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Myasthenia gravis (MG) is an autoimmune disorder caused by autoantibodies targeting

components of the postsynaptic membrane of the neuromuscular junction (NMJ),

leading to neuromuscular transmission deficiency. In the vast majority of patients, these

autoantibodies target the nicotinic acetylcholine receptor (nAChR), a heteropentameric

ion channel anchored to the postsynaptic membrane of the NMJ. Autoantibodies in

patients with MG may target all the subunits of the receptor at both their extracellular

and intracellular regions. Here, we combine immunoadsorption with a cell-based assay to

examine the specificity of the patients’ autoantibodies against the extracellular part of the

nAChR. Our results reveal that these autoantibodies can be divided into distinct groups,

based on their target, with probably different impacts on disease severity. Although

our findings are based on a small sample group of patients, they strongly support that

additional analysis of the specificity of the autoantibodies of patients with MG could serve

as a valuable tool for the clinicians’ decision on the treatment strategy to be followed.

Keywords: myasthenia, autoantibodies, anti-nAChR antibodies, cell-based assay, diagnosis of myasthenia,

immunoadsorption

INTRODUCTION

Myasthenia gravis (MG) is a well-characterized autoimmune disorder caused by autoantibodies
(autoAbs) targeting molecules of the neuromuscular junction (NMJ). In MG, the signal
transduction caused by the neurotransmitter acetylcholine is impaired and muscle weakness and
fatigability occur (1–4).

To date, various MG-specific autoAbs have been identified. One case is the autoAbs against
the muscle nicotinic acetylcholine receptor (nAChR) (5), which act according to one of the
following three pathogenic mechanisms: (a) activation of the complement at the NMJ, which
causes destruction of the typical folds in the sarcolemma, (b) antigenic modulation, which leads to
internalization and degradation of the surface nAChR, or (c) blocking of the acetylcholine binding
and consequently of the channel opening (6). AutoAbs against the muscle-specific kinase (MuSK)
(7) and low-density lipoprotein receptor-related protein 4 (LRP4) (8–10) block the interactions of
MuSK and LRP4 and affect the maintenance of the NMJ (6, 11). In addition, other autoAbs with
unknown pathogenicity directed against agrin, cortactin, titin, and ryanodine receptor have also
been detected in patients’ sera with MG (12–16).
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The nAChR is a ligand-gated ion channel anchored to the
NMJ (17). In humans, two subtypes of the muscle nAChR have
been identified, the fetal and the adult subtype. Both the subtypes
are heteropentamers composed of 4 subunits forming pentameric
assemblies with a stoichiometry of 2α1: β1: ε: δ (adult subtype)
or 2α1: β1: γ: δ (fetal subtype) (18–20). Each subunit consists
of a ∼210 amino acid extracellular domain (ECD), bearing the
epitopes for potential pathogenic autoAbs (21, 22). Although
the α1 subunit hosts the main immunogenic region, patients
with MG also harbor autoAbs against the non-α1 subunit-ECDs
(22–25). AutoAbs against the α1 subunit of the nAChR are
characterized as more pathogenic than those against the β1
subunit (26). Furthermore, autoAbs against the γ subunit trigger
arthrogryposis in newborns and recognize the fetal subtype of the
nAChR on the extraocular muscle in adults (27–30). Thus, the
subunit specificity of the anti-nAChR autoAbs seems to influence
disease severity.

Currently, the gold standard technique for anti-
nAChR autoAbs detection and quantification is a
radioimmunoprecipitation assay (RIPA), performed with a
mixture of solubilized fetal and adult human nAChR bound
to the [125I]-labeled antagonist α-bungarotoxin. RIPA is a
reliable technique that provides an accurate estimation of the
anti-nAChR autoAbs titer (5, 31). The anti-nAChR autoAbs
titer does not correlate with disease severity when patients are
compared, although fluctuations in the anti-nAChR autoAbs
concentration in an individual patient have been reported to
correlate with the severity of muscle weakness and to predict
exacerbations. Thus, repeated testing for autoAbs can influence
therapeutic decisions (2). Other techniques with good sensitivity
and specificity for the detection of the anti-nAChR autoAbs,
namely, ELISA, luciferase and fluorescence immunoprecipitation
assays, exist. However, these assays have not been widely adopted
in clinical practice (2, 32–34). Recently, cell-based assays
(CBAs) for the detection of anti-nAChR autoAbs have been
developed (35). In brief, CBA utilizes either transiently or
stably co-transfected cells with plasmids encoding the five
subunits of the nAChR and rapsyn. This co-transfection results
in overexpression of the native nAChR on the cell membrane,
mimicking the tightly clustered nAChRs on the NMJ. Thus,
in addition to other techniques, CBA allows the detection of
conformational dependent anti-nAChR autoAbs that recognize
discontinuous epitopes and clustered nAChRs (36–41). It
has been reported that 16–66% of seronegative patients with
MG have autoAbs against the clustered nAChR, detected
by CBA (42–46).

Here, we studied the specificity of the anti-nAChR autoAbs in
sera, derived from a group of 20 anti-nAChR positive patients
with MG at different time points. First, we investigated how
many of these patients possess autoAbs against extracellular parts
of the nAChR by CBA. We were surprised to find that 7 out
of the 20 patients with MG were CBA negative (CBA–), which
suggests that they mainly have autoAbs against intracellular parts
of the receptor, since these patients were RIPA positive against
the native nAChR. Then, only for the CBA positive sera (CBA+),
we tested by immunoadsorption the subunit specificity of the
autoAbs. Following the immunoadsorption of autoAbs against

specific subunit-ECDs, we tested the remaining autoAbs by: (a)
RIPA to quantify the percentage of the unbound autoAbs and (b)
CBA to test if all the autoAbs against extracellular parts of the
nAChR were depleted. Based on our findings, we could divide
the tested patients with MG into four groups, according to the
target of their autoAbs, which possibly reflects differences in their
clinical phenotype.

MATERIALS AND METHODS

Patients
Sera from patients with nAChR-MG, confirmed by RIPA, were
provided by the diagnostic department of the Hellenic Pasteur
Institute (HPI). The sera samples used were collected from at
least two different time points for most of these patients. In
total, 55 sera were collected from 20 patients with MG (Table 1).
Clinical data from 9 patients are available and given in Table 1.

Statement of Ethics
The studies involving human participants were reviewed and
approved by HPI Ethics Committee. The patients/participants
provided their written informed consent to participate in
this study.

Immobilization of Purified Recombinant
Proteins on CNBr-Sepharose Beads
The expressed, in yeast Pichia pastoris, ECDs of the human
α1, β1, γ, δ, and ε nAChR subunits (47, 48) were immobilized
on cyanogen bromide (CNBr)-sepharose beads, after their
enzymatic deglycosylation and purification, as described
previously (24, 49). In brief, 0.1mg of ECD and 0.9mg of bovine
serum albumin (BSA) (used as a carrier) were immobilized
on 0.1 g of CNBr-activated sepharose beads according to
the manufacturer’s protocol (GE Healthcare). Following the
immobilization, the ECD-carrying beads were diluted in 12ml
phosphate-buffered saline (PBS) containing 0.02% NaN3. As
a control, BSA (1mg) was immobilized on CNBr-activated
sepharose beads.

Immunoadsorption
A total of 125 fmoles of anti-nAChR autoAbs, diluted in
PBS/0.2% BSA (total volume: 40 µl), were incubated with 120
µl of sepharose-ECD or sepharose-BSA suspension, for 2 h at
room temperature (RT). After centrifugation, supernatants from
the immunoadsorption columns containing the unbound anti-
nAChR autoAbs were tested by RIPA and CBA.

Radioimmunoprecipitation Assay
For the quantification of the unbound anti-nAChR autoAbs, the
autoAb RIPA kit (RSR, UK), containing [125I]-α-bungarotoxin-
labeled human fetal and adult muscle nAChR preparations,
was used, according to the manufacturer’s instructions. From
the 160 µl immunoadsorption mix, duplicates of 30 µl
samples (containing ∼25 fmoles in case of no depletion) were
added to the reaction. The percentage of immunoadsorption
was estimated using the equation: 100 × {[1cpmBSA] –
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TABLE 1 | Results of the tested sera.

Date Age Onset MGFA anti-nAChR

(nM)

Live CBA anti-α1 (%) anti-β1 (%) anti-γ (%)

Live CBA negative

P1 2017 n.a. n.a. n.a. 820 N N N N

2021 n.a. n.a. n.a. 496 A N N N

P2 2011 n.a. n.a. n.a. 275 N N N N

2013 n.a. n.a. n.a. 450 A N N N

2018 n.a. n.a. n.a. 256 A N N N

2019 n.a. n.a. n.a. 480 A N N N

P3 2017 n.a. n.a. n.a. 97 A N N N

2019 n.a. n.a. n.a. 39 A N N N

2020 n.a. n.a. n.a. 28 A N N N

P4 2017 n.a. n.a. n.a. 65 N

2018 n.a. n.a. n.a. 46 A

P5 2011a 28 Early IIA 272 N

2011b 28 IIA 277 N

2018 35 PR 130 N

P6 2010 33 Early I 341 N

2019 42 I 310 N

P7 1999 51 Early I 144 N

2009 61 I 145 N

Anti-α1 autoAbs

P8 2018 79 Late I 8.8 P 57.84 (±6.07) N N

2019 80 V 36 P 58.38 (±8.83) N N

P9 2017 n.a. n.a. n.a. 32 P 38.38 (±4.08) N N

2018 n.a. n.a. n.a. 36 P 27.55 (±1.82) N N

P10 2016 n.a. n.a. n.a. 82 P 87.43 (±0.08) N N

2017 n.a. n.a. n.a. 40 P 88.06 (±2.16) N N

2020 n.a. n.a. n.a. 33 P 88.00 (±1.06) N N

P11 2016 n.a. n.a. n.a. 16 P 90.70 (±1.65) N N

2017 n.a. n.a. n.a. 9 P 93.20 (±1.32) N N

2020 n.a. n.a. n.a. 18.7 P 85.47 (±0.31) N N

P12 2011 n.a. n.a. n.a. 165 P 90.69 (±0.67) N N

2012 n.a. n.a. n.a. 77 P 89.61 (±0.12) N N

2019 n.a. n.a. n.a. 48 P 92.59 (±0.13) N N

Non anti-α1 autoAbs

P13 2016 73 Late I 165 P N N 65.33 (±2.48)

2018 75 I 160 P N N 67.50 (±3.28)

P14 2016 n.a. n.a. n.a. 26 P N 76.45 (±0.64) N

2020a n.a. n.a. n.a. 153 P N 39.69 (±1.43) N

2020b n.a. n.a. n.a. 89 P N 41.52 (±4.58) N

2021 n.a. n.a. n.a. 43 P N 51.90 (±1.82) N

P15 2013 n.a. n.a. n.a. 420 P N 60.83 (±2.21) N

2016 n.a. n.a. n.a. 193 P N 52.08 (±2.33) N

2020 n.a. n.a. n.a. 208 P N 57.17 (±1.53) N

Anti-α1 and non anti-α1 autoAbs

P16 2017 36 Early IIA 98 P 27.97 (±3.97) N 16.15 (±0.83)

2020 39 IIA 246 P 25.07 (±4.51) N 15.83 (±7.85)

P17 2007 61 Late IVB 25.4 P 18.21 (±5.59) 20.01 (±0.73) 34.50 (±4.48)

2017a 71 IIA 3.5 P 17.51 (±4.32) 14.03 (±3.18) 63.50 (±4.47)

2017b 71 IIA 2.5 P 16.11 (±1.73) 18.51 (±5.06) 53.51 (±2.13)

2020 74 IIA 22 P N N 38.53 (±5.43)

(Continued)
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TABLE 1 | Continued

Date Age Onset MGFA anti-nAChR

(nM)

Live CBA anti-α1 (%) anti-β1 (%) anti-γ (%)

P18 2011a n.a. n.a. n.a. 65 P 37.37 (±5.16) N 36.51 (±0.86)

2011b n.a. n.a. n.a. 14 P 38.38 (±1.54) N 34.93 (±0.95)

2017 n.a. n.a. n.a. 7.6 P N N 50.71 (±0.99)

2019 n.a. n.a. n.a. 12.7 P 59.66 (±1.69) N 18.26 (±1.36)

P19 2007 48 Early IVB 8.2 P 56.85 (±6.70) N N

2009 50 IIIB 5 P N 50.94 (±0.85) N

P20 2015 34 Early IVB 11 P 17.51 (±5.96) N 25.15 (±3.74)

2018 37 IIB 9.6 P 26.51 (±6.01) N 35.01 (±7.07)

2020 39 IIB 198 P N 44.12 (±4.94) 33.21 (±3.17)

Patients with myasthenia gravis (MG) are grouped by autoAbs specificity. The year of the sample collection, the age of the patients, and the time of disease onset are listed. The

distribution and severity of myasthenic weakness were classified according to the MG Foundation of America (MGFA) grading system. The titer of the anti-nAChR autoAbs is given as

estimated by RIPA. All the sera were tested for the presence of anti-nAChR autoAbs targeting the extracellular part of the receptor by CBA. The sera were also tested for the presence

of the autoAbs against each ECD of the five subunits of the receptor and the percentage of immunoadsorption presented here was estimated as described in “Materials and Methods”

section. The average percentage of immunoadsorption from three experiments is presented. In parenthesis, the numbers refer to the±SD of the immunoadsorption percentage between

the different experiments (there was no depletion of autoAbs after the treatment with δ and ε ECD sepharose beads and thus these are not shown in the table).

N, negative; A, ambiguous; P, positive; n.a., not available; PR, pharmacology remission.

[1cpmECD]}/[1cpmBSA], where 1cpm is the cpm of [125I]-
α-bungarotoxin-labeled nAChR (provided in the RSR kit)
precipitated by the serum minus that precipitated by a control
normal human serum and 1cpmBSA and 1cpmECD are
the corresponding 1cpm values for samples incubated with
immobilized BSA or nAChR-ECD, respectively.

Cell-Based Assay
The CBA was performed as described by Leite et al. (35).
Briefly, HEK293T cells were transiently co-transfected with the
plasmids encoding for human α1, β1, γ, δ, and ε nAChR
subunits and for rapsyn in a ratio of 2:1:1:1:1:1, respectively.
Transfection was performed with polyethylenimine (Polyplus).
After 48 h, the transfected cells were incubated with serum
(20 fmoles of anti-nAChR autoAbs) or supernatant from the
immunoadsorption mixture (30 µl containing ∼20 fmoles if no
depletion occurred) for 1 h at RT. Afterwards, cells were fixed
in 10% formalin solution (Sigma-Aldrich) for 10min at RT.
Patients’ anti-nAChR autoAbs were detected after incubation
of the cells for 1 h at RT with Alexa Fluor-555 conjugated
anti-human IgG Ab (Life Technologies, Invitrogen) in 1:750
dilution. The presence of nAChR on the cell surface was
verified by staining with Alexa Fluor-488 labeled α-bungarotoxin
(Life Technologies, Invitrogen) in 1:1,000 dilution. Cells were
examined under an Olympus IX51 fluorescence microscope
by 2 observers.

RESULTS

Detection of AutoAbs Against the
Extracellular Parts of the nAChR
We used sera from patients who were tested positive for the
presence of anti-nAChR autoAbs at the diagnostic department
of the HPI. We chose 20 patients with MG, from whom a
recent and at least one previous serum sample were available
(55 sera in total). In addition, clinical data for 9 out of the 20
patients were available (Table 1). The anti-nAChR autoAbs titer

was estimated in all the sera by RIPA (Table 1), which detects
autoAbs targeting both the extra- and intracellular parts of the
nAChR, since solubilized intact nAChRs are used (5, 31). We
tested samples containing 20 fmoles of anti-nAChR autoAbs
from all sera by CBA. This assay detects only the potential
pathogenic autoAbs against adult and fetal subtypes of the
nAChR extracellular part (38). We found 18 sera, derived from
7 patients with MG, negative or ambiguous by CBA (Figure 1
and Table 1). This suggests that these patients with MG do not
harbor autoAbs targeting extracellular parts of the nAChR or that
these autoAbs could not be detected by this method, due to their
low concentration in the serum. Interestingly, 3 out of these 7
patients, of whom the clinical data were available, belong to the
I-IIA scale according to the MG Foundation of America (MGFA)
clinical classification (Table 1).

Depletion of AutoAbs Against the
Extracellular Domain of the nAChR
Subunits
To characterize the autoAbs’ subunit-ECD specificity, depletion
of autoAbs against the various nAChR ECDs from serum samples
was achieved by immunoadsorption (Figure 1). For the following
experiments, we used immunoadsorption protocols previously
established in our laboratory (24, 49). Each immunoadsorption
column contained sepharose beads with immobilized either one
of the ECDs of the five nAChR subunits (α1, β1, γ, δ, or ε) or
only BSA (23, 24, 49). To ensure that all the autoAbs incubated
with the immobilized ECDs could be depleted, we used 0.125
pmoles antibodies (Abs)/mg of ECD-sepharose beads, since the
capacity of the columns was determined in previous studies to be
1.5 pmoles Abs/mg of immobilized α1-ECD sepharose beads and
5 pmoles Abs/mg of β1-ECD sepharose beads (24, 49).

All the CBA+ MG patients’ sera were incubated with the
6 proteins (α1-, β1-, γ-, δ-, ε-ECD, and BSA) immobilized on
sepharose beads; unbound autoAbs were then quantified by RIPA
and the percentage of immunoadsorption by each column was
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FIGURE 1 | Specificity of the autoAbs derived from patients with myasthenia gravis (MG). Overview of the results.

calculated (Figure 1 and Table 1). From the group of CBA−MG
patients, only 3 out of the 7 patients were chosen to be tested
by immunoadsorption to verify the absence of any extracellular
autoAbs. As expected, there was practically no depletion of
autoAbs after incubation with columns containing beads with
immobilized nAChR ECDs (Figure 1 and Table 1), confirming
the CBA result.

After immunoadsorption, the depleted sera from CBA+ MG
patients were further qualified by CBA. More specifically, we
investigated if all the autoAbs directed against extracellular
epitopes of the nAChR were removed. Based on these
experiments, we divided the MG patients tested into the three
distinct groups, as given in Figure 1 and described below:

(a) Patients With MG Harboring autoAbs Against the α1
Subunit.

Five out of 13 CBA+ patients (P8-P12) had anti-α1
autoAbs (Figure 1 and Table 1). After immunoadsorption with
the immobilized α1-ECD, these sera were found negative
or ambiguous by CBA (Figures 2A–F), suggesting that the
vast majority of autoAbs targeting extracellular epitopes were
depleted by immunoadsorption. Also, data from P8 revealed that
an increase of the anti-α1 autoAbs attributed to a higher MGFA
score (Table 1).

(b) Patients With MG Harboring autoAbs Against the non-α1
Subunits.

Three out of 13 CBA+ patients had non-anti-α1 autoAbs
(Figure 1 and Table 1); one patient had anti-γ autoAbs (P13) and
two had anti-β1 autoAbs (P14, P15). After immunoadsorption, all
sera of the P13 that had been incubated with the γ- immobilized
ECD and all sera of the P14 and P15, incubated with the

β1-immobilized ECD were negative or ambiguous by CBA.
Moreover, P13 who harbors anti-γ autoAbs belongs to the
MGFA-I clinical classification, indicating ocular MG (Table 1).

(c) Patients With MG Harboring autoAbs Against the α1 and
non-α1 Subunits.

Five out of 13 CBA+ patients had anti-α1 and non-anti-
α1 autoAbs. More specifically, P16 and P18 had anti-α1 and
anti-γ autoAbs, P17 and P20 had anti-α1, anti-β1, and anti-γ
autoAbs and P19 had anti-α1 and anti-β1 autoAbs (Figure 1
and Table 1). Interestingly, anti-β1 autoAbs were detected in
P19 and P20 for the first time at the second and third samples,
respectively, while anti-α1 autoAbs were not detected at those
time points (Figure 1 and Table 1). The sera that were treated
with the corresponding column when tested by CBA produced
a reduced signal (Figures 2G–O). In some sera, the reduction
of the signal in the CBA was higher than the percentage of
immunoadsorption. This is probably due to the depletion of
the autoAbs against extracellular epitopes of the receptor after
immunoadsorption. The remaining autoAbs were still detected
by RIPA but not CBA; this implies that they probably target
intracellular epitopes. The clinical data for P16, P17, P19, and P20
indicate that the increase of the non-anti-α1 autoAbs correlates
with a decrease in the MGFA score (Table 1).

DISCUSSION

Myasthenia gravis is an autoimmune disease caused mainly
by autoAbs targeting the nAChR on the NMJ and results in
the impairment of neuromuscular transmission and muscle
weakness (4). Anti-nAChR autoAbs are heterogeneous and
may target all the subunits of the receptor with demonstrated
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FIGURE 2 | Cell-based assay (CBA) performed with sera after the immunoadsorption assay. HEK293T cells overexpressing a mixture of adult and fetal subtypes of

the nAChR were used in the assay. (A–F) show cells incubated with serum derived from the patient P11 treated with BSA sepharose beads (A–C), where no autoAbs

were depleted or treated with α1-ECD sepharose beads (D–F), where the anti-α1 autoAbs were depleted. (G–O) show cells incubated with serum derived from the

patient P18 treated with BSA (G–I), α1-ECD (J–L), and γ-ECD (M–O) sepharose beads. The first column shows the binding of the specific anti-nAChR autoAbs

contained in the serum, visualized by Alexa Fluor-555 labeled anti-human IgG Ab, the second column shows the total number of the nAChR on the cell surface of

HEK293T stained with Alexa Fluor-488 labeled α-bungarotoxin. The third column shows merged confocal images of the anti-human IgG and α-bungarotoxin. Images

were taken by Leica confocal TCS-SP8 microscope.
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different potency for inducing experimental autoimmune MG in
rodent models (26, 50, 51). Moreover, epitope spreading against
intracellular epitopes, may occur at later stages of MG, as shown
in the experimental autoimmune MG rat model, probably due to
tissue damage (52).

Here, we studied the specificity of the anti-nAChR autoAbs
in sera derived from 20 anti-nAChR positive patients with
MG at different time points. We found that 7 out of the
20 patients with MG were negative or ambiguous by CBA
(Figure 1 and Table 1). This suggests that the majority of the
autoAbs found in these patients’ sera is probably against the
intracellular parts of the receptor, which are detectable only by
RIPA. Interestingly, according to RIPA, these sera had high anti-
nAChR autoAbs titer. On the other hand, one could claim that
the negative signal of CBA could be attributed to a concentration
of autoAbs against extracellular parts of the nAChR well-below
the detection limits of the CBA. However, previous studies
have also shown patients with MG to be positive by RIPA
and negative by CBA (53). The majority of these patients did
not have the clinical profile of a neuromuscular transmission
disorder, implying that they had no pathogenic autoAbs, which
probably recognized intracellular parts of the nAChR (53).
Despite the absence of clinical data, we believe that 7 CBA−
MG patients in this study fall into the same category as that
other study.

Having detected CBA+ patients, we proceeded to further
characterization of the autoAbs presented in their sera regarding
their subunit specificity. We used immunoadsorption columns
appropriate for the depletion of autoAbs targeting the nAChR
subunits, as described previously (24, 49). In brief, the columns
contained immobilized either the ECD of one of the five
subunits of the nAChR (α1, β1, γ, δ, or ε) or BSA. Each serum
was incubated with each column and the unbound autoAbs
were quantified by RIPA. Moreover, to qualify the unbound
autoAbs which recognize extracellular parts of the nAChR,
we performed CBA. It is worth mentioning that by testing
each serum for the presence of autoAbs against all the five
subunits, we also tested the specificity of the bound autoAbs.
Based on the results from both techniques, we concluded
that CBA+ MG patients tested here can be divided into the
three distinct groups: (a) patients with MG harboring anti-
α1 autoAbs (5/13), (b) patients with MG harboring non-anti-
α1 autoAbs (3/13), and (c) patients with MG harboring anti-
α1 and non-anti-α1 autoAbs (5/13) (Figure 1 and Table 1).
The CBA signal of all the sera after immunoadsorption was
reduced in agreement with the immunoadsorption treatment
(Figures 2A–F). In fact, in some sera, we observed a higher
reduction in the CBA signal (Figures 2G–O), compared to the
depletion of autoAbs detected in RIPA after immunoadsorption,
e.g., although the immunoadsorption percentage of P8’s serum
after treatment with the immobilized α1-ECD was only 58%,
the CBA performed after the immunoadsorption produced
no signal. This is probably due to the depletion of the
autoAbs against the extracellular epitopes of the receptor after
the immunoadsorption. The fact that the remaining autoAbs
were detected by RIPA but not by CBA implies that they
target intracellular epitopes. In other sera, the CBA signal

was negative or ambiguous, suggesting that most autoAbs
against the extracellular part of the nAChR were depleted by
immunoadsorption. In agreement with previous works, in none
of the samples anti-δ or anti-ε autoAbs were detected (23,
24). In general, we observed that the increase of the non-
anti-α1 autoAbs correlates with improvement in the disease
manifestation (Table 1).

The pathogenicity of the anti-α1 autoAbs is well-
characterized. The α1 subunit is immunodominant and it can
induce experimental autoimmune MG in rats (51). Accordingly,
in the anti-α1 autoAbs positive P8 patient, we observed that the
increase of the anti-nAChR autoAbs titer correlates with disease
deterioration (Table 1). The pathogenicity of the anti-β1 autoAbs
is less studied and these are thought to be less pathogenic than
the anti-α1 autoAbs (26). In fact, in P19 the MGFA score
decreased when the autoAbs specificity switched from anti-α1
to anti-β1 autoAbs. Interestingly, in the P20 patient, despite
the great increase of the anti-nAChR autoAbs titer, there was
no change in the patient’s clinical profile upon decrease of the
anti-α1 autoAbs and increase of the anti-β1 autoAbs (Table 1).
Although, the pathogenicity of the anti-γ autoAbs is proved in
newborns, in adults they are less pathogenic and may recognize
the fetal subtype of the nAChR presented on the extraocular
muscle (29, 30, 54). Indeed, P13 who is positive for anti-γ
autoAbs has a low MGFA score, which indicates ocular MG
(Table 1). Moreover, the disease symptoms improve when the
anti-γ autoAbs in P17 increase over the anti-α1 autoAbs. Also,
there was no difference in the patient’s clinical profile when
the anti-nAChR autoAbs titer increased, probably due to the
presence of only anti-γ autoAbs (Table 1). By these observations,
we had previously reported a double positive MG patient (anti-
nAChR and anti-MuSK autoAbs positive) who was presented
with MuSK phenotype (25). This patient’s clinical manifestation
of the disease was not affected by the increase of the anti-nAChR
autoAbs titer. After immunoadsorption, we showed that in all
sera from different time points, the patient had relatively small
amounts of anti-α1 autoAbs and the vast majority of autoAbs
were directed against the β1 and γ subunits. We concluded that
the patient did not show any clinical deterioration, because the
pathogenic anti-α1 autoAbs were always in low concentration,
while the increase of the anti-nAChR autoAbs titer was attributed
to the increase of only the less pathogenic anti-β1 and anti-γ
autoAbs (25).

Although we do not have a complete clinical profile of all
patients, our results support the idea that additional analysis
of the autoAbs of patients with MG can provide additional
information to the clinicians about the patients’ status. This
study presents the importance of the CBA technique in the MG
diagnosis. It seems that some anti-nAChR positive patients with
MG do not harbor pathogenic autoAbs against the extracellular
parts of the nAChR or their concentration is under the detection
limit of CBA, something that may affect the decision of
treatment’s strategy. Moreover, we conclude that anti-nAChR
positive MG patients can be divided into distinct groups, based
on their autoAbs specificity. Consequently, we propose the
combination of RIPA and CBA for the follow-up of the MG
patients. The former is to be used for the quantification of the
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autoAbs and the latter for the identification of the fluctuation of
the pathogenic ones.

In future studies, we aim to enlarge our sample group
and continue the study of the anti-nAChR autoAbs
specificity in MG patients. Moreover, we plan to collect
more clinical data from patients with MG and investigate
in-depth the correlation of the clinical presentation with
autoAbs specificity.
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