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Background: Ambulatory disability is common in people with multiple sclerosis (MS).

Remote monitoring using average daily step count (STEPS) can assess physical activity

(activity) and disability in MS. STEPS correlates with conventional metrics such as the

expanded disability status scale (Expanded Disability Status Scale; EDSS), Timed-25

Foot walk (T25FW) and timed up and go (TUG). However, while STEPS as a summative

measure characterizes the number of steps taken over a day, it does not reflect variability

and intensity of activity.

Objectives: Novel analytical methods were developed to describe how individuals

spends time in various activity levels (e.g., continuous low versus short bouts of high)

and the proportion of time spent at each activity level.

Methods: 94 people with MS spanning the range of ambulatory impairment (unaffected

to requiring bilateral assistance) were recruited into FITriMS study and asked to wear a

Fitbit continuously for 1-year. Parametric distributions were fit to minute-by-minute step

data. Adjusted R2 values for regressions between distributional fit parameters and STEPS

with EDSS, TUG, T25FW and the patient-reported 12-itemMSWalking scale (MSWS-12)

were calculated over the first 4-weeks, adjusting for sex, age and disease duration.

Results: Distributional fits determined that the best statistically-valid model

across all subjects was a 3-compartment Gaussian Mixture Model (GMM) that

characterizes the step behavior within 3 levels of activity: high, moderate and low.

The correlation of GMM parameters for baseline step count measures with clinical

assessments was improved when compared with STEPS (adjusted R2 values GMM

vs. STEPS: TUG: 0.536 vs. 0.419, T25FW: 0.489 vs. 0.402, MSWS-12: 0.383

vs. 0.378, EDSS: 0.557 vs. 0.465). The GMM correlated more strongly (Kruskal-

Wallis: p = 0.0001) than STEPS and gave further information not included in STEPS.

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2022.860008
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2022.860008&domain=pdf&date_stamp=2022-05-23
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:Roland.henry@ucsf.edu
https://doi.org/10.3389/fneur.2022.860008
https://www.frontiersin.org/articles/10.3389/fneur.2022.860008/full


Block et al. Making Every Step Count

Conclusions: Individuals’ step distributions follow a 3-compartment GMM that better

correlates with clinic-based performance measures compared with STEPS. These

data support the existence of high-moderate-low levels of activity. GMM provides an

interpretable framework to better understand the association between different levels of

activity and clinical metrics and allows further analysis of walking behavior that takes step

distribution and proportion of time at three levels of intensity into account.

Keywords: multiple sclerosis, Fitbit, remote monitoring, activity level, accelerometry, minute-by-minute steps

INTRODUCTION

Ambulatory disability is one of the most common, bothersome
and limiting symptoms for people living with multiple sclerosis
(MS) and greatly decreasing quality of life (1, 2).Walking capacity
is measured in the clinic using a variety of validated outcomes
(e.g. Timed 25-Foot Walk [T25FW] test), however, measurement
and evaluation of walking performance (i.e. what they actually do
in daily life) may be more important to the patient and reflect
actual function (3, 4).

Efforts by several groups focused on remote (real-world)
monitoring of ambulatory function mostly using average
daily step count (STEPS), obtained from research-based and
commercially available accelerometers (5–12). In the Fitbit
remote monitoring in MS (FITriMS) study, daily step counts
were collected continuously for over 1-year (5, 6). The STEPS
averaged over the first 30 days correlated with disability
(Expanded Disability Status Score [EDSS]), clinic-based metrics
(T25FW, Timed-Up and Go Test [TUG], 2-min walk test
[2MWT]) and patient reported outcomes (i.e. 12-item MS
Walking Scale [MSWS-12]) (5) Longitudinal analysis over 1
year demonstrated a change in STEPS over time, even when
conventional measures remained stable (6). These findings
suggest remote physical activity monitoring provides additional
sensitivity when capturing change in performance in people
with MS.

Physical activity (activity) is quantified in different ways.
The STEPS summarizes the total number of steps taken during
an allotted epoch (usually 1 day) but does not reflect how
different ambulatory behavior results in unique or distinctive step
distributions, nor does it provide information or understanding
of variability and intensity of the activity. Minute-by-minute (M-
M) step count data can providemore granular information on the
intensity, duration and frequency of ambulatory behavior. The
aims for this analysis were to: determine the best probabilistic
model usingM-M step data to characterize activity distribution in
people withMSwith a range of ambulatory disability, evaluate the
statistical validity of this new outcome, and compare with STEPS
and conventional disability correlates at baseline.

METHODS

Study Procedures
The FITriMS study methods were described previously (5,
6). Briefly, adults (>18 years old) with either progressive or
relapsing MS (13) were prospectively recruited from a single MS

Center (University of California San Francisco; UCSF) into the
FITriMS study between July 2015 and April 2016. For inclusion,
participants were able walk continuously for at least 2min, had
WiFi access, experienced no relapse for the last 30 days, and were
free from any musculoskeletal or cardiovascular comorbidities
affecting ambulatory function (in the opinion of the study
physical therapist). A range of ambulatory disability levels were
block recruited to ensure a wide representation of ambulatory
participants. MS disability was evaluated at study entry in the
clinic using the EDSS (14), walking speed via the T25FW, (15),
mobility and balance via the TUG (15), and endurance via a
2MWT (16, 17). Patient-reported impact of MS on walking,
MSWS-12 questionnaires, was completed online using secure
REDCap email link at study entry (18). Study personnel provided
training on the maintenance and use of a Fitbit Flex for
each participant. Participants were asked to wear the Fitbit
as much as possible on their non-dominant wrist. Aggregated

TABLE 1 | Demographic and clinical characteristics.

Mean (SD) Min Max IQR

Age (years) 55.5 (13.7) 28 80 24.3

Number of Valid Days (Out of 28) 25.0 (5.46) 5 28 3

Step Counts (per minute) 26.5 (25.1) 1 293 25

Disease Duration (years) 19.6 (11.9) 5 55 16

TUG (seconds) 11.9 (11.3) 4.3 88.7 5.9

T25FW (seconds) 7.4 (5.6) 2.8 44.2 2.9

2MWT (meters) 133.5 (50.2) 16.5 237.6 78.1

Median Min Max IQR

EDSS 4.0 0.0 6.5 3.5

MSWS-12 (score 12–60) 41 12 60 25.5

Sex N (%) - - -

Male 36 (23.7) - - -

Female 58 (76.3) - - -

MS subtype N (%) - - -

Relapsing 59 (62.8) - - -

Progressive 35 (37.2) - - -

EDSS, Expanded Disability Status Score; TUG, Timed-Up-and Go Test (Greater times

indicate worse balance and walking ability, and higher fall risk); T25FW, Timed-25 Foot

Walk test (Greater times indicate slower walking speed and greater disability); 2MWT,

2-min Walk Test (Shorter distances indicate less endurance); MSWS-12, 12-item MS

Walking Scale (higher scores reflect greater self-reported impact of MS on walking). MS,

multiple sclerosis; Step count, After cleaning the data; this is the average Step count per

minute during active time (>0 steps/ min on valid days) - averaged over 4 weeks.
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daily, and granular M-M, step count data from the Fitbit were
uploaded and stored on the UCSF Eureka platform (https://info.
eurekaplatform.org/). In this data set, “physical activity” refers to
outcome derived from step count (daily or minute-by-minute).
The study protocol was approved by the institutional review
board at UCSF, and all participants provided informed consent.

Quality Control (QC) and Data Cleaning
From the date of study entry, the first 4 week (or 28 days
= “baseline”) of M-M step count data were gathered for each
individual. The “baseline” was chosen for comparison with
previous STEPS analysis (5). To ensure only valid days were
analyzed, any day that had a total sum of < 128 steps/day
was removed. In M-M data, data points with > 300 steps per
minute were excluded. Days with fewer than 128 steps were
previously reported as non-valid, non-wear days (5) Weeks with
< 3 valid days were also excluded. Data cleaning was based on
MS literature and our previous work on this data set where: 1)
no clear pattern of reactivity (i.e., temporary increase in activity
after initial donning -due to the knowledge of being monitored
– followed by a drop in activity when novelty wears off) was
observed, 2) higher correlation was found using 13 days or more
of monitoring, and 3) lower reliability with monitoring epochs
of 3 days (5, 19). Night-time sleep data from Fitbit has not been
validated in people MS and the majority of our patients only

wore the device during the day. Long epochs of zero data were
indicative of non-use or sleep, therefore only non-zero M-M data
was used for subsequent analysis.

Analysis
After quality control, the cohort data were combined to include
all valid participants. To determine the best probabilistic model
and statistical validation, multiple statistical distributions were
fit to the data and evaluated on an individual and group level.
(Supplementary Table 1).

Previous visual observation of the step distribution revealed
distinct ‘clustering’ of steps; therefore, mixture distributions
(Gaussians) were included.

A single Gaussian distribution is characterized by two
parameters, µ (the mean) and σ (the variance) that control
the location and spread of the distribution, respectively. In
a 3-component Gaussian Mixture Model (GMM), consists of
several Gaussian distributions where each Gaussian is assigned a
proportion (π) parameter, a mean (µ) parameter and a variance
(σ ) parameter. The proportion (π) describes how much each
Gaussian contributes to the overall model.

Linear regression was used to compare the chosen model
with clinical and patient-reported outcomes. The inverse of TUG
and T25FW was used to transform the data and allow for
normally distributed residuals for the linear regressions. Next,

FIGURE 1 | Histogram showing individual example of minute-by-minute step count distribution with the GMM model fit. X axis = Expanded Disability Status Score

(EDSS) scores. Y axis = Number of subjects in each EDSS level.
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FIGURE 2 | (A) Example of a participant who spends most of the time in low levels of physical activity. GMM: X axis = count of steps per minute over 1 month.

Example of a participant who spend most of their time in low levels of physical activity (10–30 steps/min). (B) Example of a participant who performs some higher

physical activity. GMM: X axis = count of steps per minute over 1 month. Example of a participant who do some level of higher physical activity (bump around the

100–130 steps/min).
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TABLE 2 | Comparison of GMM model and STEPS with conventional clinic-based and patient-reported outcomes.

Adjusted R2 EDSS TUG T25FW 2MWT MSWS−12

GMM 0.557 0.536 0.489 0.560 0.383

STEPS 0.465 0.419 0.402 0.432 0.378

GMM + STEPS 0.631 0.541 0.503 0.542 0.446

GMM (Adjusted) 0.675 0.587 0.546 0.538 0.512

STEPS (Adjusted) 0.569 0.525 0.453 0.439 0.461

GMM + STEPS (Adjusted) 0.710 0.583 0.544 0.548 0.533

EDSS, Expanded Disability Status Score; TUG, Timed-Up-and Go Test; T25FW, Timed-25 Foot Walk test; 2MWT, 2-min Walk Test; MSWS-12, 12-item MS Walking Scale. GMM -

Normal 3 Mixture; STEPS, Average daily step count over the first 4 weeks (or 28 days). (Adjusted for = sex; age; and disease duration into the model).

linear regression on the same Gaussian parameters including age,
sex, MS subtype and STEPS with clinical and patient-reported
metrics was performed. JMP, version Pro 16 (20) was used for
the analysis and figure generation.

RESULTS

From the 104 patients recruited into FITriMS, 10 did not have
M-M data - due to sporadic syncing resulting in only daily step
count data rather than M-M which requires weekly syncing. Of
94 participants used for this analysis, 63.5% carried a relapsing
MS diagnosis (the remaining had progressive forms of MS) and
more than two-thirds (76.3%) were women. The mean (SD)
age was 55.5 years (13.7), median disease duration was 19.6
(IQR: 16) years, and median EDSS 4.0 (IQR: 3.5). All participant
characteristics are summarized in Table 1 and EDSS distribution
in Figure 1.

The GMM was found to be the best fit for individual
subject data (see Supplemental Table 1 for full comparison
of distributions). GMM fits a greater variability in activity
distribution and provides more flexibility in generalizable
representation of MS activity. For example, Figure 2A shows
a participant who spend most of their time in low levels of
activity and Figure 2B depicts the GMM fit for a participant
who perform some higher activity over the day (100–130 steps
per min).

All Gaussian parameters (µ, σ , andπ) except forπ3 (sinceπ1,
π2 and π3 are perfectly collinear [π1+ π2+ π3= 1]) correlated
with clinical metrics (EDSS, TUG, MSWS12, 2MWT, T25FW).
Using individual participant data, GMMwas fit toM-M step data.

We propose that the 3 Gaussians correspond to 3 activity
levels for each patient (low activity, medium activity, high activity
– as ordered by their µ [means]): each µ represents the average
step count we would expect from each step activity level, as
characterized by its corresponding Gaussian; each σ represents
the variability we would expect for each activity level; and each π

represents the proportion of activities we would expect from each
activity region.

Linear regression was used to show moderate to high
correlation between GMM acquired over the study’s baseline
first 4 weeks of monitoring, and both clinic-based and
patient-reported outcome measures. The results using GMM
were consistently stronger than results obtained using only
STEPS. Adding STEPS to GMM (GMM + STEPS) consistently

outperforms either measure its own. Adjusting for sex, age and
disease duration improved all models (Table 2).

Table 3A shows the centers for each Gaussian for different
EDSS groupings. EDSS groups with lower levels of disability
had consistently higher Gaussian centers. Further, Gaussians
at higher activity levels had higher variances than those at
lower levels.

DISCUSSION

These results provide preliminary evidence for the use of a
GMM probabilistic model to characterize activity distribution
using granular M-M step count in people with MS. This model
performs better (stronger correlations and adjusted R2) than
previous methods using crude STEPS.

The GMM model was able to generalize over a range of
activity profiles. More specifically, it was able to capture the step
distributions of those in the cohort where a significant percentage
of steps come from high activity levels. Previous work from
our group illustrated the wide variability in activity levels in
people with MS, within and between all ambulatory disability
levels (5). Therefore, the ability to generalize M-M modeling
to highly variable distributions using the 3 compartment GMM
has clinical appeal. In addition, the GMM dovetails well with
existing literature regarding activity levels classified into three
levels: low, moderate/moderate to vigorous, and high physical
activity (21–23).

The GMM representation of activity outperforms other
statistical models and performs better than STEPS as compared
to conventional disability correlates (5). The GMM may provide
an interpretable framework to better understand the association
between different levels of activity and clinical metrics. It also
allows further analysis of walking performance and behavior by
taking step distribution and proportion of time at each intensity
into account. GMM and STEPS are complimentary; STEPS
provides a mean, whereas GMM presents information regarding
intensity, variance, and proportional step distribution. Themodel
including STEPS and GMM generated high correlation with
the conventional outcomes, suggesting that the overall mean
(STEPS) is a useful metric in combination with the more
descriptive GMM.

This analysis has important limitations. Although this cohort
was well-phenotyped, larger studies in more heterogeneous
populations are needed to provide additional evidence of
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TABLE 3A | Mean physical activity level distribution per disability (EDSS) group (distribution of µ).

EDSS group [N] Disability level Low activity µ1 (SD) Moderate activity µ2 (SD) High activity µ3 (SD)

0.0–3.5 [36] No “walking” disability 10.96 (1.22) 32.70 (5.52) 82.37 (21.59)

4.0–5.5 [26] Walking disability present 10.46 (1.74) 30.10 (7.65) 75.63 (27.56)

6.0 [18] Needs a cane to ambulate 9.68 (1.20) 24.89 (4.28) 58.17 (12.94)

6.5 [14] Needs 2 canes or a walker to ambulate 8.44 (0.94) 20.52 (2.98) 53.28 (11.51)

Each participant was fit individually, and the mean physical activity was extracted for the group distribution. People with lower levels of disability (i.e. EDSS = 0.0–3.5) tended to have

greater mean physical activity in each level (low: µ1, moderate: µ2 and high: µ3).

TABLE 3B | Variance of physical activity level distribution per disability (EDSS) group (distribution of σ ).

EDSS group [N] Disability level Low variance σ1 (SD) Moderate variance σ2 (SD) High variance σ3 (SD)

0.0–3.5 [36] No “walking” disability 27.18 (9.99) 178.74 (78.72) 394.38 (191.20)

4.0–5.5 [26] Walking disability present 23.67 (13.06) 152.10 (122.27) 487.65 (772.72)

6.0 [18] Needs a cane to ambulate 17.31 (8.25) 83.20 (43.58) 362.86 (159.58)

6.5 [14] Needs 2 canes or a walker to ambulate 10.47 (4.26) 58.32 (21.10) 294.96 (196.31)

Each participant was fit individually, and the variance of each physical activity type was extracted for the group distribution. Greater levels of disability demonstrated smaller variance

when compared with people characterized with lower disability scores.

generalizability and replicability. Due to the limited availability of
M-M, longitudinal (>7 days) datasets in people withMS, we were
not able to perform a replication analysis. In addition, analysis
of larger datasets collected in randomly recruited cohorts (rather
than block enrolled) will be required. Data processed with the
same granularity (minute-by-minute steps) from healthy age-
matched controls would provide a better understanding about
the proportions of time spent in each activity level.

A GMM based model is also relatively inflexible when
approximating activity distributions that are not Gaussian in
nature. A possible solution to overcome this representational
limitation is to use an autoencoder (24), a type of neural network,
to compress the distribution into a flexible lower dimensional
representation with greater generalizability.

Without access to a platform that automatically pulls the
M-M data, retrieving these detailed metrics would be more
burdensome than simply downloading daily step count from the
Fitbit.com website. Although we were fortunate to be able to
use an in-house platform (Eureka: https://info.eurekaplatform.
org/), there are fee-based companies that offer such services.
In addition, the M-M data and GMM model provide improved
correlations with conventional measures and provide insight into
how a patient spends their time in different activity levels. For
instance, a larger “µ3” represents greater average step count; a
smaller “σ1” denotes less variability; and “π2” denotes greater
proportion of activities in the moderate range. These granular
information combined with the level of disability (Tables 3A–C),
provide a potential avenue for predictive algorithms and later,
individualized rehabilitation plans.

Moderate-to-Vigorous activity equates with our π2, and has
frequently been cited as the benchmark for determining optimal
physical activity in MS and the general population. People
needing double support to ambulate (EDSS = 6.5) tended to
spend a larger proportion their activity in π1 (corresponding to

TABLE 3C | Proportion of physical activity level distribution per disability (EDSS)

group (distribution of π ).

EDSS group

[N]

Disability level Low π1

(SD)

Moderate

π2 (SD)

High π3

(SD)

0.0–3.5 [36] No “walking” disability 0.47

(0.07)

0.37

(0.04)

0.15

(0.06)

4.0–5.5 [26] Walking disability

present

0.51

(0.05)

0.36

(0.03)

0.13

(0.05)

6.0 [18] Needs a cane to

ambulate

0.55

(0.05)

0.34

(0.04)

0.11

(0.04)

6.5 [14] Needs 2 canes or a

walker to ambulate

0.61

(0.06)

0.31

(0.07)

0.09

(0.03)

Each participant was fit individually, and the proportion of physical activity was extracted

for the group distribution. The greater the level of disability (i.e. EDSS = 6.5) the higher

proportion of lower levels of physical activity (π1 ) recorded, and the lower disability (i.e.

EDSS = 0.0–3.5) the greater proportion of moderate (π2) and high physical activity (π3)

levels recorded (Kruskal-Wallis Test: p = 0.0001).

EDSS, Expanded Disability Status Score; N, sample size in each group; SD, standard

deviation; µ1, mean steps - low physical activity; µ2, mean steps - moderate physical

activity; µ3, mean steps - “high” (relatively) physical activity, Low variance, σ 1; moderate

variance, σ 2 and high variance, σ 3, π1, Low proportion of physical activity; π2, moderate

proportion of physical activity; π3, high proportion of physical activity.

low levels of activity or sedentarism). On the other hand, people

with lower disability (EDSS = 0.0–3.5) presented with a greater

proportion in π2 and π3 (corresponding with more moderate
and higher activity levels). Therefore, it may be more clinically
useful to evaluate π1, and π3 (the time spent in low levels and
very high levels of activity) when assessing an individual patient’s
activity level and subsequent risk factors or rehabilitation needs.
For example, understanding fluctuations in activity over the day
to better personalize when to focus rehabilitation interventions
and on what (intensity and duration of activity). Research
awareness already shifted toward investigating the effect of
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sedentary time on health and disease (25–27). Higher physical
activity has been associated with beneficial changes in the brain
and spinal cord, as well with decreased levels of disability (28,
29). However, this area of investigation is in its infancy and
the underlying mechanism of action is not yet understood.
Methods presented in this paper could build on and support these
lines of investigation – with aims at promoting greater overall
wellness, and potentially delay disease progression in people with
MS (29–32).

This model will be used as a framework to predict
disease progression over the longer term (>2 years) and
to develop further descriptive metrics for activity. How
time spent at various activity levels is associated with MS
disability over time – i.e., temporal validation of the Gaussian
parameters for prediction on disability progression – remains
to be determined. Models including associations of fall-
risk prediction in people with MS would also be highly
clinically valuable.

CONCLUSION

Results from this analysis favor a 3 compartment GMM
as the best probabilistic model to characterize dynamic
ambulatory activity in people with MS with a wide
range of disability. As compared to STEPS as a sole
outcome, this method demonstrated stronger associations
with conventional clinic-based and patient-reported
outcomes. To unearth the full potential of this method,
additional longitudinal exploration of predictive value
is required.
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