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Purpose: Lesion number and burden can predict the long-term outcome of multiple

sclerosis, while the localization of the lesions is also a good predictive marker of disease

progression. These biomarkers are used in studies and in clinical practice, but the

reproducibility of lesion count is not well-known.

Methods: In total, five raters evaluated T2 hyperintense lesions in 140 patients with

multiple sclerosis in six localizations: periventricular, juxtacortical, deep white matter,

infratentorial, spinal cord, and optic nerve. Black holes on T1-weighted images and brain

atrophy were subjectively measured on a binary scale. Reproducibility was measured

using the intraclass correlation coefficient (ICC). ICCs were also calculated for the four

most accurate raters to see how one outlier can influence the results.

Results: Overall, moderate reproducibility (ICC 0.5–0.75) was shown, which did not

improve considerably when the most divergent rater was excluded. The areas that

produced the worst results were the optic nerve region (ICC: 0.118) and atrophy

judgment (ICC: 0.364). Comparing high- and low-lesion burdens in each region revealed

that the ICC is higher when the lesion count is in the mid-range. In the periventricular

and deep white matter area, where lesions are common, higher ICC was found in

patients who had a lower lesion count. On the other hand, juxtacortical lesions and

black holes that are less common showed higher ICC when the subjects had more

lesions. This difference was significant in the juxtacortical region when the most accurate

raters compared patients with low (ICC: 0.406 CI: 0.273–0.546) and high (0.702 CI:

0.603–0.785) lesion loads.

Conclusion: Lesion classification showed high variability by location and overall

moderate reproducibility. The excellent range was not achieved, owing to the fact that

some areas showed poor performance. Hence, putting effort toward the development

of artificial intelligence for the evaluation of lesion burden should be considered.

Keywords: multiple sclerosis, lesion, MRI, intraclass correlation, interobservator variability, reproducibility

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2022.843377
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2022.843377&domain=pdf&date_stamp=2022-05-10
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:kincses.zsigmond.tamas@med.u-szeged.hu
https://doi.org/10.3389/fneur.2022.843377
https://www.frontiersin.org/articles/10.3389/fneur.2022.843377/full


Bozsik et al. Lesion Count Reproducibility in MS

INTRODUCTION

Multiple sclerosis (MS) is a chronic demyelinating autoimmune
disease of the central nervous system. MRI has an important role
in the diagnosis and follow-up of the disease. It is a sensitive tool
in identifying the prominent features of the disease, lesions in the
white matter, gray matter, and the spinal cord. Therefore, MRI
has become the cornerstone of the diagnosis (1, 2).

The number of white matter lesions and the lesion volume
have been associated with the long-term outcome of the disease
(3–5). It seems that certain lesion locations have special predictive
value for disease progression. The number of cortical lesions was
shown to have predictive value for the clinical outcome (6, 7).
Infratentorial and spinal lesions have an outstanding role in the
development of clinically significant disabilities (8, 9).

Consequently, it is not only important to estimate the number
of lesions to establish the dissemination of the disease. Lesion
burden and location serve as predictive factors for long-term
outcomes. A high lesion load might help to characterize patients
with highly active multiple sclerosis (10), a patient population
that may require a different therapeutic approach.

Various bodies of literature on imaging provide sufficient
information about structured reporting in multiple sclerosis,
which is also recommended by the recent guideline of the
MAGNIMS society. Typical features of the disease were depicted
in various templates (11, 12) considered to provide adequate
information for neurologists. These templates are common in
estimating the number of T2 hyperintense lesions in different
brain regions.

The reproducibility of the lesion counts was scarcely
investigated (13–15). Most of these studies were conducted in the
early times of MS imaging on low magnetic field strength. They
concentrated on diagnostic performance, rather than the number
of lesions in various regions.

While it is known that the manual lesion segmentation
is cumbersome and it is expected that there are issues with
reproducibility, these were not systematically evaluated with the
current state-of-the-art images. This issue is crucially important
since deep learning-based automatic lesion segmentation
approaches often rely on manually segmented teaching data.

In our study, we aimed to (1) determine the lesion
detection disparity of five raters in the clinically relevant lesion
localizations; (2) the impact of expertise in MS radiology on
the identification of lesions; (3) the effect of lesion-load on the
raters’ performance.

TABLE 1 | Clinical data of the patients.

Mean SD Min Max

Age 40.3 10.3 19.3 73.2

DD 9.82 5.29 0 28

EDSS 1.49 1.42 0 6.5

DMT (yes/no) 130/10

DD, disease duration; EDSS, expanded disability status scale; DMT, disease-

modifying treatment.

METHODS

Participants
We gathered 140 random clinical MRI scans from our MS
database who suffered from the relapsing remitting form of the
disease. Diagnosis of MS was performed according to the 2010
McDonald criteria (16). A detailed clinical report was available
about each patient at every 3 months. The inclusion criteria was
as follows: relapsing-remitting disease course with no relapse 6
months before or after the MR scan. The clinical features of the
patients are depicted in Table 1.

Image Acquisition
All the MRI data were acquired on a 3T GE Discovery 750w
scanner. We outlined the imaging protocol in our recent
publication (17, 18). Structural images were acquired using 3D
axial fast spoiled gradient echo (FSPGR) T1-weighted images
(TR = 450ms, TE = 4.2ms, FOV = 256mm, slice thickness
1mm, flip angle 12), 2D spin-echo (SE) T1-weighted images
(TR = 500ms, TE = 4.2 s, FOV = 240mm, slice thickness
1.4mm, flip angle 73), 3D sagittal fluid-attenuated inversion
recovery (FLAIR) (TR = 6.7ms, TI = 1.8ms, FOV = 250ms,
slice thickness 1.4mm), and 3D double inversion recovery images
(DIR) (TR= 7,000ms, TE= 90ms, TI= 546ms, TI2= 2,900ms,
FOV= 250mm, slice thickness 1.4mm), 2D axial T2 and proton
density (PD) weighted dual echo fast spin echo sequences (TR
= 3,000ms, TE = Min Full, TE2 = 102ms, FOV = 240mm,
flip angle 125, slice thickness 3.0mm), and 2D coronal short
tau inversion recovery (STIR) images on the optic nerve and
the chiasm (TR = 3,000ms, TE = 42ms, TI = 185ms, FOV =

240mm, flip angle 111).
The ethics committee of the Medical University of Szeged

approved the study and all study participants gave their written
informed consent in accordance with the Declaration of Helsinki
(Ref. No. 56/2011).

Raters
Five raters who were qualified in the field of MS but are working
in different specialties and on various levels: radiologist (IP: 14
years of experience in the field of MS), radiology resident (FK: 3
years of experience in the field of MS), neurologist (TK: 12 years
of experience in the field of MS), neurology resident (ET: 4 years
of experience in the field of MS), and a Ph.D. fellow (BB: working
with MS for 2 years) were selected to evaluate the scans by lesion
count and localization.

Lesion Classification
The five raters evaluated MR images independently on identical
workstations using the same report template. Images were
evaluated on the Biotronics 3DNet PACS and visualization tool
(Biotronics3D, London, UK).

The definition of a white matter lesion was ovoid T1/FLAIR
hypo/hyperintensity larger than 3mm. The following lesions
were counted separately:

• Periventricular: ovoid T2 hyperintense lesions touching the
lateral ventricles.
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TABLE 2 | Since counting the lesions is increasingly more difficult with a higher lesion count, we created arbitrary categories accounting for this inaccuracy.

Category 0 1 2 3 4 5 6 7 8 9 10 11

Lesion count 0 1 2 3 4 5–6 7–8 9–11 12–15 16–19 20–24 25+

With this approach, readers had to estimate the lesion number above 5 lesions.

TABLE 3 | Average lesion count per region.

Periventricular Juxtacortical Deep white

matter

Infratentorial Spinal Black hole

Mean 12.14 2.90 7.67 1.14 0.67 3.93

SD 10.016 4.246 9.955 1.508 0.849 4.511

FIGURE 1 | ICC of the different regions evaluated by all five raters. Error bars represent CIs.

• Infratentorial: T2 hyperintense lesions in the brain stem and
the cerebellum, an area extending from the tentorium to the
level of the foramen magnum.

• Cortical/juxtacortical: supratentorial T2 hyperintense lesions
in the cortex or touching the cortex.

• Optic nerve: T2 hyperintense lesions in the optic nerve
between the bulbous and the optic chiasm.

• Spinal: T2 hyperintense lesions in the spinal cord between
the level of the foramen magnum and the CIII-CIV
intervertebral disc.

Periventricular lesions were evaluated on the sagittal FLAIR
images. FLAIR and DIR images were used to identify the cortical
and juxtacortical lesions. Coronal STIR images were used to
evaluate the optic nerves. Infratentorial lesions were evaluated
on the sagittal FLAIR images aided by the axial PD/T2 images.
The FOV of the sagittal FLAIR and DIR images were selected
in a way that made it possible to evaluate the first three cervical
segments of the spinal cord. The total lesion count was calculated
by adding the number of lesions in each location, excluding the
optic nerve. The purpose of this variable was to see how the

raters perform when they did not have to classify lesions by
brain regions.

Atrophy was evaluated on axial 3D FSPGR images and
measured by the rater’s subjective opinion on a binary scale
(significant or non-significant). Cases with a higher lesion
number were allowed to have an error as seen in Table 2.

Statistics
For the statistical analysis, we used IBM SPSS software, a two-
way mixed intraclass correlation (ICC) was calculated with an
absolute agreement for single measures. The ICCs were primarily
determined for all five raters and then retested, excluding the
most divergent rater to see how much the results would improve.

To investigate the reproducibility of lesion detection in
patients with low- and high-lesion counts, we divided the patients
into two groups based on the median lesion count. We also
repeated this analysis using only the four most accurate raters.

The results are interpreted by 95% CI. Categorization of the
reproducibility was based on the following criteria (ICC): poor 0–
0.5; moderate 0.5–0.75; good 0.75–0.9, and excellent 0.9–1 (19).
Graphs were made by GraphPad Prism 8.0 software.
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TABLE 4 | Summary of the ICCs and the 95% CIs made in this study.

LC Rater Periventricular Juxtacort DWM Infratentorial Spinal BH Atrophy Optic Total T2

HI

All 5 CI 0.840 0.735 0.688 0.557 0.638 0.740 0.434 0.116 0.853

ICC 0.731 0.648 0.534 0.445 0.562 0.669 0.349 0.054 0.811

CI 0.522 0.541 0.315 0.323 0.486 0.589 0.271 0.005 0.761

4 CI 0.893 0.815 0.749 0.606 0.704 0.778 0.456 0.202 0.909

ICC 0.846 0.762 0.603 0.527 0.634 0.71 0.364 0.118 0.882

CI 0.776 0.702 0.365 0.446 0.561 0.629 0.277 0.047 0.851

Low 5 CI 0.709 0.443 0.591 0.571 0.801

ICC 0.544 0.31 0.428 0.446 0.709

CI 0.314 0.196 0.240 0.326 0.591

4 CI 0.800 0.546 0.660 0.639 0.852

ICC 0.716 0.406 0.499 0.51 0.788

CI 0.612 0.273 0.285 0.374 0.708

High 5 CI 0.614 0.693 0.542 0.614 0.684

ICC 0.421 0.556 0.337 0.474 0.581

CI 0.191 0.382 0.119 0.320 0.476

4 CI 0.703 0.785 0.607 0.715 0.812

ICC 0.555 0.702 0.385 0.609 0.736

CI 0.356 0.603 0.114 0.492 0.647

LC, lesion count; BH, black-hole; T2 HL, T2 hyperintense lesions. ICC values are highlighted.

RESULTS

Lesions by Regions
Averaging the lesion count by every rater, the results are shown
in Table 3.

Reproducibility of Lesion Count, All Rater,
All Patients
The calculated ICCs for five raters were below the excellent
(<0.90) reliability in every region (Figure 1; Table 4).
The number of T2 hyperintense lesions in the cerebrum
[periventricular, (juxta)cortical, deep white matter] had the best
ICC (ICC: 0.761). The highest ICC was for the periventricular
region (ICC: 0.731) which is considered a moderate–good
result. Also, moderate results were given for juxtacortical lesions
(ICC: 0.648) and for black holes (ICC: 0.669). Deep white
matter (ICC: 0.534), infratentorial (ICC, 0.445), and spinal cord
lesions (ICC: 0.562) had poor-to-moderate reproducibility. Poor
reproducibility was noted for atrophy prediction (ICC: 0.349)
and optic nerve involvement (ICC: 0.054).

Concordance Between Raters
After leaving out the most outlier rater in every area, the
ICCs improved between 0.015 and 0.115 (Figure 2). The
most significant change and the best result was seen in the
periventricular region, where we measured ICC to be 0.115
times higher than that with 5 raters, but it still did not reach
the excellent level (ICC: 0.846). Juxtacortical (ICC, 0.762) and
black hole (ICC: 0.710) values improved frommoderate-to- good
reliability. The spinal cord’s ICC increased to moderate (ICC:
0.634) but infratentorial (ICC: 0.527) and deep white matter

(ICC: 0.603) regions showed no significant quality change. Optic
nerve (ICC: 0.118) and atrophy (ICC, 0.364) judgment showed
the worst reliability even after leaving out the divergent rater.
The sum of the lesions does reach the excellent range by a margin
(ICC: 0.882).

While in most of the regions, the ICCs improved marginally
and the raters’ performance did not differ significantly. By the
leaving-one-out approach, the ICCs were very close (Figure 3).

Reproducibility in High- and Low-Lesion
Count Groups
We divided the patients into low- and high-lesion count groups
based on the median lesion count of all five raters. ICCs
were in the poor-to-moderate range, except for the sum of all
lesions that reached moderate-to-good quality in the low-lesion
count subjects (low ICC: 0.709 vs. high ICC: 0.581) (Figure 4).
Periventricular [low (ICC: 0.544) vs. high (ICC: 0.421)] and
DWM [low (ICC: 0.428) vs. high (ICC: 0.337)] regions showed
better ICC on the lower side, and black holes presented minimal
changes (low ICC: 0.446 vs. high ICC: 0.474). Interestingly, the
lesion identification in the juxtacortical area performed much
better, although not significantly in the higher lesion load group
(low ICC: 0.310 vs. high ICC: 0.556).

The same analysis was performed using only the four best
raters. The quality of the ICCs improved similarly to what
we have seen with five raters (Figure 4). In the juxtacortical
region, patients with a high-lesion load showed significantly
higher ICC than the low group (low ICC: 0.406 vs. high ICC:
0.702). Black holes presented a slightly greater ICC in the high
group (low ICC: 0.510 vs. high ICC: 0.609). Periventricular (low
ICC: 0.716 vs. high ICC: 0.555) and DWM (low ICC: 0.499
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FIGURE 2 | ICC with of the different regions evaluated by the four closest raters. Error bars represent CIs.

FIGURE 3 | ICC differences between low- and high-lesion counts evaluated by every rater. Error bars represent CIs.

vs. high ICC: 0.385) areas showed better ICC between raters
in patients with a lower lesion count, but not significantly.
The quality of the tests mostly stayed in the moderate-to-
good range.

DISCUSSION

In this study, we measured interrater reliability by lesion
number and localization in patients with multiple sclerosis.
Overall, the intraclass correlation coefficients showed high

variability between different areas, although they never reached
the excellent range.

Unexpectedly, abandoning the most divergent rater could
not improve the ICC into the excellent quality range, even if
a considerable improvement was seen in some regions. It was
not possible to discriminate between the raters by experience,
as their performance was close to each other (Figure 5), which
means that they performed consistently throughout the study.
The sum of the lesions having the highest ICC showed that the
overall lesion count is reliable, but classifying them by regions is
a difficult task.
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FIGURE 4 | ICC differences between low- and high-lesion counts evaluated by the four closest. The classification of juxtacortical lesions was significantly lower when

the juxtacortical lesion burden was low. Error bars represent CIs.

Grouping by lesion numbers with the four best raters showed
us that the juxtacortical lesions’ ICC in the high-lesion load group
was significantly higher than in the low-lesion group, seeing a
tendency for this with black holes also. These results suggest that
lesions in brain regions with little lesion probability (Table 3)
have a higher chance for detection if the lesion count in that area
is larger. The simple explanation for this can be that even a small
number of lesions in a low-probability region is easier to detect
than one or two lesions. We observed the opposite in regions
where lesion number is normally high (periventricular, DWM);
the ICC was higher if the lesion count was lower. The reason
behind this could be similar, that is, the raters have an easier task
to keep the counting on track with fewer lesions. Also, high-lesion
load can be confluent, which is challenging to work with.

The explanation for this could be that these lesions are hard
to detect even for experts using DIR sequences (20), while if
a patient has a higher lesion number, then maybe they can no
longer keep count and are more easily missed. The opposite of
this was presented when we got higher ICC for low-lesion load
in regions where the lesions are more common (periventricular,
DWM), which can be explained by the difficulty of counting, as
they could be confluent.

Altogether, it seems that the lesions could be best evaluated
if their number is in the mid range. If it is too low, they could
be missed easier and if it is too high then counting is more
challenging with the appearance of the confluent inflammation.

The area in which new lesions appear is especially critical.
In recent years, plenty of studies found evidence of clinical and
cognitive impairment in association with cortical lesion load
(7, 21, 22). Detecting these lesions could be challenging on

FLAIR images, and though the DIR scan shows higher sensitivity
(23), this sequence is not yet part of the conventional MS
MRI protocol.

There is no consensus on whether optic nerve involvement
should be in the diagnostic criteria. The 2016 MAGNIMS
guideline (1) used optic lesions as a diagnostic marker but
the 2017 revised McDonald criteria (2) excluded them, due
to missing validation and it suggested further research to be
conducted. We showed that optical lesions are difficult to spot
and the ICC was lower than 0.2, which can be considered as a
random classification that supports the view that diagnosis of MS
should not be based on optic nerve findings.

Despite the results, managing a patient with MS can
undoubtedly be aided with the quality of the report. Studies
showed that structured MRI reports that use a template for
a broad and proper description of MS findings contained
significantly more adequate information relevant to MS clinical
decision-making than non-structured reports (11, 12).

Lesion segmentation tools are available with different
methodological approaches. Semiautomated software
including threshold-based, fuzzy connectedness or seed-
based region growing methods are still time-consuming
and have limitations with large data (24). Automated
segmentation algorithms become popular recently because
of their high performance (25–30). The disadvantage of
these approaches (e.g., the supervised algorithms) is the
need for thorough training. Unsupervised methods do not
have these limitations, albeit their results might be less
accurate as they do not have any prior input data to train
from (23).
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FIGURE 5 | ICCs for all raters and when we left out different ones. For example, rater 1 shows ICC for the other 4 thus a higher value means lower performance for

the rater.

The demand for reliable lesion segmentation software is
growing. In the international MICCAI challenge (24) in 2016,
13 teams contested against the grand truth set by a record
number of seven experts. The results showed that even the best
method was by far outperformed by the experts. The study also
showed a positive correlation between lesion load and volume
with the three measured parameters, which means performance
was worse when a patient had a smaller lesion number or volume.
Automated approaches also had serious problems with data
from a new unknown scanner. These data call attention to how
important it is to know the exact performance of human readers
in lesion detection, as some of the automated approaches are
trained on these data.

To the best of our knowledge, this is the first study that
investigates the interrater reliability of the lesion classification in
different areas using a number of raters. Although there were
some studies in which the interrater reliability was measured,
but only for diagnostics. In the first study (14), the interobserver
agreement between four neurologists was tested for diagnosing
MS by the McDonald’s and Poser’s criteria. The results showed
moderate-to-substantial agreement. In the second study (15),
the interobserver agreement on the radiological criteria of

the International Panel was investigated where four trained
and four inexperienced radiologists were compared. The IP-
trained radiologists reached moderate-to-substantial agreement
and excellent agreement on the enhancing lesions while the
non-trained group performed notably poorly.

Our study also has some limitations. First and most
importantly, we did not manage to recruit five neuroradiology
experts which could have made our results closer to reality.
Despite our raters working in different fields, they all have the
necessary experience with MS to make this study valid. Second,
a grand truth was not established thus we cannot determine how
much the raters deviated from it, but we can only see how close
they were to each other. Third, intrarater correlation could have
added an extra value to the study, but the limited resources did
not make it possible to evaluate the scans for a second or third
time. Finally, optic nerve hyperintensities were only examined on
STIR sequences but not on FLAIR or DIR images, which could
have improved our detection quality.

In summary, our study indicates that finding new lesions or
diagnosing the disease can be overlooked even by experts that
can influence disease outcomes. With the rapid development of
artificial intelligence, the use of automated lesion segmentation
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software will eventually emerge into the clinical routine and will
be a useful tool for (reporting) radiologists.
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