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Objectives: To find the brain network indicators correlated with the seizure

severity in temporal lobe epilepsy (TLE) by graph theory analysis.

Methods: We enrolled 151 patients with TLE and 36 age- and sex-matched

controls with video-EEG monitoring. The 90-s interictal EEG data were

acquired. We adopted a network analyzing pipeline based on graph theory to

quantify and localize their functional networks, including weighted classical

network, minimum spanning tree, community structure, and LORETA. The

seizure severities were evaluated using the seizure frequency, drug-resistant

epilepsy (DRE), and VA-2 scores.

Results: Our network analysis pipeline showed ipsilateral frontotemporal

activation in patients with TLE. The frontotemporal phase lag index (PLI)

values increased in the theta band (4–7Hz), which were elevated in patients

with higher seizure severities (P < 0.05). Multivariate linear regression

analysis showed that the VA-2 scores were independently correlated with

frontotemporal PLI values in the theta band (β = 0.259, P = 0.001) and age

of onset (β = −0.215, P = 0.007).

Significance: This study illustrated that the frontotemporal PLI in the theta

band independently correlated with seizure severity in patients with TLE. Our

network analysis provided an accessible approach to guide the treatment

strategy in routine clinical practice.
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Introduction

Epilepsy is one of the most common neurological diseases,

affecting ∼50 million people worldwide (1). In total, ∼30%

of patients with epilepsy are drug-resistant and suffer from

seizure recurrence (2). Increased intractable rates leading to

premature mortality, the global burden of disease, and social

stigma have been public health concerns (1). Temporal lobe

epilepsy (TLE) accounts for the largest proportion of drug-

resistant epilepsy (DRE) (3). The mechanisms of DRE were

proposed as alterations in the antiseizure medication (ASM)

targets with the loss of receptor sensitivity and overexpression

of multidrug resistance (MDR) proteins (MDR1, MDR1/P-

glycoprotein, etc.) that affect drug transport (2). In addition,

abnormal neural circuits, such as hippocampal–diencephalic–

cingulate paths (4), extratemporal networks (5), and dynamic

network evolution (6), were suggested to be relevant to seizure

severity in TLE. Clinically recognizing potential severities and

deciding on treatment strategies for patients with TLE remains

a challenge.

Temporal lobe epilepsy is characterized as a neural

network disorder that propagates beyond the regions that

are anatomically connected (7, 8). The underlying basis of

the neural network in TLE involves structural and functional

alterations, including neurogenesis and functional plasticity (9).

It has been reported that extratemporal networks, such as the

orbitofrontal, insular, medial frontal, bifrontal, and parietal

regions, were involved in some patients with TLE (7, 10). Indeed,

wider spreading networks were spanning more interconnected

regions in TLE patients with drug-resistance and focal to

bilateral tonic–clonic seizures (11). Furthermore, rapid spread

in the lateral temporal cortex was detected in TLE patients

with recurrent seizures (12). Several studies have illustrated

the anatomical and electrophysiological connections with the

extemporal regions in patients with TLE. A typical pathway from

the hippocampus to the prefrontal cortex, which is called the

hippocampus–prefrontal pathway, has been uniquely reported

as a monosynaptic and unidirectional projection mediated by

Abbreviations: ASM, antiseizure medication; AF, arcuate fasciculus; BA,

Brodmann area; BC, betweenness centrality; CBZ, carbamazepine; CC,

clustering coe�cient; D, diameter; FC, functional connectivity; FIR,

finite impulse response; ICA, independent component analysis; IEDs,

interictal epileptic discharges; LF, leaf fraction; LEV, levetiracetam; LTG,

lamotrigine; MDR, multidrug resistance; MST, minimum spanning tree;

OXC, oxcarbazepine; PB, phenobarbital; PC, partition coe�cient; PL,

characteristic path length; PLI, phase lag index; Q, modularity; SEEG,

stereoelectroencephalography; sLORETA, standardized low-resolution

brain electromagnetic tomography analysis; TH, tree hierarchy; TLE,

temporal lobe epilepsy; TPM, topiramate; UF, uncinate fasciculus; VA-2,

veterans administration rating scale for seizure type and frequency; VPA,

valproic acid.

glutamate (13). The lateral temporal, frontal, and occipital

neocortexes develop from the same origin of cortical gradients

of laminar elaboration and organize comparable neurogenetic

time courses. They are connected via various fibers, such as

the arcuate fasciculus (AF), uncinate fasciculus (UF), cingulate,

and longitudinal fasciculus (14). Thus, an accessible tool to

distinguish the evolution of the extratemporal network may help

differentiate outcomes in patients with TLE.

Functional magnetic resonance imaging (fMRI) and

electroencephalography (EEG) were utilized to map the

functional epileptic network (15). Using fMRI, a seizure

extratemporal propagation network of TLE was identified,

including the bilateral thalamus, insula, midcingulate, and

precuneus (16). However, MRI measures the blood–oxygen

signal and indirectly characterizes electrophysiological

functions, regardless of its mental contraindications and

expense. In contrast, EEG directly reflects neural activity (15).

Stereoelectroencephalography (SEEG) is the gold standard for

marking epileptogenic and propagation networks (8) but is

limited to invasion, spatial undersampling, and heterogeneous

topological signatures for individual electrode placement (17).

Scalp EEG offers a standard acquisition and non-invasive

scheme for determining the network. However, in terms of its

anatomical disadvantages (15), a more precise arithmetic tool

based on scalp EEG is required to overcome the challenge of

mapping the seizure spread and epilepsy characteristics in TLE.

Graph theory provides a topology of the underlying

neural architecture (18). Recently, small-worldness, minimum

spanning tree, and community structure are the popular

network methods to help clinicians better understand how

seizures originate and propagate. Based on EEG, the alternations

of local segregation (characterized by clustering coefficient,

CC) and global integration (characterized by shortest path

length, PL) were reported in the epileptic network study (19,

20). Compared to other measures (i.e., magnitude squared

coherence, synchronization likelihood, phase locking value,

etc.), PLI was proved to be the least affected functional

connectivity (FC) metric by spurious influences in a simulated

volume conduction environment (21). Phase lag index (PLI),

indicating brain synchronization, was decreased with seizure

reduction in focal DRE (22). A minimum spanning tree (MST)

was introduced into the brain network field to avoid the

threshold choice during the network construction (23–25). The

clinical application of MST is still lacking because the method

is not as popular as the small-world network. In 2016, van

Diessen et al. found that MST features are more sensitive

to identifying the interictal network alterations than classical

weighted network analysis at an early stage of focal epilepsy (26).

Thus, the MST was adopted to detect the alternations of the

patients with TLE in this study. Community structure quantifies

the extent of brain functional network partition and was recently

introduced to help classify epileptic EEG events (27). However,

the community construction in EEG network analysis always
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lacks its physiological meaning because of the bad EEG spatial

resolution. By using source location techniques, the community

analysis may reveal the hidden network mechanisms of the

seizure propagation. Distributed EEG source localization using

standardized low-resolution brain electromagnetic tomography

analysis (sLORETA) is a relatively new method to yield three-

dimensional (3D) images of electrical neuronal activity (28).

Despite the robustness of indicators that was demonstrated

in this approach, it still lacked consistent results and clinical

applications. This study aimed to find the brain network

indicators based on EEG and provide an accessible approach

to indicate seizure severity in patients with TLE and guide the

treatment strategy for routine clinical practice.

Materials and methods

Participants

A total of 151 patients with TLE, diagnosed and classified

according to 2001 (29) and 2017 (30) Classification and

Terminology of the International League against Epilepsy

(ILAE), were enrolled in the Department of Neurology,

Zhongshan Hospital, Fudan University, from April 2018 to

December 2019. The inclusion criteria were as follows: (1)

patients aged from 14 to 80 years; (2) performed long-term

video-EEG (VEEG) monitoring longer than 16 h; (3) no other

disease except epilepsy; and (4) no extratemporal lesion on

routine cerebral MR.

We enrolled 36 age- and sex-matched controls who

underwent VEEG for non-specific symptoms such as dizziness

and headache. The control group was excluded if the patients

(1) had abnormal VEEG results or routineMRI; (2) had a central

nervous systemmental illness or other systemic diseases; and (3)

had a family history of epilepsy and mental illness.

This study has been approved by the ethics committee. All

the participants provided ethical and informed consent.

Clinical evaluation of patients with TLE

Clinical data were collected at the time of recruitment,

including the age of onset, course of the disease, family history,

history of febrile convulsions, seizure symptoms (including

aura, seizure performance, post-seizure status, duration), ASM

schedules, and history of status epilepticus. A routine cerebral

MRI was performed for etiology analysis.

Interictal severity was evaluated as seizure frequency, DRE

(31), and the clinical scale: VA-2 Veterans administration rating

scale for seizure type and frequency (VA-2) (32). VA-2 scale

assessed the seizure severity based on the seizure frequency,

combined with the seizure manifestations, and was more

suitable for assessing interictal severity compared to other scales

such as National Hospital Seizure Severity Scale (NHS3) and

Liverpool Seizure Severity Scale Items (LSSS).

EEG acquisition and preprocessing

All participants stayed in a room with attenuated sound

and dim light, isolated from electronic devices such as mobile

phones, computers, chargers, and continuous video monitoring

for more than 16 h. EEG signals were recorded on 25 electrodes

(Fp1, Fp2, F9, F10, T9, T10, P9, P10, F7, F8, T7, T8, P7, P8, F3,

F4, C3, C4, P3, P4, O1, O2, Fz, Cz, and Pz) positioned according

to the IFCN (33) (Supplementary Figure S1), using a 64-channel

digital EEG recording system (NIHON KONHDEN, JAPAN).

The sampling rate was set at 500Hz. All the skin/electrode

impedances were kept below 5K�. At least two EEG specialists

interpreted the EEG results.

The 90 s interictal-resting EEG data without noticeable

artifacts were collected under the eyes-closing state in patients

with TLE and controls. Data with numerous artifacts were

eliminated. In patients with epilepsy, the resting EEG was more

than half an hour away from a seizure. The EEG data were

analyzed using MATLAB R2018a software (MathWorks, Natick,

MA) and reformatted into average references to minimize

the confounding effects of specific brain activity and achieve

reference elimination. A finite impulse response (FIR) filter

was used as a band-pass filter for the EEG signal from 0.1

to 45Hz. Artifacts were removed from each individual blindly

by an experienced engineering doctor, Gaoxing Zheng, as

far as possible. Independent component analysis (ICA) was

performed using the Infomax ICA algorithm in EEGLAB to

remove artifacts by identifying and extracting visible artifacts

(eye movement, heart activity, and scalp muscle contraction).

There was no patient excluded because of the artifacts affecting

EEG processing in this study. Band-pass filtering was applied to

the following standard frequency bands: delta (1–4Hz), theta

(4–7Hz), alpha (8–13Hz), beta (14–30Hz), and gamma (30–

45 Hz).

Power spectrum analysis

Mean frequency (MF) and frontality laterality index

(LI) were measured. The calculation formulas were defined

as follows:

f̄ =

100
∑

f=1
(P(f )× f )

100
∑

f=1
P(f )
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LI =
Pleft − Pright

Pleft + Pright
.

Pleft is the average of the power spectrum of left frontal

electrodes (Fp1, F3, and F7), while Pright is the average of the

power spectrum of right frontal electrodes (Fp2, F4, and F8).

EEG network analyzing pipeline

We adopted an analyzing pipeline (summarized in

Supplementary Table S1) created in our lab to quantitate

and source localized the EEG functional network, including

a weighted classical network, MST, community structure,

and sLORETA.

Weighted classical network

Functional connectivity

Phase lag index, an index of asymmetry in the phase

difference distribution calculated from the instantaneous phases

of two-time series, was used to statistically quantify the phase

synchronization of the two signals (34). The Hilbert transform

was used to determine the instantaneous phase, and the Hann

window was applied before performing the concurrent fast

Fourier transform. When 1φ is defined as the phase difference,

PLI is calculated as follows:

PLI=
∣

∣< (sign(1φ)) >
∣

∣

where the symbol “| |” refers to taking the absolute value, the

character “< >” means the average operator and the “sign” is the

sign function in math.

Construction of brain network

We defined the EEG electrodes as network nodes, and the

1/PLI values between the paired electrodes were characterized

as the edge distance. The functional connectivity matrix was

calculated once for each epoch. All individual connectivity

matrices were calculated and averaged to represent the network

connections for the group to improve reliability.

The frontotemporal region network was constructed with

Fp1, Fp2, F3, F4, F9, F10, T9, T10, P9, P10, F7, F8, T7, T8, P7,

and P8 electrodes as nodes.

Small-world properties

After constructing the brain network, CC and characteristic

PL were calculated (Supplementary Appendix S1). CC was a

measure of the local segregation of the network. PL was an

indicator of the overall integration, and a lower PL indicated a

more integrated network.

Minimum spanning tree

The minimum spanning tree is an acyclic subgraph

connecting all the nodes in the weighted network, which extracts

the network’s backbone and reduces the influence of noise.

Here, 1/PLI is considered the edge distance; then, the Kruskal

algorithm is used to generate the MST. Five commonly used

parameters were calculated in this study.

Diameter

The diameter (D) is measured as the distance between any

two nodes of the tree.

Leaf fraction

The leaf fraction (LF) is the fraction of nodes with degree =

1 inMST.

Betweenness centrality

Betweenness centrality (BC) is the fraction of all paths on a

tree that passes through a particular node. A node with a large

betweenness is considered to play a crucial role in the network.

The formula for calculating BC is as follows:

BC (vi) =
∑

s 6= t 6= vi

σst (vi)

σst

where σst is defined as the number of shortest paths from node s

to node t, of which passing through Vi is expressed as σst (Vi).

Tree hierarchy

The tree hierarchy (TH), which is characterized as a

hierarchical metric that quantifies the trade-off between large-

scale integration, is defined as follows:

TH =
LN

2mBCmax

where LN is the leaf number of MST and BCmax is the largest

betweenness centrality in the network.

Kappa

Kappa is a measure of the broadness of the

degree distribution.
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Community structure

A community refers to dividing the nodes in the network

into several relatively independent modules. The group

connections were relatively dense, and the connections between

the groups were relatively sparse (35). Modularity (Q) was used

to measure the quality of the community partition. The larger

theQ, the clearer the community division structure behaves. The

calculation formula for Q is as follows:

Q =
1

2M

∑

i

∑

j

(

aij −
kikj

2M

)

δ
(

Ci,Cj
)

where M represents the number of nodes and M represents the

number of channels. aij represents the adjacency matrix and ki

represents the degree of node i. Ci represents the community

assignment. δ(Ci, Cj) characterizes the different community

assignments if nodes i and j belong to the same community, then

δ(Ci, Cj) equals 0. In contrast, δ(Ci, Cj) equals 1 when i and j

belong to different communities.

Partition coefficient (PC) measures the node centrality

within and between the modules, where the large PC means the

node plays essential roles in the community—the PC node i is

defined as follows (36).

Pi = 1−

NM
∑

s=1

(

κis

ki

)

2

where kis is the number of nodes i in module s and ki is

the degree of node i. Pi is closer to 1 if the links are uniformly

distributed among modules. It is 0 when the node is connected

only in their module.

EEG source localization

sLORETA software (version. 20190617, https://www.uzh.

ch/keyinst/loreta) was used to reconstruct the EEG signals.

LORETA’s algorithm is a linear inverse solution of the EEG

signal. Under ideal conditions (no noise), there was no

positioning error for the point source. The 3D distribution of

the cortex was used to calculate the standardized current source

density based on the potential distribution recorded on the

scalp. Based on the Brodmann area (BA), differences in the

functionally related brain areas were displayed on the Talairach

template for three-dimensional display. We first created a list

of 25 electrodes as EEG data were recorded, then made the

transformation matrix, and computed the sLORETA images of

the current density values for each voxel.

The procedure and all the parameters calculated are shown

in Figure 1. The EEG analysis was blindly performed by the

experienced engineering doctor, Gaoxing Zheng.

Statistical methods

Numeric variables are expressed as mean ± standard

deviation (SD) or median (interquartile range [IQR]). Statistical

analysis was performed using SPSS software (version 25.0; SPSS

Inc., Chicago, IL, USA). An ANOVA test with Tukey’s post-

hoc test was performed to differentiate demographics and EEG

data among variable lateralization of patients with TLE and

controls. Correlation analysis was performed using Spearman’s

correlation analysis. Multiple linear regression analysis was used

to detect the attributing factors. The significance level for all tests

was p < 0.05.

Results

Demographics and clinical data

A cohort of 151 patients with TLE (55 right, 56 left, and 40

bilateral) and 36 controls was enrolled. There were no significant

differences in age (control: 38.44 ± 17.50, TLE: 41.47 ± 18.25,

R-TLE: 41.87 ± 17.24, L-TLE: 39.05 ± 19.13, B-TLE: 44.30 ±

18.35) and gender (male/total, control: 17/36, TLE: 88/151, R-

TLE: 33/55, L-TLE: 35/56, B-LTE: 20/40) between the groups (P

> 0.05).

The age of onset of patients with TLE was 34.46±20.79

(30[32.25]) years old, and the disease duration was 7.17 ±

9.14 (4[9]) years. Sixty-five patients with TLE were treated with

monotherapy, 25 were with two epileptic drugs (ASMs), 15

were with more than ASMs, and the other 46 patients did

not receive any ASM. The ASM schedules were as follows:

38 patients were treated with valproic acid (VPA), 28 patients

with carbamazepine (CBZ), eight patients with topiramate

(TPM), 19 patients with levetiracetam (LEV), 20 patients with

oxcarbazepine (OXC), four patients with phenobarbital (PB), 29

patients with lamotrigine (LTG), and one patient with phenytoin

(PHT). Among them, 10.60% (16/151) had a history of febrile

seizures, and 2.64% (4/151) had a family history of epilepsy.

Seizure severities were evaluated by seizure frequency, the

diagnosis of DRE, and VA-2 scores. A total of 19 patients with

TLE underwent a seizure frequency of more than 1 per week, 38

patients of no <1 per month, 67 patients of no more than 1 per

year, and the remaining 27 patients had less than one seizure per

year. In total, 33 patients were diagnosed with DRE according

to the definition of ILAE 2010. The average of VA-2 score was

203.05± 378.91 (40[182]).

According to the ILAE 2017 classification criteria,

26 patients with TLE were classified as focal seizures,

and the other 125 patients with TLE were assorted as

focal to bilateral tonic–clonic seizures. A total of 104

patients were diagnosed with unknown etiology with

negative routine MRI, and 47 with structural causes, of

which 15 were HS, 1 was focal cortical dysplasia (FCD),
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FIGURE 1

Protocol for electroencephalography processing and analyzing.

FIGURE 2

Diagrams of the functional network in patients with TLE and controls. The graph of the mean phase lag index, functional connection pattern (A)

and sLORETA (B) displayed ipsilateral enhancement in frontotemporal regions in patients with TLE.

5 were encephalitis, 1 was trauma, 16 were occupying

lesions, 3 were unknown temporal lobe atrophy, 4

were cerebrovascular diseases, and the other 2 were

double pathology diagnosed by postoperative pathology:

ganglioglioma (GG) with FCD type IIIb, and HS with cavernous

hemangioma, respectively.

Power spectrum analysis in patients with
TLE

In routine power spectrum analysis, the interictal mean

frequency demonstrated no significant differences existed

among the TLE groups and controls (F = 0.791, P > 0.05). The
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FIGURE 3

Alterations of the whole and frontotemporal network in patients with TLE. Di�erences of the classical weighted network in the whole brain

among patients with TLE and the controls (A). Alterations of the frontotemporal network in patients with TLE (B). * P <0.05; ** P < 0.01.

LI results showed that only decreased frontal LI was found in L-

TLE compared to patients with R-TLE (−0.002± 0.232 vs. 0.109

± 0.160, P= 0.017).

Frontotemporal changes of resting
network in patients with TLE

Using our network analysis pipeline, increased

frontotemporal connectivity ipsilaterally was demonstrated

in patients with TLE according to mean PLI and FC pattern

diagrams, while the bilateral occipital increase was found

in the controls (Figure 2A). Furthermore, the results of

EEG source localization displayed ipsilateral frontotemporal

enhancement in patients with TLE. The mainly involved

brain regions of the patients with TLE were the superior (BA

38), middle (BA 21), and inferior (BA 20) temporal gyrus,

inferior (BA 47, 45) and middle (BA 9, 10, 11) frontal gyrus

(Figure 2B).

Significantly changed global and frontotemporal

weighted network values (increased PLI, CC, and

decreased PL) were found in the theta band in

patients with L-TLE and R-TLE, as well as in full and

alpha bands in patients with R-TLE. In contrast, the

network characteristics of patients with R-TLE show

the opposite trend in the gamma band. (Figure 3,

Supplementary Table S2).

Changed MST parameters were shown in frontotemporal

regions. Reduced MST diameters were found in the full

band. In the theta band, increased TH was found in L-TLE

and R-TLE, and increased LF in L-TLE as well (Figure 3B,

Supplementary Table S3).

Interictal frontotemporal PLI values in the
theta band are independently correlated
with seizure severity

Increased frontotemporal PLI and CC, and decreased PL

values in the theta band were observed in TLE patients with

seizure frequency of ≥ 1 per month (P < 0.01), DRE (P <

0.01), antiseizure medications (P < 0.05), and VA-2 scores ≥

30 (P < 0.01). A decreased MST diameter was also found in

patients with a higher seizure frequency (P= 0.003) and DRE (P

= 0.016) (Supplementary Table S4, Supplementary Figure S2).

Correlation analysis showed that the VA-2 scores were positively

correlated with the PLI (r= 0.254, P= 0.002) andCC (r= 0.242,

P = 0.003) in the frontotemporal theta band and negatively

correlated with PL (r=−0.248, P= 0.002) and diameter ofMST

(r =−0.187, P= 0.021).

We carried out a multivariate linear regression analysis to

identify themost significant factors affecting seizure severity.We

set VA-2 scores as a dependent variable, and functional network

parameters in variable bands, patients’ age, duration, age of

onset, family history, history of febrile convulsions, seizure

symptoms (including aura, seizure performance, post-seizure

status, duration), ASM schedules (including numbers of ASM;

VPA, CBZ, TPM, LEV, OXC, LTG, PHT, and PB usage), and

history of status epilepticus as independent variables. The results

showed that frontotemporal PLI values in the theta band (β =

0.259, P = 0.001) and age of onset (β = −0.215, P = 0.007)

entered the regression model of VA-2 scores.

Considering the possible impact of lesions on brain

networks, we further measured the multivariate analysis in 104

TLE patients with negative MRI and obtained consistent results:

VA-2 scores were independently correlated with frontotemporal
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PLI values in the theta band (β = 0.263, P = 0.008) and age

of onset (β = −0.195, P = 0.047). No significant difference

was detected in frontotemporal PLI values in the theta band

between the TLE patients with (0.559 ± 0.272) and without

lesions (0.508 ± 0.280; P > 0.05). No difference was found

between the patients with and without the certain ASM either

(Supplementary Table S5).

Discussion

Temporal lobe epilepsy is a common type of DRE that

involves complex network mechanisms. Here, we adopted a

graph theory analyzing pipeline based on EEG, including the

weighted functional network, MST, and community structure

analysis methods. We reported the independent correlations

between frontotemporal functional connection and seizure

severity in patients with TLE. This study highlighted the crucial

role of the frontal lobe in TLE and provided a non-invasive and

easy-to-use indicator for drug-resistant patients with TLE.

Compared to negative findings using routine power

spectrum analysis, the graph theory network results showed

increased frontotemporal connections ipsilaterally during

interictal-resting periods. The frontal and temporal cortices

are connected via various fibers, such as the AF and UF (14).

Whether the frontal lobe participates in seizure propagation

in patients with TLE remains unknown. Some studies have

reported the involvement of the frontal lobes in patients with

TLE, with controversial conclusions. Ipsilateral hyperperfusion

in regions was observed in patients with mTLE using single-

photon emission computed tomography. At the same time,

significant hypoperfusion was found in the bilateral prefrontal

areas (37). However, decreased frontal connectivity has also

been detected during seizures (38). Other studies reported

that frontotemporal, especially orbitofrontal, connections were

interictally increased after interictal epileptic discharges (39).

In this study, sLORETA images, according to EEG sources, a

newer tomographic method to calculate electrical neuronal

activity, were consistent with those connected by AF and UF.

The pars triangularis (BA 45), posterior frontal gyrus (BA 8,

9), and pars opercularis (BA 44) were the regions in which the

largest branch of AF was terminated (40). The other branch

connects the posterior part of the superior temporal gyrus

(BA 41, 42) to the inferior frontal gyrus (BA 44, 45) (41).

The UF connects the anterior temporal lobe (BA 38) with the

orbitofrontal (BA 11, 47) and frontal pole cortex (BA 10). The

ventral branch of the UF terminates in the orbitofrontal cortex

(BA 11, 47). In addition, the anterior and middle branches

connect the anterior cingulate gyrus (BA 32) and frontal pole

(BA 10) (41). These regions co-activated in R-TLE, L-TLE,

and B-TLE may indicate the frontotemporal reconfigurations

of the epileptic functional network. Because the presence of

structural abnormality affects the epileptic network, the patients

with abnormal extratemporal abnormalities on routine MR

were excluded from this study to avoid confounding factors

such as non-epileptogenic lesions. For the temporal lesions,

multivariate analysis showed consistent results in 104 TLE

patients with negative MRI.

Compared to other bands, the theta band was the most

significant in the functional network in this study. Previous

studies reported a unique theta oscillation in the human

hippocampus, which was widely associated with attention,

execution, and emotion (42). Little attention has been paid

to epilepsy research. Theta rhythm was previously reported to

regulate the firing frequency and discharge time of individual

neurons (43). A study of 10 patients with DRE found that

small-world parameters in the theta band were increased before

seizures (44). Seizure behavior was related to theta activity in the

kainic acidmodel (45). All the results indicate that the theta band

plays an important role in seizure propagation.

The most important clinically relevant finding was that

using our analyzing pipeline, frontotemporal PLI values in

the theta band with IFCN-standard EEG were independently

correlated with VA-2 scores. PLI values between 0 and 1 were

used to describe brain synchronization and reported to be

much better to avoid volume conduction than other parameters

(synchronization likelihood, Fourier coherence coefficient, etc.)

(46). Although weighted PLI (wPLI) is slightly better than PLI

in avoiding volume conduction, Christodoulakis, et al. (47)

addressed that the brain network indicators calculated based

on wPLI are not significantly different from those calculated

based on PLI. In addition, they emphasized that excessive

pursuit of reducing the impact of volume conduction will result

in a loss of the ability to identify abnormal epilepsy EEG

changes. Therefore, we adopt the method of PLI, which can

not only effectively avoid the impact of volume conduction,

but also sensitively capture the network significance in patients

with TLE compared to the controls. The larger the PLI was,

the more vital synchronization was observed in the brain.

Synchronized neurons are critical for brain function, whereas

excessive synchronization is notably related to epilepsy (48).

Meanwhile, increased CC and decreased PL were observed,

indicating that local and global network connectivities were

abnormal. The changed small-world topologies in patients with

TLE were consistent with previous studies (19, 49), except for

some controversial results (20, 50). These inconsistent results

might be due to the different network types (structural or

functional, global, or local network) or neuroimaging modalities

(EEG or MRI). MST results showed that the frontotemporal

diameter in patients with epilepsy was shorter than that in the

controls. We observed that alterations in the frontotemporal

MST parameters were more notable than those in the whole

brain. However, in this study, we did not detect its sensitivity

compared to the weighted-graph indicators, which might have

been because of its focus on the network skeleton and ignorance

of the weaker connections (51). In terms of prognosis prediction,

other methods such as machine learning were preliminarily

applied. Croce et al. (52) provide a pipeline using a machine
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learning approach for predicting the levetiracetam response in

23 patients with epilepsy. Tang et al. (53) develops and validates

a machine learning-powered approach in neuroimaging for

surgery outcome prediction. However, it remained to be

improved in the clinical application, such as excessive feature

extraction, computational cost, time consumption, the risk

of overfitting in small datasets, etc. The changes in TLE

frontotemporal network characteristics that we have discovered

so far may guide us to use machine learning methods to predict

clinical outcomes in the future.

According to the previous EEG brain network research,

the epoch length of the EEG signal will affect the functional

connectivity values, which in turn affects the brain network

analysis results. The brain functional connectivity tends to

be stable when the continuous EEG epoch is longer than

10 s (25, 54). Consistent with our previous study, 90-s EEG

epochs were segmented and analyzed (55). At present, the latest

electrophysiology networkmodeling analysis mainly depends on

invasive EEG monitoring or high-density EEG (56). However,

these were limited by routine clinical use and individualized

implantation schemes. In 2017, the IFCN recommended a new

electrode positioning system for routine practice. It was a 25-

channel system, adding an inferior temporal chain based on

the conventional 10–20 system (33). It was reported to have

the same effect as high-density recordings (above 128 channels)

in diagnostic yield (57). It could compensate for the lack of

routine practice and individualization compared to SEEG and

high-density EEG. We followed the IFCN guidelines to identify

alterations within the temporal and frontal lobes. This study

provided a non-invasive indicator with IFCN-system EEG for

seizure severity, which was more accessible and standardized in

routine practice.

The limitation of the present study is the insufficient

analysis of the EEG network to describe the anatomical

spatial characteristics. A better network characteristic could be

described with a high-density EEG recording. Further work is

required for the comparison of our data with SEEG and high-

density EEG results. Second, it is a lack of accuracy for the

source-level analysis using standard coordinates of electrodes.

We will obtain the source location coordinates from each

individual MRI and then transform them in Talairach space

to precisely determine the distribution of region of source

involvement in the following studies. Moreover, the predicted

model will be acquired for multi-dimensional parameters, large

sample sizes, and multi-center research.

In summary, our network analysis illustrated that ipsilateral

frontotemporal regions are activated in the interictal state

in patients with TLE. The frontotemporal PLI values in the

theta band independently correlated with VA scores in patients

with TLE. We suggested that increased frontotemporal theta

synchronicity might be correlated with seizure severity. This

study introduced a non-invasive method with routine scalp

EEG for seizure severity and guided the treatment strategy for

drug-resistant epilepsy.
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