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Introduction: In this study, we examine similarities and differences between 52 patients

with idiopathic normal pressure hydrocephalus (iNPH) and 17 patients with subcortical

small vessel disease (SSVD), in comparison to 28 healthy controls (HCs) by a panel of

cerebrospinal fluid (CSF) biomarkers.

Methods: We analyzed soluble amyloid precursor protein alpha (sAPPα) and beta

(sAPPβ), Aβ isoforms −38, −40, and −42, neurofilament light protein (NFL), glial fibrillary

acidic protein (GFAP), myelin basic protein (MBP), matrix metalloproteinases (MMP −1,

−2, −3, −9, and −10), and tissue inhibitors of metalloproteinase 1 (TIMP1). Radiological

signs of white matter damage were scored using the age-related white matter changes

(ARWMC) scale.

Results: All amyloid fragments were reduced in iNPH and SSVD (p < 0.05), although

more in iNPH than in SSVD in comparison to HC. iNPH and SSVD showed comparable

elevations of NFL, MBP, and GFAP (p < 0.05). MMPs were similar in all three groups

except for MMP-10, which was increased in iNPH and SSVD. Patients with iNPH had

larger ventricles and fewer WMCs than patients with SSVD.

Conclusion: The results indicate that patients with iNPH and SSVD share common

features of subcortical neuronal degeneration, demyelination, and astroglial response.

The reduction in all APP-derived proteins characterizing iNPH patients is also present,

indicating that SSVD encompasses similar pathophysiological phenomena as iNPH.
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INTRODUCTION

Idiopathic normal pressure hydrocephalus (iNPH) is a
potentially reversible disorder and one of the very few treatable
forms of dementia as shunt surgery improves around 80% of the
patients (1, 2). The prevalence may be as high as 0.5–2.9% in
people aged 65 or above (3–5). However, only 20–30% of patients
are treated (5–8), largely due to underdiagnosis. There are no
specific diagnostic markers available, diagnosis is presently based
on clinical and radiological assessments in combination with
cerebrospinal fluid (CSF) dynamic tests (9). Patients with iNPH
exhibit impaired gait, balance and motor performances, reduced
bladder control, and a fronto-subcortical cognitive and conative
impairment with reduced volition, executive dysfunction, and
memory loss (10). MRI studies have revealed that, apart from the
hallmark of ventricular enlargement, periventricular and deep
white matter hyperintensities (PVH and DWMH, respectively),
markers of small vessel disease, are common in iNPH (11). iNPH
patients with PVH and DWMHhave been shown to respond well
to shunting (12), but some studies have found the improvement
of patients with signs of cerebrovascular disease (CVD) to be less
pronounced than in those without (13, 14).

Patients with subcortical small vessel disease (SSVD),
sometimes also referred to as Binswanger’s disease, exhibit
a fronto-subcortical cognitive impairment similar to iNPH
and may show similar patterns of gait, balance, and urinary
dysfunction (15). Furthermore, PVH and DWMH are hallmarks
of SSVD, and enlargement of the brain ventricular systemmay be
present, at least in later stages of the disease, partly due to brain
atrophy. Adding to the complexity, it has been suggested that
patients fulfilling the diagnostic criteria for SSVD can improve
after shunt surgery (16). Moreover, a negative CSF tap test
cannot be used to exclude patients with iNPH from shunt surgery
(17, 18). Hence, to distinguish between iNPH and SSVD and to
identify patients that might experience symptom relief following
shunt surgery constitutes a major challenge.

Several studies have reported on both MRI and CSF
biomarkers of possible differential diagnostic value for iNPH and
SSVD. However, none of these have proven useful in the clinical
setting (11, 19–23). A number of CSF biomarkers have been
introduced to assess different aspects of neurodegeneration, for
example, in Alzheimer’s disease (AD) [for a review see ref. (24)].
Putative CSF biomarkers reflecting brain changes in SSVD have
been reviewed by Wallin et al. (25). We have reported that a
combination of CSF biomarkers reflecting amyloid metabolism

(where in iNPH all APP fragments are reduced), cortical
neuronal degeneration, and astrocyte activation could separate

iNPH from movement and cognitive disorders (26), such as
vascular dementia, with good sensitivity and specificity, and
is thought to distinguish the pathophysiology in iNPH from
these disorders.

To analyze similarities and differences, the biomarkers chosen

in this study were soluble amyloid precursor protein alpha
(sAPPα) and beta (sAPPβ), Aβ isoforms −38, −40, and

−42 (Aβ38, Aβ40, and Aβ42, reflecting APP metabolism),
neurofilament light protein (NFL, reflecting subcortical neural
degeneration), glial fibrillary acidic protein (GFAP, reflecting

astroglial response), myelin basic protein (MBP, reflecting
demyelination), matrix metalloproteinases (MMP −1, −2, −3,
−9, and−10, reflecting subcortical tissue remodeling), and tissue
inhibitors of metalloproteinase 1 (TIMP1).

The aim of this study was to explore differences and
similarities in CSF biomarkers between iNPH and SSVD. As
the subcortical picture is overlapping in iNPH and SSVD,
we included a biomarker panel reflecting subcortical damage
and remodeling, comprising biomarkers reflecting amyloid
pathology, subcortical neuronal degeneration, myelin damage,
astroglial response, and extracellular matrix remodeling in search
for pathophysiological similarities and differences. CSF from
healthy controls (HCs) was examined as a reference.

MATERIALS AND METHODS

Subjects
The study included 52 patients diagnosed with iNPH (aged 72;
68–79 (median; IQR) years; 29 men and 23 women), 17 patients
diagnosed with SSVD (aged 72; 66–76 years; 5 men and 12
women) and 28 HCs (aged 67; 66–71; 18 men and 10 women).

The patients with iNPH were diagnosed between 2007
and 2012 at the Hydrocephalus Research Unit, Sahlgrenska
University Hospital, Gothenburg, Sweden according to
international guidelines (9).

The patients with SSVD, recruited between 2001 and 2012,
were part of the Gothenburg mild cognitive impairment (MCI)
study, comprising middle-aged to young elderly individuals with
self-observed or informant-reported cognitive decline assessed
by the physician as significant and without an obvious underlying
causes, such as brain tumor, subdural hematoma, and major
stroke (27). SSVD was diagnosed using the Erkinjuntti criteria
(28). More specifically, the patients were required to have white
matter changes [WMCs; mild, moderate, or severe according to
Fazekas classification (28)] and predominant fronto-subcortical
symptoms, such as mental slowness, executive dysfunction,
and extrapyramidal motor signs, without pronounced memory
loss. If WMCs were only mild, SSVD was diagnosed only
if parietotemporal lobe syndromes, i.e., dysphasia, dyspraxia,
dysgnosia, and loss of memory, were not marked (in which case
mixed dementia, i.e., AD plus SSVD was indicated). Neither
patients with mixed AD/SSVD dementia nor those with specific
non-vascular neurodegenerative disorders with gait deficits, such
as progressive supranuclear palsy and Parkinson’s disease, were
included in the study.

Healthy controls were primarily recruited through senior
citizens organizations, e.g., at informationmeetings on dementia,
and a small proportion were relatives of patients, also as part
of the Gothenburg MCI study (27). To be regarded as healthy,
the controls should not have experienced or exhibited any
cognitive decline or have had diseases known to cause cognitive
impairment at the time of inclusion.

CSF Analyses
Lumbar CSF was obtained from the patients with iNPH
prior to surgery and from SSVD and HC at the time of
medical examination according to a standardized protocol. All
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lumbar punctures were performed in the morning to avoid
any influence of possible diurnal fluctuations in biomarker
levels and with the patient in a recumbent position. CSF
samples were drawn at the lumbar vertebrae L3/L4 or L4/L5
interspace; the first portion of CSF was discarded to avoid
blood contamination. The CSF was collected in polypropylene
tubes and centrifuged at 2,000× g at room temperature for
10min. The ensuing supernatant was aliquoted in screw-
cap polypropylene tubes and stored at −80◦C pending
biochemical analyses.

The concentrations of the amyloid-beta (Aβ) peptides
−38, −40, and −42 and sAPP-α and -β, MMP −1, −2,
−3, −9, −10, and TIMP1 were measured using single- or
multiplex electrochemiluminescent immunoassays (Meso Scale
Discovery, Rockville, MD, USA), following the instructions of
the manufacturer with minor modifications. The neurofilament
light chain (NFL) ELISA (NF-light R©, UmanDiagnostics, Umeå,
Sweden) analysis was performed according to a previously
established protocol (29), with minor modifications. GFAP
concentration was measured using a previously described in-
house ELISA method (30). The analysis of MBP was performed
with an ELISA (Active R© MBP, Diagnostic Systems Laboratories
Inc., Webster, TX, USA), according to the instructions of the
manufacturer. Intra- and inter-assay coefficients of variation
were below 15% for all assays. All CSF analyses were performed
batchwise in one round of experiments by laboratory technicians
who were blinded to the clinical data.

Radiological Evaluation
To stage subcortical damage by extent and distribution ofWMCs,
scans from iNPH patients and SSVD patients were evaluated by
the age-related white matter changes (ARWMC) scale, which can
be used for both CT and MRI images (28). WMCs were defined
as bright lesions ≥5mm on transverse relaxation (T2), proton
density (PD), or fluid-attenuated inversion recovery (FLAIR)
sequences on MRI or as hypodense areas of ≥5mm on CT.
Ratings weremade in five different brain regions: frontal, parieto-
occipital, temporal, basal ganglia, and infratentorial. In each
region, the left and right hemispheres were rated separately,
giving a total of ten regions. In each region, the ARWMC was
rated from 0 to 3 (0 = no lesions; 1 = focal lesions; 2 =

beginning confluence of lesions, and 3 = diffuse involvement
of the entire region). Evans’ index (EI) was determined on
transaxial images as the ratio between the maximum diameter
of the frontal horns and the maximum inner skull diameter and
used as a measure of ventricular enlargement. All patients with
iNPH and SSVD were rated by the same observer (AJ). MRI
or CT images were lacking for one iNPH and three patients
with SSVD.

Statistics
Non-parametric statistical methods were used in all analyses
due to non-symmetrical distributions and/or substantial
differences in variances between groups (generally larger
among patients than among controls). The Kruskal-Wallis
one-way analysis of ranks (KW) was used to compare all

TABLE 1 | Age, sex, and mini-mental state examination (MMSE) in idiopathic

normal pressure hydrocephalus (iNPH), subcortical small vessel disease (SSVD),

and controls.

iNPH

n = 52

SSVD

n = 17

Controls n

= 28

Age, median

(IQR)

72 (68–79)# 72 (66–76) 67 (66–71)

Female, n (%) 23 (44 %) 12 (71 %) 10 (36 %)

MMSE,

median (IQR)

24 (22–27) ### 27 (25–28)&&& 30 (29–30)

Age in years and mini-mental state examination (MMSE) are presented as median and

interquartile range (IQR). Significance testing was made by Wilcoxon-Mann-Whitney U-

test and shown as #p < 0.05, ###p < 0.001 (iNPH vs. controls), &&&p < 0.001 (SSVD

vs. controls).

three groups at once. The Wilcoxon-Mann-Whitney U-
test was used for post-hoc analysis and for comparisons
between pairs of groups. As the number of participants
was few and the authors wished to avoid type 2 errors, no
correction for the multiple comparisons was made. Alpha
was set at p < 0.05. All analyses were performed in SPSS
version 25.0 for Windows (IBM Corp, Armonk, NY, USA.
Released 2014).

Ethics
Participants (patients and/or their close relatives and HC) gave
their written informed consent for participating in the study
and for future results being published, in accordance with the
World Medical Association Declaration of Helsinki. This study
was approved by the Swedish Ethical Review Authority in
Gothenburg, Sweden.

RESULTS

There was no difference in age or MMSE scores between patients
with iNPH and SSVD, but the SSVD group had a higher
percentage of women. Compared to controls, patients with iNPH
were older, there were more women in the SSVD group and both
groups had lower MMSE scores (Table 1).

CSF Biomarkers
All APP-derived proteins were lower in iNPH than in SSVD and
controls and lower in SSVD patients than in controls. Markers of
WMCs, subcortical neuronal degeneration (NFL), demyelination
(MBP), and astroglial response (GFAP), were increased in
iNPH and in SSVD compared to controls. Of the markers of
extracellular matrix remodeling, MMP-10 was increased in iNPH
and SSVD in comparison to controls Table 2, Figures 1, 2).

Imaging Measures
On the group level, both iNPH and SSVD patients exhibited
dilated ventricles, as indicated by an EI > 0.3, although patients
with iNPH had more pronounced ventricular enlargement. Of
the 14 patients with SSVD who were included in the radiological
evaluation, 9 patients had an EI of 0.3 or above (64.3%). ARWMC
scores were higher in SSVD than in patients with iNPH (Table 3).
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TABLE 2 | Cerebrospinal fluid (CSF) biomarker concentrations in iNPH, SSVD, and healthy controls.

iNPH SSVD Controls

n = 52 n = 17 n =28

sAPPα 384 (303–593)###,§§ 683 (475–847)& 850 (694–1207)

sAPPβ 227 (170–325)###,§§ 417 (232–458)&&& 516 (446–664)

Aβ38 1,333 (823–1,928)###,§§ 2,196 (1,749–2,505)&& 2,855 (2,266–3,261)

Aβ40 3,541 (2,206–5,648)###,§§ 5,428 (4,678–6,838)& 7,009 (5,570–7,814)

Aβ42 361 (232–496)### 474 (320–558)&& 693 (510–931)

NFL 1,592 (1,012–2,519)### 1,638 (1,150–3,149)&&& 889 (694–1,072)

GFAP 876 (659–1,146)### 820 (472–976)& 559 (381–718)

MBP 1,997 (1,407–2,503)### 1,691 (1,461–2,351)&& 1,446 (1,228–1,632)

MMP−1 26 (16–47) 34 (20–54) 24 (19–33)

MMP-2 21,190 (18,965–23,600) 22,244 (21,146–25,104) 21,317 (18,423–23,549)

MMP-3 221 (162–322) 250 (186–372) 238 (201–344)

MMP-9 160 (114–205) 163 (107–193) 129 (89–160)

MMP-10 49 (38–67)# 63 (40–76)& 42 (31–49)

TIMP-1 99,329 (87,306–113,161) 105,464 (87,590–142,345) 86,094 (78,696–107,987)

CSF biomarker concentrations in pg/ml shown as medians and interquartile ranges (IQR). Wilcoxon-Mann-Whitney U-test. #p < 0.05, ##p < 0.01, ###p < 0.001 (iNPH vs. controls);
§§p < 0.01, (iNPH vs. SSVD); &p < 0.05, &&p < 0.01, &&&p < 0.001 (SSVD vs. controls). iNPH, idiopathic normal pressure hydrocephalus; SSVD, subcortical small vessel disease.

sAPP, soluble amyloid precursor protein; Aβ, amyloid-beta; NFL, neurofilament light chain; GFAP, glial fibrillary acidic protein; MBP, myelin basic protein; MMP, matrix metalloproteinase;

TIMP, tissue inhibitor of metalloproteinase.

FIGURE 1 | APP-derived cerebrospinal fluid (CSF) proteins in 52 patients with idiopathic normal pressure hydrocephalus (iNPH), 17 patients with subcortical small

vessel disease (SSVD), and 28 controls. Concentration is plotted as individual values. Bars indicate median values. Only significant values are marked. iNPH,

idiopathic normal pressure hydrocephalus; SSVD, subcortical small vessel disease; sAPP, soluble amyloid precursor protein; Aβ, amyloid-beta. *p < 0.05, **p < 0.01,

***p < 0.001.
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FIGURE 2 | Cerebrospinal fluid (CSF) biomarkers of white matter damage, astroglial response, and extracellular matrix remodeling in 52 patients with iNPH, 17 with

SSVD, and 28 controls. Concentration is plotted as individual values. Bars indicate median values. Only significant values are marked. iNPH, idiopathic normal

pressure hydrocephalus; SSVD, subcortical small vessel disease; NFL, Neurofilament light protein; GFAP, glial fibrillary acidic protein; MBP, myelin basic protein; MMP,

matrix metalloproteinases; TIMP, tissue inhibitors of metalloproteinases. O indicates values outside the axis.

DISCUSSION

In this study, we show that all APP-derived proteins were lower

in both iNPH and SSVD compared to controls, patients with
iNPH exhibited a more pronounced reduction than patients with
SSVD, while biomarkers related to white matter damage and
astroglial response were increased in both disorders. Further,
radiological WMCs were more pronounced in SSVD than in
iNPH, whereas patients with INPH had more pronounced
ventricular enlargement.

APP-Derived Biomarkers
A reduction of all measured APP-derived proteins in CSF has
been shown repeatedly in iNPH and thus, this study corroborates
earlier results (31–35). It has also been shown in iNPH that CSF
concentrations of amyloid precursor protein-like protein (APLP)

and its derivatives, processed by the same enzymatic machinery,
are not affected in the same manner as APP-derived proteins,
which points to a specific disturbance of APP-metabolism in
iNPH, possibly due to decreased periventricular metabolism (36).
An additional proposed mechanism is a reduced clearance of
these proteins from the interstitial fluid to the CSF (37). The
pattern of reduction of all APP proteins in SSVD reported
here is similar to that in iNPH, albeit deviating less from the
concentrations in CSF of controls. Lower Aβ42 in iNPH than in
SSVD has been reported previously (38).

Biomarkers of Neuronal Degeneration,
Myelin Damage, and Astroglial Response
Neurofilament protein is the dominant protein of the axonal
skeleton and as a CSF biomarker, it reflects neuronal death
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TABLE 3 | Age-related white matter changes (ARWMC) scores and Evans’ Index

in patients with iNPH and SSVD.

Brain region iNPH

n = 51

SSVD

n = 14

Frontal

R 1 (1–2) 2 (2–3)

L 1 (1–2) 2 (2–3)

Parietal-occipital

R 1 (1–2) 2.5 (1–3)

L 1 (1–2) 2.5 (1–3)

Temporal

R 0 (0–1) 0 0–0)

L 0 (0–1) 0 (0–0.25)

Basal ganglia

R 0 (0–1) 1 (0–2.25)

L 0 (0–0) 1 (0–2.25)

Infratentorial

R 0 (0–1) 1 (0–2)

L 0 (0–1) 0.5 (0–2)

Total 7 (4–11) 12 (8–22)**

Evans’ Index 0.4 (0.37–0.44) 0.31 (0.27–0.38)***

ARWMC scores are presented for each sub-region, right (R) and left (L) hemisphere

separately, and as total scores. Values are given as median and interquartile ranges.

**p < 0.01, ***p < 0.001.

and axonal degeneration (39, 40). In iNPH and SSVD, multiple
studies have shown an increase of NFL in CSF, corroborating
the results on NFL reported here (31, 34, 38, 41), the
similarly increased NFL levels implying a comparable degree or
mechanism of axonal degeneration in these disorders.

Increment of MBP, a constituent of the myelin sheath and
marker of damage to oligodendroglia, reported here for iNPH
and SSVD, is in line with the periventricular and deep white
matter damage and has previously been shown to be increment
in both iNPH (31) and SSVD (42). We also show that GFAP,
indicative of reactive astrocytes and astroglial response, is
increased in iNPH and SSVD patients alike, which has been
reported earlier (19, 43, 44). Again, levels are similar, indicating
similar degrees of astroglial response in these disorders. These
similarities in white matter degeneration, hinted at by the
NFL, MBP, and GFAP concentrations, are contradicted by the
difference in radiological WMCs as indicated by the higher
ARWMC score in patients with SSVD. These findings are
in line with the findings of Abu-Rumeileh et al., who found
no correlation between increased levels of CSF and ARWMC
rating (34).

Matrix Metalloproteinases
To our knowledge, CSF levels of MMPs or TIMPs have not
earlier been reported in iNPH in relation to HC or SSVD.
Other studies have shown that ECM proteins, MMPs, and their
substrates increase iNPH following shunt surgery (45). MMPs
are believed to be activated by ischemic conditions and to play
a major role in neuro-inflammation by, e.g., disruption of the

blood brain barrier (BBB) and degradation of substances in
the extracellular matrix (ECM), promoting ECM turnover (46).
Inhibition of the MMPs is primarily regulated by TIMPs that
are also thought to have independent biological actions. Here,
increased CSF levels of MMP-9 and TIMP1 (at trend level),
together with increased NFL and MBP, are in agreement with
earlier suggestions of what characterizes a subcortical CSF profile
and with earlier findings in patients with SSVD (42). This
again indicates corresponding pathophysiological processes in
the two disorders, albeit more pronounced in iNPH. Although
interesting from a pathophysiological standpoint, this study does
not support the use of these MMPs for diagnosing iNPH.

Patients with SSVD had more abundant WMCs on MRI
or CT than patients with iNPH, why we expected the CSF
biomarkers reflecting white matter damage, NFL and MBP, to
be higher in SSVD. This, however, was not the case. The reason
for this discrepancy between the biochemical similarity and
radiological differences could be a more active degeneration
of white matter in iNPH and thus augmented leakage to the
CSF, despite less radiological evidence at standard sequences
in CT or MRI. Alternatively, the pathophysiology in iNPH is
more dynamic, with potentially reversible functional changes,
whereas SSVD is characterized by more static and irreversible
changes of the white matter, which the CSF biomarker pattern
might suggest. Another radiological approach, e.g., perfusion-
or diffusion-weighted MR imaging, could probably give an even
better estimate of qualitative differences in the PVH andDWMH.

A possible interpretation of our results is that SSVD is affected
by the same pathophysiological process as iNPH although to
a lesser degree. In earlier reports, we have proposed that
SSVD with ventricular enlargement may represent one form
of hydrocephalus (11) and that iNPH pathology may induce
periventricular vascular changes (47) or, alternatively, that severe
vascular pathologymay cause a CSF dynamic disturbance in itself
(16). We speculate that the ventricular dilatation in SSVD, with
64% showing EI > 0.3, could be both related to CVD-related
atrophy and secondary to a CSF dynamic disturbance similar to
that seen in iNPH.

Idiopathic normal pressure hydrocephalus is characterized
by disturbed CSF dynamics. CSF is absorbed through the
periventricular capillaries and perfusion is reduced in the
periventricular tissue (48, 49) which in turn leads to oxygen
deprivation of the vulnerable glial cells. In SSVD, the WMCs
are regarded as secondary to an arteriolar dysfunction and
the reduced ability of the vessels to supply the highly
perfused subcortical tissue (50). Vascular risk factors, such as
hypertension, diabetes, and hyperlipidemia, are important in
both iNPH and SSVD (15, 51, 52) and are likely the causes of
arteriolar dysregulation. The deep white matter is affected in
both diseases as indicated by the ARWMC rating reported here,
but the ventricles are, at a group level, larger in iNPH. The
ventriculomegaly in iNPH is considered secondary to the CSF
dynamics whereas the enlargement in SSVD is supposedly due
to atrophy, with loss of white matter, but, as discussed earlier, a
certain element of disturbed CSF flow could be expected in SSVD.
Our results further enhance the similar affection of subcortical
structures in the two disorders.
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The overlap of clinical, radiological, and biochemical
characteristics is considerable and stresses the delicate questions
facing the diagnosing clinician. It has been shown that patients
with iNPH and extensive WMC can respond to shunt treatment
(16, 53). A double-blind placebo-controlled study showed that
iNPH patients with the heavy burden of vascular pathology
and a negative CSF tap test can benefit from shunt surgery
(16). It has even been proposed that the iNPH state may
induce periventricular vascular changes or, alternatively, that
severe vascular pathology may cause a CSF dynamic disturbance
(11, 47). Our results indicate that the overlap is also evident
in CSF biomarkers reflecting subcortical damage. As such,
these biomarkers do not seem to hold any clear differential
diagnostic value.

The similarities point to the importance of considering a
CSF dynamic disturbance also in patients with SSVD and
enlarged ventricles. Therefore, the next step should be to
further examine which patients with SSVD might be diagnosed
with iNPH and considered eligible for shunt surgery. Further,
in future studies, it would be of interest to prospectively
study the development of iNPH and SSVD to gain an
understanding of the progression of pathophysiological events
in iNPH and SSVD, and how these events are reflected in the
biomarker changes.

There are some limitations that need to be addressed. We
have tried to select as clear-cut patient groups as possible,
diagnosing patients at specialized clinics for iNPH, and SSVD
using up-to-date diagnostic criteria. The diagnoses are, however,
clinical and without post-mortem verification. Given the
similarities of these disorders and potential overlap between
diagnostic criteria, we cannot rule out the possibility that
patients with SSVD with enlarged ventricles could have been
diagnosed as iNPH or vice versa. Moreover, as patients with
abnormal Aβ42/Aβ40 ratio were not sought for and excluded,
the inclusion of some cases of comorbid iNPH or SSVD
and preclinical AD cannot be fully ruled out. The patients
included reflect the routine clinical setting and we believe
that the results reported here are representative and mirror
true pathophysiological characteristics of iNPH and SSVD.
One limitation is the rather small group sizes, especially the
SSVD group, and HC, which may have caused more subtle
differences in biomarker concentrations to be undetected due
to low statistical power. Studies comparing larger groups are
therefore warranted.

Patients with iNPH and SSVD have parts of the cognitive
profile in common. MMSE was used to grade the severity
of cognitive decline but is a rather crude tool for cognitive
staging, and therefore, might underestimate differences between
the groups. The radiological rating of WMC was done using
the ARWMC scale because some patients had undergone
MRI and some CT. A weakness of this scale is that
it does not differ between periventricular and deep white
matter changes.

CONCLUSION

By examining CSF biomarkers in patients with iNPH and
SSVD and in HCs, we show that there are some similarities

in the CSF biomarker pattern of iNPH and SSVD and
that this pattern is different from that of HC. Patients
with iNPH exhibit greater deviations from HC regarding
APP-derived proteins than patients with SSVD, but these
changes, along with increased markers of white matter
damage and astroglial response, are also evident in patients
with SSVD. Radiologically, patients with SSVD display
more extensive WMCs. We argue that the underlying
pathophysiology in iNPH and SSVD might share common
features. The presumable overlaps and divergences in pathology
deserve further investigation; expanding the knowledge
of how vascular small vessel disease and CSF dynamic
disturbances are interrelated might render idiopathic NPH
less idiopathic.
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