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Stroke severely affects the quality of life, specifically in walking independently. Thus, it

is crucial to understand the impaired gait pattern. This gait pattern has been widely

investigated when walking on a level treadmill. However, knowledge about the gait

pattern when walking on inclines is scarce. Therefore, this study attempted to fulfill this

knowledge gap. In this study, 15 stroke survivors and 15 age/height/weight healthy

controls were recruited. The participants were instructed to walk on three different

inclines: 0◦, 3◦, and 6◦. The participants were required to walk on each incline for 2min

and needed to complete each incline two times. The dependent variables were the peak

values for ankle/knee/hip joint angles and the respective variability of these peak values.

The results showed that an increment of the incline significantly increased the peak of the

hip flexion and the peak of the knee flexion but did not affect the peak values of the ankle

joints in the paretic leg in these stroke survivors. In comparison with the healthy controls,

lower hip extension, lower hip flexion, lower knee flexion, and lower ankle plantar flexion

were observed in stroke survivors. A clinical application of this work might assist the

physical therapists in building an effective treadmill training protocol.

Keywords: joint angles, gait, stroke, paretic leg, incline

INTRODUCTION

Stroke is the third leading cause of death in China (1). The death rate due to stroke was 149.49
per 100,000, resulting in 1.57 million deaths in 2018 in China (1). However, only 10% of the stroke
survivors could recover completely based on the report from the American Stroke Association (2).
Therefore, the quality of life was severely affected in these stroke survivors, specifically in walking
independently, due to the reduced peak of the knee flexion angle (3, 4) and the reduced peak of the
ankle dorsiflexion angle (3) in the paretic leg.

Treadmill training has been widely used to improve the recovery rate in these stroke survivors,
and the results indeed find that treadmill training increases gait speed and walking endurance
(5–10). However, a review with 44 relevant studies, involving 2,658 patients with stroke, concludes
that the stroke survivors who receive gait training are not likely to improve their ability to walk
independently compared to those who do not receive this treadmill training, except their gait speed
and gait endurance (11). This review further suggests that increasing training intensities might be
required, such as walking on the inclines (11). To verify this suggestion, a study trains the patients
with stroke to walk on a 10% inclined treadmill in a 20-min session, and 12 sessions within a
month are provided (12). The results of the previous study show increments (improvements) in
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the walking velocity, the step length in the paretic leg and non-
paretic leg, and the hip range of motion.

The gait pattern in the stroke survivors while walking on
the surface with different inclines has been investigated in a
couple of studies. Phan et al. (13) observed that [1] the patients
with stroke walked much slower than healthy controls, whether
walking through a level or uphill surface (4.1◦); [2] when healthy
controls walked uphill, an increase of step length and a decrease
of their cadence were observed compared to walking on a level
surface; and [3] difficulties adjusting to their spatial-temporal
gait parameters to adapt to different environments were found
in the stroke survivors. Similarly, Moreno et al. (14) observed
that there were no significant differences in the stride length
and cadence when these stroke survivors were instructed to walk
on the treadmill with different inclines (0◦, 2.86◦, and 5.74◦).
Even though there were no significant differences in the spatial-
temporal gait parameters, the significant increases in the hip,
knee, and ankle angles at the heel strike were observed to increase
the inclines of the treadmill. However, the potential limitations in
these above-mentioned studies were that only five homogeneous
cycles were selected for the analysis and the selection of the lesion
interval was wide (12, 14). Also, the effect of the asymmetric
gait pattern was ignored, which is commonly found in the
participants (48/54) (15).

In the past decades, a greater spatial-temporal gait variability
has been associated with an unstable gait in patients with
cerebellar ataxia (16) and in patients with cerebral white
matter lesions (17). However, these studies majorly investigate
the spatial-temporal gait variabilities, which only cover the
variabilities in the transverse plane on the ground. However,
the information of variability in the sagittal plane (joint angle
variability) is scarce, specifically in stroke survivors. To the best
of our knowledge, only a couple of studies have used the joint
angle variability to identify multiple sclerosis (18), neuropathic
patients (19), and the effect of a metronome on cerebellar stroke
(20). The knowledge of how the joint angle variability changes
in the patients with stroke during walking on different inclines is
still unknown.

To answer the abovementioned knowledge gaps, there were
three novelties of this study as follows: [1] to understand how
different inclines affect the joint angles in the stroke survivors
compared to healthy controls in paretic legs and non-paretic legs
in 80 gait cycles; [2] the days since stroke was limited within 24
months, and [3] to understand the interaction of the joint angle
variability between the effect of stroke and the effect of inclines.
Based on the previous studies, a larger hip flexion/extension,
larger knee extension, and larger ankle swing dorsiflexion would
be observed in these stroke survivors in the paretic leg when
walking on higher inclines. Additionally, the greater variability
in the joint angles could be hypothesized in the stroke survivors
compared to healthy controls, regardless of 0◦, 3◦, or 6◦ inclines.

MATERIALS AND METHODS

Participants
A total of 15 stroke survivors and 15 healthy age-, height-, and
weight-matched controls participated in this study (Table 1).
All the participants were recruited from the Shanghai First

TABLE 1 | Demographic characteristics of the individuals (N = 30).

Characteristics Stroke Controls

Age (years) 64.2 ± 12.68 60.4 ± 12.49

Gender Male: 13, Female: 2 Male: 13, Female: 2

Body mass (kg) 69.43 ± 13.61 67.40 ± 12.09

Height (m) 1.70 ± 0.06 1.66 ± 0.07

Speed (m/s) 0.27 ± 0.14 0.67 ± 0.24*

Medication Amlodipine besylate tablets, naoxueshu

koufuye, clopidogrel sulfate tablets,

clopidogrel sulfate tablets, metformin

hydrochloride tablets

Days since stroke (d) 221.60 ± 38.34

An independent t-test indicated no significant difference between the stroke survivors and

healthy controls in weight, height, and age. However, an independent t-test showed that

the healthy controls (0.27 m/s) walked much faster than the stroke survivors (0.67 m/s, p

< 0.0001). *Significant difference between patients in stroke and controls.

Rehabilitation Hospital. The participants were screened during
24 months (January 2019 to November 2021). The stroke
survivors with a single and unilateral hemiplegia (left side: 9,
right side: 6), ability to walk a minimum of 10m independently
(21), a score of Functional Independence Measure Locomotor
Item ≥ 5 (Phan et al., 2013), and the days from when the
stroke was smaller than 24 months and larger than 6 months
were included. The 15 stroke survivors did not wear any ankle–
foot orthosis because they did not have any sign of spasticity
around the ankle joint, which scored “0” based on the modified
Ashworth Scale Score. These patients needed to tolerate a 30-min
walking session under permission from their physical therapists.
The exclusion criteria were orthopedic impairment, which caused
the unstable gait, chronic pain in the musculoskeletal system
affecting the gait, and the inability to perform the required tasks
due to cognitive disorders. This study was approved by the
Medical Ethics Committee of the Shanghai First Rehabilitation
Hospital (YK-2020-01-020).

Measures
The joint angles (hip, knee, ankle) were obtained using Noraxon’s
myoMotion System (Noraxon Inc., Arizona, United States). This
system contained two parts: a control unit and a set of 1–
16 medical-grade inertial measure units (myoMotion Sensor).
The myoMotion sensors were IMU-based (inertial measurement
units). The control unit, which was connected to the computer,
received the data collected from these myoMotion sensors
through Bluetooth technology and the data were sent to the
commercial software (myoRESEARCH 3.10.64, Noraxon, AZ,
United States) for calculating the joint angles in a real-time
fashion. Six myoMotion sensors were attached on the thigh
(frontal and distal half of the femur), the shank (front and slightly
medial of the tibia), and the foot (upper foot, slightly below
the ankle) through elasticated straps (Figures 1A,B). Before
providing walking trials to the participants, the participants
were instructed to stand in an anatomical position consisting
of standing upright, facing forward with the legs parallel to one
another, putting arms at the sides, and none of the bones crossed.
The joint angles at the anatomical position were recorded
for 15 s and used as the offset base for other walking trials.
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FIGURE 1 | (A) The treadmill and the myoMotion sensors. (B) Six myoMotion sensors were attached on the thigh (frontal and distal half of the femur), the shank (front

and slightly medial of the tibia), and the foot (upper foot, slightly below the ankle) through elasticated straps. (C) The focus of interests: [1] The peak of the hip flexion

angle at the heel strike (H1), [2] the peak of the hip extension angle (H2), [3] the peak of the knee extension angle (K1), [4] the peak of the knee flexion (K2), [5] the

peak of the dorsi-flexion angle (A1), and [6] the peak of the plantar flexion angle (A2) in the non-paretic/dominant leg and the paretic/non-dominant leg.

This myoMotion system has been used to measure the joint
angles during standing and gait (22–24) because the IMU-
based system has the advantages of being low in cost, easy to
set up, and portable (25). However, its validity and reliability
might be questionable (24). More is discussed in the Limitation
section. In this study, the participants were instructed to walk
on the pressure-sensor-embedded treadmill (PhysTread Pressure
Treadmill, Noraxon, AZ, United States). This treadmill contained
a 150 x 50 cm running surface with 3,120 pressure sensors,
and the recording rate was 100Hz. By calculating the pressure
distribution from these pressure sensors, the vertical force could
be obtained. This vertical force was used to define the heel strike.
The heel strike was defined when the vertical ground reaction
force reached above a threshold level of 10N and continuously
exceeded this threshold for 40ms but everywhere m/s (26). A gait
cycle was defined from a heel strike to a following ipsilateral heel
strike, and the time of each gait cycle was normalized to 0–100%
of the gait cycle.

Experimental Protocol
After the participants had consented, they were instructed to walk
on the treadmill for familiarization. First, their preferred walking
was defined as follows: [1] the participants stood on the side of
the treadmill without stepping on the belt but withholding the
handrail; [2] the treadmill was accelerated to 1.8 km/h; [3] the

participants stepped on the belt holding the handrail. Once they
felt confident, they were encouraged to walk without holding
the handrail; [4] the participants were asked, “is this walking
speed similar to your regular and comfortable walking speed?”
If the participants felt too slow or too fast, a belt speed of
0.1 km/h was increased or decreased; [5] this preferred walking
speed was checked repeatedly until reaching an agreement by
the participants; [6] the participants then continued walking on
this preferred walking speed for 2min for familiarization. This
similar procedure was followed by Chien et al. (26). Next, six
walking trials lasting for 2min were assigned to the participants
in random combinations of the inclines (0◦, 3◦, and 6◦, 18). The
participants needed to walk each incline twice. It has been shown
that the oxygenation level is higher in the areas of the prefrontal
and sensorimotor cortex when walking on an uphill surface than
if walking on a level surface (27). Thus, a 2-min mandatory rest
(sitting) was provided between the trials to eliminate the fatigue
(21) and to reset the sensation from the previous trials (28).

Dependent Variables
The dependent variables in both the legs in 80 gait cycles, which
was the lowest gait cycle made in 2min in one stroke survivor,
were as follows: [1] maximum hip flexion angle at heel strike
(H1), [2] maximum hip extension angle (H2), [3] maximum
knee extension angle (K1), [4] maximum knee flexion (K2), [5]
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maximum ankle dorsi-flexion angle (A1), and [6] maximum
ankle plantar flexion angle (A2) in the non-paretic/dominant
leg (NPL/DL) and the paretic/non-dominant leg (PL, NL,
Figure 1C), and their respective variabilities. To identify the
dominant leg, the healthy participants were asked, “If you want
to kick a ball, which leg would you prefer?” All joint angles were
time-normalized to 100% of the gait cycle each stride. The joint
angle variability was calculated by the coefficient of variation (100
∗ standard deviation of each dependent variable/mean values of
each dependent variable). A total of 80 gait cycles were suggested
for calculating the variability (29).

Statistical Analysis
An independent t-test was used to compare the preferred
walking, height, weight, and age between the stroke survivors
and healthy controls. A mixed analysis of variance (ANOVA)
was used to investigate the effect of the different inclines and the
effect of stroke in each leg. The differences between the groups
and between the incline angles in each dependent variable and
its respective variability were evaluated using the F-test. If a
significant interaction was found, a post hoc Tukey test was used
to understand the trends in the results (SPSS 21.0). The effect size
is described in the Supplementary Material.

RESULTS

Joint Angles
A significant interaction between the effect of incline and the
effect of stroke was found in the hip extension (H1) in PL/NL
[F(2,56) = 12.82, p < 0.001], the hip extension (H1) in NPL/DL
[F(2,56) = 7.42, p = 0.001], the hip flexion (H2) in PL/NL [F(2,56)
= 7.13, p = 0.002], the knee extension (K1) in PL/NL [F(2,56) =
3.61, p = 0.034], the knee flexion (K2) in PL/NL [F(2,56) = 11.95,
p < 0.001], and the ankle plantar flexion (A2) in both legs [F(2,56)
= 5.68, p = 0.006–PL/NL, F(2,56) = 3.99, p = 0.0024–NPL/DL,
Table 2]. The post hoc comparisons between stroke and controls
are shown inTable 2. A significant effect of the inclines was found
in the hip flexion (H2) in PL/NL [F(2,56) = 57.21, p < 0.001]
and NPL/DL [F(2,56) = 15.22, p < 0.001], the knee extension
(K1) of PL/NL [F(2,56) = 4.86, p = 0.011], the knee flexion (K2)
in NPL/DL [F(2,56) = 6.38, p = 0.003], ankle plantar flexion in
PL/NL [F(2,56) = 10.51, p < 0.0001] and NPL/DL [F(2,56) = 5.68,
p = 0.006], and ankle dorsiflexion in PL/NL [F(2,56) = 6.44, p =

0.003] and NPL/DL [F(2,56) = 3.66, p= 0.032].
The post hoc pairwise comparisons showed that the increasing

angles of incline did not significantly increase/decrease the hip
extension (H1) in NPL in these patients; however, when walking
on the 6◦ incline, the hip extension (H1) was close to the value
of zero in PL. A larger hip flexion in PL/NL was observed when
walking on the 3◦ incline (p= 0.003, p < 0.001) and 6◦ incline (p
< 0.001, p < 0.001) compared to when walking on the 0◦ incline
in the patients with stroke and controls, respectively. For knee
extension (K1), the increasing inclines did not affect the PL in
the stroke survivors. For knee flexion (K2), when walking on the
6◦ incline, a larger knee flexion was observed in both PL/NPL
in the stroke survivors than when walking on the 0◦ incline (p
= 0.032, p = 0.006, respectively). For the ankle plantar flexion

(A2), the increasing angles of the incline did not significantly
increase/decrease the ankle plantar flexion in PL/NPL in these
patients. Figure 2 shows the graphic representation of the hip,
knee, and ankle joint angles during the gait cycle in PL/NL
and NPL/DL.

Joint Angle Variability
No interaction between the effect of stroke and the effect of the
inclines was found in any joint angle variability (Table 2). A
significant effect of stroke led to a larger hip extension variability
in both PL/NL [F(1,28) = 9.28, p = 0.005] and NPL/DL [F(1,28)
= 15.66, p < 0.001], larger hip flexion variability in both PL/NL
[F(1, 28) = 4.35, p = 0.046] and NPL/DL [F(1,28) = 6.38, p =

0.017], larger knee extension variability in both PL/NL [F(1,28) =
3.974, p = 0.05] and NPL/DL [F(1,28) = 5.46, p = 0.027], larger
knee flexion variability in both PL/NL [F(1,28) = 15.91, p< 0.001]
and NPL/DL [F(1,28) = 35.71, p< 0.001] compared to controls. A
significant effect of the inclines was found in the knee extension
in both PL/NL [F(2,56) = 10.12, p < 0.001] and NPL/DL [F(2,56)
= 3.20, p = 0.048]. The marginal means indicated that walking
on the 6◦ incline decreased the knee extension variability in both
PL/NL (p= 0.003) andNPL/DL (p= 0.047) compared to walking
on the 0◦ incline.

DISCUSSION

This study attempted to understand how the joint angles and
the respective variabilities changed when walking on different
inclines within 80 gait cycles in the stroke survivors and controls.
Importantly, the days, since the stroke was limited to 24 months
to limit the variances within these patients with stroke (e.g.,
progression stroke, rehabilitation effect). The results partially
had an agreement with our hypotheses that [1] the hip flexion
increased as the inclines increased in both the stroke survivors
and controls, and [2] higher variabilities in the hip and knee joint
angles were observed in the stroke survivors than in the controls.
Unexpectedly, the results demonstrated [1] the decrement of the
hip extension in the paretic leg, [2] the decrement of the knee
flexion in the paretic leg, and [3] no changes in the ankle joint in
the stroke survivors in the paretic leg as the inclines increased.

Alternations in the Peaks of Hip Joint
Angle When Walking on Different Inclines
First, the current observations were in line with the previous
studies that a decrease in the peaks of hip flexion/extension was
observed when walking on the 0◦ surface compared to controls
(30, 31). The previous studies have suggested that ineffectively
controlling the hip flexor muscles in pre-swing resulted in a
decrease in the hip flexion velocity in early swing and further led
to a decrease in the peak of hip flexion (32). Also, a decrease in the
peak of hip extension in patients with stroke might be attributed
to the insufficient active extensor muscle in the late stance and
early swing (33).

In this study, compared to the non-paretic leg, the peaks of
hip flexion were 30% at level, 26% at 3◦ of incline, and 28%
at 6◦ of incline less in the paretic leg in these stroke survivors.
Additionally, the peaks of the hip extension were 67% at level,
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TABLE 2 | Values of the joint angle and joint angle variability in the paretic/non-dominant leg and non-paretic leg/dominant leg in the stroke survivors and controls.

0◦ 3◦ 6◦

Stroke (S) Control (C) S vs. C Stroke (S) Control (C) S vs. C Stroke (S) Control (C) S vs. C

Paretic Leg/Non-Dominant Leg

Hip_Extension −0.83 (7.35) −5.10 (3.00) p = 0.046 0.25 (6.76) −4.41 (3.35) p = 0.023 1.32 (7.12) −7.07 (4.14) p = 0.004

Hip_Flexion 17.92 (7.78) 23.37 (6.15) p = 0.042 20.57 (8.65) 30.57 (7.21) p = 0.002 23.18 (9.22) 33.69 (7.96) p = 0.002

Knee_Extension −3.88 (4.37) 0.64 (2.66) p = 0.001 −3.69 (3.84) 2.91 (2.81) p < 0.001 −3.72 (3.46) 3.05 (3.55) p < 0.001

Knee_Flexion 42.69 (13.59) 59.42 (4.65) p < 0.001 42.19 (13.62) 61.75 (4.83) p < 0.001 40.52 (13.73) 62.80 (4.98) p < 0.001

Ankle_PlantarFlexion −7.46 (4.51) −12.81 (5.15) p < 0.001 −7.16 (5.19) −15.13 (7.08) p = 0.001 −6.76 (5.56) −17.39 (7.60) p < 0.001

Ankle_Dorsiflexion 8.13 (5.05) 8.64 (3.21) NA 10.05 (4.00) 9.53 (3.37) NA 10.44 (6.42) 9.97 (3.11) NA

Non-paretic Leg/Dominant Leg

Hip_Extension −2.56 (9.76) −5.14 (2.99) NS −1.79 (8.39) −4.76 (3.42) NS −1.36 (7.26) −7.28 (4.38) p = 0.011

Hip_Flexion 25.72 (5.74) 27.26 (8.76) NA 27.72 (6.49) 32.51 (7.94) NA 32.36 (6.64) 32.77 (7.46) NA

Knee_Extension 5.56 (4.01) 1.08 (3.33) p < 0.001 5.43 (3.79) 3.18 (2.72) p = 0.07 5.88 (3.38) 3.26 (3.72) p = 0.053

Knee_Flexion 52.29 (11.15) 61.23 (3.39) p < 0.001 53.70 (11.43) 62.63 (3.67) p < 0.001 54.85 (11.57) 63.32 (5.76) p < 0.001

Ankle_PlantarFlexion −5.21 (6.13) −13.51 (5.28) p < 0.001 −5.42 (6.68) −15.51 (6.94) p = 0.001 −4.94 (8.13) −18.10 (7.72) p < 0.001

Ankle_Dorsiflexion 12.37 (7.43) 10.08 (3.93) NA 13.11 (7.37) 10.83 (3.72) NA 14.14 (7.46) 11.42 (4.05) NA

Paretic/Non-Dominant Leg Variability

Hip Extension (H1) 2.43 (1.00) 1.55 (0.57) 2.15 (0.82) 1.43 (0.63) 2.25 (1.02) 1.49 (0.65) NS p = 0.005 NS

Hip Flexion (H2) 2.70 (1.31) 2.14 (0.94) 2.64 (1.13) 2.05 (0.79) 3.01 (1.68) 2.02 (0.81) NS p = 0.046 NS

Knee Extension (K1) 2.61 (1.61) 1.88 (0.48) 2.45 (1.21) 1.67 (0.46) 2.03 (1.12) 1.51 (0.36) p < 0.001 p = 0.05 NS

Knee Flexion (K2) 3.26 (1.35) 1.89 (0.35) 3.62 (1.93) 1.91 (0.46) 3.69 (2.13) 1.89 (0.53) NS p < 0.001 NS

Ankle Plantar Flexion (A2) 2.75 (1.40) 2.71 (1.11) 2.69 (0.93) 2.73 (1.09) 2.30 (1.17) 3.08 (1.16) NS NS NS

Ankle Dorsi Flexion (A1) 1.79 (0.85) 1.54 (0.55) 1.60 (0.74) 1.47 (0.34) 1.68 (0.81) 1.33 (0.34) NS NS NS

Intact/Dominant Leg Variability

Hip Extension (H1) 2.53 (1.02) 1.49 (0.36) 2.26 (0.95) 1.56 (0.43) 2.52 (0.89) 1.41 (0.52) NS p < 0.001 NS

Hip Flexion (H2) 3.16 (1.77) 2.12 (0.76) 2.71 (0.85) 2.31 (0.92) 3.49 (1.85) 2.34 (0.99) NS p = 0.017 NS

Knee Extension (K1) 2.61 (1.19) 2.22 (0.80) 2.37 (1.20) 1.66 (0.49) 2.56 (1.52) 1.57 (0.30) p = 0.048 p < 0.001 NS

Knee Flexion (K2) 3.98 (1.19) 2.07 (0.55) 3.38 (1.23) 2.07 (0.61) 3.36 (1.03) 1.89 (0.51) NS p < 0.001 NS

Ankle Plantar Flexion (A2) 2.80 (1.03) 2.74 (1.04) 3.23 (1.52) 2.84 (1.02) 3.20 (1.82) 2.91 (1.13) NS NS NS

Ankle Dorsi Flexion (A1) 1.87 (0.68) 1,58 (0.47) 1.71 (0.83) 1.53 (0.49) 1.66 (0.77) 1.31 (0.34) NS NS NS

S, stroke; C, control; NA, no interaction between the effect of stroke and the effect of inclines, thus, post hoc comparisons were not performed; NS, not significant. The meaning of the bold value was that the statistical significance level

was reached.

F
ro
n
tie
rs

in
N
e
u
ro
lo
g
y
|
w
w
w
.fro

n
tie
rsin

.o
rg

5
A
p
ril2

0
2
2
|
V
o
lu
m
e
1
3
|A

rtic
le
8
5
0
6
8
2

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Zhang et al. Inclines Affect Joint Angles

FIGURE 2 | The angle displacement of the hip, knee, and ankle during the gait cycle (expressed in percentage) in the stroke group and control group. The positive

values indicate the hip and knee flexion and ankle dorsiflexion. NPL_0: non-paretic leg at 0◦ incline (black dash line), PL_0: paretic leg at 0◦ incline (black solid line),

NPL_3: non-paretic leg at 3◦ incline (yellow dash line), PL_3: paretic leg at 3◦ incline (yellow solid line), NPL_6: non-paretic leg at 6◦ incline (red dash line), PL_6:

paretic leg at 6◦ incline (red solid line), ND_0: non-dominant leg at 0◦ incline (black dash line), D_0: dominant leg at 0◦ incline (black solid line), ND_3: non-dominant leg

at 3◦ incline (yellow dash line), D_3: dominant leg at 3◦ incline (yellow solid line), ND_6: non-dominant leg at 6◦ incline (red dash line), D_6: dominant leg at 6◦ incline

(red solid line).

114% at 3◦ of incline, and 196% at 6◦ of incline less in the paretic
leg than in the non-paretic leg. Similarly, it has been shown
that the hip joint was moderate-to-strongly correlated to the
asymmetric gait pattern during walking (34). This asymmetric
gait pattern was attributed to the compensatory use of the non-
paretic side. Importantly, this asymmetric gait pattern might
gradually lead to the potential risk of falling (35). Therefore, to
develop treadmill inclination training in stroke survivors, like the
previous study (12), a careful consideration of this asymmetric
pattern was needed.

Second, walking on different inclines required different body
adjustments, resulting in consuming more energy when walking
on uphill surfaces than walking on level surfaces (36). Therefore,
increasing the peak of hip flexion and decreasing the peak of
hip extension as the increasing inclines were the strategies to
provide enough power to elevate the lower limb and move the
body forward on the treadmill in healthy young adults (37) and
in stroke survivors (14). Importantly, the current results found a
similar shape of the hip joint angle trajectory compared to the
previous studies (12, 14, 37) except the values of these peaks,
specifically, the peaks of hip extension (for this study: −0.83 for

level, 0.25 for 3◦ of incline, and 1.31 for 6◦ of incline compared to
the Moreno’s study: −12.41 for level, −10.79 for 2.86◦ of incline,
and −9.28 for 5.74◦ of incline). A rationale could explain these
differences: the walking speeds between the studies. In this study,
the average walking speed in the stroke survivors was 0.27 m/s
compared to 0.71 m/s in Moreno’s study. Thus, it is reasonable
to speculate that the decrease of the walking speed may reduce
the peak of the hip flexion/extension. These speculations have
already been confirmed by Kim et al. (38), in whose study, the
average speed was 0.33 m/s in the stroke survivors (38).

Alternations in the Peaks of Knee Joint
Angle When Walking on Different Inclines
It is not new that the stroke survivors demonstrated a smaller
peak of knee flexion than controls in both legs regardless of the
0◦, 3◦, or 6◦ incline. The role of the knee flexion was to ensure that
the trajectories of the shank and foot could safely move the body
forward on different inclines. Thus, the alternations in the peaks
of the knee flexion as increasing the inclines should be minimal
(14). Unexpectedly, in this study, the peak of the knee flexion in
the paretic leg significantly dropped from 42.69◦ at the level to
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40.52◦ at the 6◦ incline in stroke survivors. In contrast, the peak
of knee flexion in the non-paretic leg significantly increased from
52.29◦ at the level to 54.85◦ at the 6◦ incline. There might be two
rationales for this change. First, we speculated that walking on a
higher incline induced a higher asymmetric walking pattern in
the stroke survivors. Thus, lowering the peaks of knee flexion
might be to avoid overburdening the paretic leg. At the same
time, to consistently walk on the 6◦ incline, the increasing peaks
of knee flexion seemingly were inevitable for compensating the
paretic leg. Another explanationmight be that the different angles
of inclines forced the stroke survivors to use different locomotor
controls. This speculation was supported by the hypothesis that
different distinct controls may exist depending on the different
levels of challenges in the same locomotor task (39). In this
previous study, two distinct controls were found when taking
a single step up a wedge in young adults. These young adults
demonstrated one control when the grade of the wedge was
below 10◦ or less and demonstrated another control when the
grade of the wedge reached 20◦ or higher. Thus, in this study,
it was reasonable to speculate that several distinct controls
might also be performed when the stroke survivors walked on
different inclines.

Unexpectedly, a knee hyperextension, genu recurvatum, in the
stance phase during the gait cycle in the paretic leg was observed,
regardless of the 0◦, 3◦, or 6◦ incline. It has been reported that
approximately half of the patients with stroke had this symptom.
This symptom might be attributed to the ankle plantar flexor
weakness (40) and further limited ankle mobility (41). This was
the first study to demonstrate that knee hyperextension appeared
even when walking on inclines. Perhaps, because the days since
stroke was limited, this interesting finding could be observed in
this study.

Alternations in the Peaks of Ankle Joint
Angle When Walking on Different Inclines
We did not find a significant effect of incline on the ankle
joints in the stroke survivors. This result was confirmed
by the previous studies (42, 43) that there were no
changes in the gastrocnemius and tibialis anterior muscle
activities while walking on different inclines in the stroke
survivors. It might be that slow walking reduced in both
the dorsi/plantar flexion (44). It was also worth mentioning
that in comparison with these previous studies, a slower
walking speed could have changed the ankle joint movement
trajectories (12, 14, 38).

Alternations in the Joint Angle Variabilities
As there were no interactions between the effect of incline and the
effect of stroke, we could only conclude that a greater variability
was found at the hip and the knee in the stroke survivors than
healthy controls. These results were mostly in line with the
previous studies that the greater joint angle variabilities at the
hip, knee, and ankle were observed in patients with neuropathy
and patients with multiple sclerosis than controls (18, 19). Based
on their suggestions, the slower walking speed was the only
factor to lead the greater joint angle variabilities. However, if this

hypothesis was true, then a greater variability at all three joint
angles should be observed. But, the differences in the joint angle
variability at the ankle were not found between the controls and
patients in this study. Therefore, we speculated that the walking
speed should not be the only factor to increase the joint angle
variability, and hemiparetic severity should also be involved. This
speculation was suggested by a study of Balasubramanian et al.
(45), which indicates that the levels of significant differences in
different spatial-temporal gait variabilities depended on the levels
of hemiparetic severity.

CONCLUSION

The major findings in this study were that [1] an increment of
the incline increased the peaks of the hip and knee flexion but
decreased the peak of the hip extension and had no impact on the
peak of the knee extension in the stroke survivors; [2] the smaller
peaks of the hip extension, hip flexion, knee flexion, and ankle
plantar flexion in PL/NDL were observed in the stroke survivors
than in controls; [3] a greater joint angle variability at the hip and
the knee was found in the stroke survivors than in controls.

Limitations
Please find this section in the Supplementary Material.
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