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Literature pertaining to traumatic brain injury care involves the mediation and control

of secondary brain injury mechanisms, chief among these is cerebral autoregulation.

Cerebral autoregulation is frequently assessed through surrogate measures of

cerebrovascular reactivity. An important aspect to acknowledge when calculating

cerebrovascular reactivity indices is the linearity within two-parent bio-signals or variables.

We highlighted the concept of linearity in raw parent bio-signals used for the calculation

of the cerebrovascular reactivity index and what potential implications linearity carries for

index derivation. Key of which is that the initial differencing or location of the pressure

probes does not influence linear methods of cerebral reactivity calculations so long as

the slow-wave vasogenic changes are being recorded.
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BACKGROUND

Literature pertaining to traumatic brain injury (TBI) care involves the mediation and control of
secondary brain injury mechanisms, which are the cascading pathophysiological responses that are
incurred due to the primary injury of TBI. The assessment and investigation of these secondary
TBI mechanisms may offer potential routes to improve outcomes, which has had little change over
the past 25 years (1–4). Among the current secondary mechanisms of injury being investigated,
cerebral autoregulation is of note as there is a growing body of literature documenting not only its
impact but also various methods of evaluating it at the bedside (5–8).

Cerebral autoregulation is the physiologic mechanism by which homeostatic cerebral blood
flow (CBF) is maintained (5, 9, 10). Frequently, it is assessed through surrogate measures of
cerebrovascular reactivity (6–8, 11–15). Such assessment of cerebrovascular reactivity has shown
that the current Brain Trauma Foundation guideline-based management has had a limited impact
on cerebral autoregulatory dysfunction following TBI (1, 16, 17). This has sparked interest in
the field of neurocritical care as an improved understanding of dysfunctional autoregulation may
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provide a potential route for improved patient outcomes (12, 16,
17). This enthusiasm has been bolstered by evidence indicating
that dysfunctional autoregulation is linked to poor outcomes
following TBI (8, 12, 17, 18).

Contemporary methods of continuously measuring
cerebrovascular reactivity involve the comparison of systemic
blood pressure/flow to an aspect of cerebral response associated
with vascular control. These methods focus on the slow wave
vasogenic fluctuations that are assumed to be associated with
cerebrovascular reactivity, mostly within ∼0.005–0.5Hz, though
this is still underexamined (7, 13, 19, 20). The most commonly
utilized method to assess cerebrovascular reactivity is the
pressure reactivity index (PRx), which correlates the mean
arterial pressure (MAP) and the intracranial pressure (ICP)
(6, 8, 13). Usually, systemic blood pressure is extracted in the
form of arterial blood pressure (ABP) with ICP being extracted
from an intraparenchymal strain gauge probe. Both the MAP
and the ICP are derived for the grand average mean over a
10-s window of ABP and ICP, respectively. Next, the Pearson’s
correlation between the MAP and ICP for 30 consecutive 10-s
windows is derived, thus comparing the slow-wave vasogenic
relationship between MAP and ICP. The 10-s window is
respective of the 0.1Hz associated with the upper limit of the
slow-wave vasogenic response.

POINT OF COMMON CONCERN

An important aspect to acknowledge when calculating
cerebrovascular reactivity indices is the linearity within two-
parent bio-signals or variables. Specifically, a common concern is
raised regarding the introduction of scaling “errors” to the parent
bio-signals that are used in the calculation of time-domain-based
cerebrovascular reactivity indices, such as PRx. These scaling
“errors” can take the form of zero errors, for example, where
the ABP transducer is zeroed at the right atrium vs. level of
the tragus. We highlighted below the concept of scaling errors
potentially introduced to the raw parent bio-signals used for
cerebrovascular reactivity index calculation, and what potential
implications those carry for index derivation.

IMPACT OF SCALING ERRORS IN PARENT
BIO-SIGNALS ON CEREBROVASCULAR
REACTIVITY INDEX DERIVATION

Linearity refers to a transformation that satisfies two aspects;
additivity and scaling property (21). The additive property states
that if the same amount is added to both sides of an equation,
then the equality is still true (addition or subtraction by a
constant). The scaling property states that an equation can be
multiplied by a positive real number, which only changes the
magnitude of response (multiply or divide by a positive number).
By maintaining linearity, the transformation to a variable can be
caused by the sum of two or more stimuli, which would be equal
to the response of each stimulus individually at the same time.
Examples of a linearmodification would be any simple arithmetic
changes to the data by a vector (plus/minus and multiply by

a positive number). As long as linearity is preserved, linear

techniques (like Pearson’s Correlation =

∑
(xi + x)(yi + y)

∑
(xi + x)2

∑
(yi + y)

2 )

are equivalent between the data (see Figures 1, 2).
From Figures 1, 2 it can be seen that modifications to

the original signal’s waveform that maintain linearity would
demonstrate identical results in linear correlations. For PRx, both
MAP and ICP can have a wide variation in mean value over
the whole data or a significant variation in the magnitude of
patient response. The importance of linearity means that the
location of the zeroing transducer for ABP monitoring does
not influence the calculation of PRx. Similarly, for the ICP

FIGURE 1 | Correlation as a change in multiplicative scaling. The figure

demonstrates the correlation between variables 1 and 2 over a 5-s time

window. Note that despite the change in scaling, the correlation is always 0

(linearity is preserved).

FIGURE 2 | Correlation to additive changes. The figure demonstrates the

correlation between variables 1 and 2 over a 5-s time window. Note that

despite the change in mean value, the correlation is still 0 (linearity is

preserved).

Frontiers in Neurology | www.frontiersin.org 2 March 2022 | Volume 13 | Article 857617

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Froese et al. Considerations for Cerebrovascular Reactivity Indices

waveform, as long as the slow-wave vasogenic changes in ICP
are being recorded, cerebrovascular reactivity can be determined.
Ultimately, cerebrovascular reactivity as determined through
PRx is the relationship of change between the MAP and ICP, thus
the overall response factors, like multiplicative scaling, do not
influence the resulting PRx value. Likewise, the PRx calculation
is indeterminate of the initial ICP and MAP placement, and
thus the zeroing of the MAP at the right atrium vs. level of the
tragus have an identical resulting PRx. Furthermore, within ICP
monitoring, there is a trend for the mean value to drift very
slowly over the course of the recording period. If the change is
sufficiently slow in relation to the frequency at which PRx is being
calculated, this drifting of ICP would have a negligible impact on
PRx (i.e., if ICP drifts 1–2mmHg over a day and PRx is calculated
every 5 min).

IMPACT ON “OTHER” MULTI-MODAL
CEREBROVASCULAR REACTIVITY
INDICES

Other multi-modal cerebral physiologic monitoring has been
employed for the derivation of alternative cerebrovascular
reactivity indices in moderate/severe TBI. These are derived
using the same principle as outlined above for PRx derivation.
Such monitoring devices utilized include the following: brain
tissue oxygenation as collected through a probe that measures
oxygen tension, near-IR spectroscopy to detect regional cerebral
oxygen saturation, transcranial doppler to measure CBF
velocity, and thermal diffusion-based CBF as measured through
parenchymal probes (22). The literature on the utility of such
cerebrovascular reactivity indices in TBI care remains limited.
Regardless, scaling errors introduced into these parent cerebral
physiologic signals derived from various multi-modal monitors
lead to the same mathematical considerations raised in the
section above on PRx derivation. That is, the introduction
of constant additive or multiplicative scaling error into
these parent signals carries no impact on the derivation of
Pearson’s correlation coefficient that forms these alternative
cerebrovascular reactivity indices. Similarly, wherever linear
correlation coefficient values are being derived, a linear
modification to the original data would not influence the
calculated correlation coefficient.

CONCLUSIONS

In conclusion, cerebral autoregulation offers a potential avenue
to better improve patient care. In line with this, cerebrovascular

reactivity offers a potential way to assess autoregulation in a
patient. This is done often through linear equations, which
means that, as long as linearity is preserved in the acquired data,
the calculation of cerebrovascular reactivity indices will remain
accurate and mathematically independent of any scaling “error”
applied to the parent signals.
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