementioned three versions of the 3T-
DTI protocol to the 7T-DTI one, showed that despite resampling
the 3T-DTI to having the equal number of directions and field-
of-view, 7T-DTI still shows higher variation in volume than 3T-
DTI in most of the tracts (Figure 16 in Appendix). Therefore,
B1 inhomogeneity should be the primary cause of the increased
volume variation.

A benefit of 7T MRI is that it has a higher baseline SNR
than 3T MRI. Here, we might have undermined the sensitivity
of our 7T-DTI protocol by acquiring images with the same
resolution as in the 3T-DTI protocol (2.0 mm isotropic) rather
than utilizing the higher baseline SNR for a higher resolution.
Of note, De Santis et al. compared 3T-DTI and 7T-DTI at a
higher image resolution than ours (1.5 mm isotropic) and found
slightly higher effect sizes at 7T compared to 3T (31). One future
direction could be the fusion of 3T and 7T, exploiting the perks
of both worlds, with the high angular and spatial resolution,
respectively (97). Apart from these image-protocol-related topics
(refer to Table 4), there may also be microstructure-related
differences between dMRI at 3T and 7T, as relaxation times may
change by different amounts with a field strength in different
compartments. Interestingly, the highest effect sizes in MD
and AD were found with the 7T-DTI protocol. This might
indicate that 3T and 7T are sensitive to different aspects of the
pathophysiology in SLE. Overall, the lack of a clear advantage
with using UHF dMRI in our study agrees with the main message
of a recent review in which the author states that diffusion T
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imaging at UHF, though still a worthwhile pursuit, has manifold
associated challenges and converting the potential of higher
field strengths into "better" diffusion imaging is by no means a
straightforward task (106). More study is needed on a 7T-DTI
protocol that leverages its benefits (higher SNR) and addresses
its weaknesses [e.g., enhancement of B1+ homogeneity using
parallel transmit (pTx) RF coils and RF pulse design approaches
(107)].

In the analysis of processing pipelines, we noticed three
consistent patterns of interest. The first was the minuscule
differences across the data processing pipelines. Correcting for
distortions from motion and eddy currents (Eddy) was the most
beneficial, whereas gross smoothing reduced effect sizes by up
to 20%. Interestingly, smoothing has been applied in many
studies involving DTI or DKI (20, 39, 68, 80–84). In Maximov
et al. (20), it was proposed that the pipeline most sensitive to
pathology in terms of aging combines corrections for motion and
eddy-current induced distortions, susceptibility deformations,
denoising, bias field and Gibbs-ringing removal, together with
fieldmapping and spatial smoothing. However, that study did not
examine each step individually, but only cumulatively. In contrast
to this, our study suggests that the choice of the processing
pipeline does not play a crucial role, although smoothing should
be avoided and motion and eddy current correction should be
included. The latter is in line with our previous results, which
showed that a motion and eddy current correction method
capable of dealing with high b-value data reveals significant
differences where a simpler and worse one did not (108). Note
that this is the first time the study-level impact of individual
state-of-the-art processing steps in dMRI has been analyzed.

We identified four primary strengths of the current study.
The first strength is the relatively large sample sizes (31 HC
and 77 patients with SLE). Second, all processing steps were
evaluated independently. Third, the segmentation of the tracts
was performed by an automatic pre-trained method, which
allowed us to not only investigate tracts over the whole brain but
also eliminate bias from subjective tracking. Fourth, the statistical
analysis of the tracts took place in the native space of each subject
instead of a template space. Previous studies have predominantly
used the Tract-Based Spatial Statistics (TBSS) pipeline to perform
voxel-wise statistical between-group comparison of DTI/DKI
metrics on MNI152 space (109). However, by deriving WM
skeletons from segmentations computed by thresholding FA
maps, the TBSS approach lacks the ability to distinguish certain
adjacentWM tracts, such as the inferior longitudinal and inferior
fronto-occipital fasciculi and, thus, has limited capacity for
anatomical specificity (110).Moreover, TBSS requires an accurate
non-linear coregistration of the FA maps onto the MNI152
standard space and is, therefore, prone to misregistration errors
that bias the final outcome of the study (111).

The study also has few limitations, and here, we consider
four of them. First, we only examined one disease paradigm
(SLE). Even though patients with SLE manifest a variety
of neuropsychiatric symptoms that resemble many other
neurodegenerative diseases (112, 113), the question is which of
our results generalize to other diseases. Our results comparing
DTI and DKI do not seem to generalize across diseases

(Table 3), but we do expect that other pathologies will also
exhibit large variations in effect sizes due to protocol, and this
may be important to consider in meta-analyses. Furthermore,
we do expect that our results concerning different pipelines
will generalize, as well as our observation of reduced effect
sizes from smoothing. Second, the pipelines we considered
included neither outlier detection (52) nor harmonization (114).
Regarding the former, however, the manual inspection did not
reveal any clear outliers in our data, while harmonization was not
necessary for our study, since we ran separate analyses on the
different protocols and investigated between-group effect sizes
per protocol: Cohen’s d is a metric of groupwise differences in the
mean normalized by the joint SD. When computed per protocol,
inter-protocol biases do not need to be considered. Third, the
resolution of DKI was lower than that of DTI (2.3 mm isotropic
vs. 2.0mm isotropic). As mentioned above, the poorer resolution
might explain the lower effect sizes with DKI, in particular,
given that smoothing led to reduced effect sizes. Fourth, not
all subjects were scanned with all three protocols, which might
have induced some systematic sample-related differences in the
results. However, the majority of subjects overlapped and the
overall picture did not change when including only matching
subjects (refer to Supplementary Material).

5. CONCLUSION

In conclusion, effect sizes for detecting WM changes in patients
with SLE were higher for DTI than DKI and higher for 3T
than 7T. However, our results suggest that adjustments could be
made to improve the protocols. For example, the sensitivity of
7T-DTI could potentially be enhanced by leveraging the higher
baseline SNR of 7T for higher image resolution. Similarly, high-
performance gradient coils could be utilized to reduce echo times
and, thereby support a higher image resolution in DKI. Among
the processing choices, eddy current and motion correction
increase effect sizes, while no clear benefits seemed from
denoising (MPPCA) and Gibbs-ringing removal. Smoothing was
clearly detrimental for the effect sizes. However, the choice of
diffusion protocol had a much greater impact than the choice of
processing strategy.
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