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Regional homogeneity (ReHo) and fractional amplitude of low-frequency fluctuation

(fALFF) were used to detect the neuroimaging mechanism of Shugan Jieyu Capsule

(SG) in ameliorating depression of post-stroke depression (PSD) patients. Fifteen PSD

patients took SG for 8 weeks, completed the 24-item Hamilton Depression Scale (HAMD)

assessment at the baseline and 8 weeks later, and underwent functional magnetic

resonance imaging (fMRI) scanning. Twenty-one healthy controls (HCs) underwent these

assessments at the baseline. We found that SG improved depression of PSD patients,

in which ReHo values decreased in the left calcarine sulcus (CAL.L) and increased in

the left superior frontal gyrus (SFG.L) of PSD patients at the baseline. The fALFF values

of the left inferior parietal cortex (IPL.L) decreased in PSD patients at the baseline.

Abnormal functional activities in the brain regions were reversed to normal levels after

the administration of SG for 8 weeks. Receiver operating characteristic (ROC) analysis

found that the changes in three altered brain regions could be used to differentiate PSD

patients at the baseline and HCs. Average signal values of altered regions were related

to depression in all subjects at the baseline. Our results suggest that SG may ameliorate

depression of PSD patients by affecting brain region activity and local synchronization.

Keywords: post-stroke depression, depressive symptoms, Shugan Jieyu capsule, functional magnetic resonance

imaging, regional homogeneity, fractional amplitude of low-frequency fluctuation

INTRODUCTION

Post-stroke depression (PSD) mainly manifests as depression, loss of interest, loss of appetite, sleep
disturbance, pessimistic sense of worthlessness, and even suicidal tendencies (1). PSD not only
affects neurological repair of stroke patients and leads to severe cognitive impairment, but also
affects rehabilitation efficacy after stroke and increases mortality and the recurrence of stroke (2).
Compared to other diseases with a similar degree of disability, stroke patients are likely to exhibit
depressive symptoms, suggesting that the etiology of PSD has a more complex neurobiological
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basis (3). However, the pathogenesis of PSD is still not clear.
Recent researches on PSD mainly involved neurobiological
mechanisms and social psychological mechanisms, such as
immunization activities, education level and social support
level (4). Additionally, one meta-analysis showed that PSD was
not significantly related to the location of stroke lesions (5).
Investigating the mechanisms of PSD and identifying effective
treatment methods has become a topic of prolific investigation
in clinical and basic research.

Due to the unique physical condition of PSD patients,
conventional antidepressants may result in more side effects
in PSD patients, and the effect of ameliorating depression of
PSD patients is not ideal (6). In recent years, there have been
increasing clinical attempts to use traditional Chinese medicine
to treat PSD patients. Shugan Jieyu Capsule (SG), a traditional
Chinese drug compound made from Hypericum perforatum and
Acanthopanax, have been widely approved for the treatment
of depression in China since 2008 (7). Hypericum perforatum
effectively inhibits the reabsorption of neurotransmitters such
as norepinephrine, 5-hydroxytryptamine, and dopamine, thus
counteracting the effects of depression (8, 9). Acanthopanax
senticosus suppresses resorption of central serotonin and
increases concentration of monoamine transmitters in the
synaptic cleft to achieve antidepressant effects (10). Furthermore,
Acanthopanax senticosus regulates the body’s endocrine system
and central nervous system, and reduces oxidative stress damage
(11). Collectively, the combination ofHypericum perforatum and
Acanthopanax senticosus has a beneficial effect on improving
depression. Additionally, previous studies have shown that for
patients with mild to moderate depression, SG has a more
effective safety profile and fewer side effects compared to selective
serotonin reuptake inhibitors (SSRIs) (12). A large number of
studies have shown that SGmay ameliorate depressive symptoms
of PSD patients, and shows better compliance and fewer side
effects in PSD patients (13). However, the neurobiological
mechanisms of this process are still unclear.

Resting state functional magnetic resonance (fMRI) detects
the changes in blood oxygen and blood flow in the brain, and
indirectly reflects neural activity by measuring the relationship
between blood flow, blood oxygen, and oxygen consumption
(14). Previous studies have found that depressive symptoms of
PSD are related to the decrease in the gray matter volume, the
reduction in anisotropy in the reward system, and the increase
in free extracellular fluid (15). A longitudinal pharmacological
study of depression has found that SG may improve depressive
symptoms and cognitive function in depressed patients through
functional regulation of the right caudate nucleus and the
left orbitofrontal cortex (7). In addition, functional integration
studies have shown that executive dysfunction in PSD patients is
associated with the change in the internal functional connection
of the resting state network, the functional over-connection
between the default mode and the cognitive control network,
and the reduction of the cross-hemispheric frontal and parietal
functional connections (16).

In previous studies, the dynamic changes in the brain
have been used to explore the possible mechanism of SG
in ameliorating cognition of PSD patients (17). However, we

didn’t find a correlation between brain dynamics and depression
improvement in PSD patients. Brain dynamics is a good indicator
that has been proposed in recent years to explore changes in
functional brain activity without directly comparing differences
in spontaneous brain activity. Regional homogeneity (ReHo) and
fractional amplitude of low-frequency fluctuation (fALFF) are
classic indicators of spontaneous functional activity. Previous
studies have shown that ReHo and fALFF may be associated
with depressive symptoms in patients with depression (18, 19),
which may help to find brain regions associated with improved
depressive symptoms in PSD patients.

ReHo analysis shows that the voxels of a certain functional
brain region have high consistency under certain conditions.
By calculating the consistency between the time series of each
voxel and its neighboring voxel, the Kendall’s harmony coefficient
(KCC) is obtained, which reflects the degree of synchronization
of local brain neurons (20). Furthermore, the ReHo indicator
may be used to detect abnormalities in the inherent local
synchronization of the brain. A study on schizophrenia has
found extensive abnormal ReHo values in the precuneus, inferior
parietal lobule and other areas in the early stages of schizophrenia
(21). A similar study in patients with depression has found that
the ReHo values of the left precuneus and left lingual gyrus in
depression patients are related to depression and cognition (22).
Additionally, while ALFF describes intensity of brain activity in
the local region between the voxels, it also has defects. Due to
the signal noise generated during the scanning process, there
will be a lot of energy in the ventricular position, and this
high energy in the ventricular position does not necessarily
have physiological significance. Furthermore, fALFF divides the
energy of the calculated low-frequency signal by the power of
the entire frequency band, which improves the sensitivity and
specificity of signal detection (23). Previous studies have found
that fALFF values of the right precuneus are negatively correlated
with the number of depressive episodes in depressive patients
(24). Therefore, ReHo and fALFF may be effective indicators
to explore the neurobiological mechanisms of SG improving
depressive symptoms in PSD patients.

In this study, we hypothesize that SG may ameliorate
depressive symptoms in PSD patients and that this
improvement would be related to brain region activity and
local synchronization. The 24-item Hamilton Depression Scale
(HAMD) was used to evaluate depression, and the combination
of ReHo and fALFF was used to explore the neurobiological
mechanisms of SG in ameliorating depression of PSD patients.

METHODS AND MATERIALS

Subjects
Professional physicians selected suitable PSD patients for
enrollment according to strict standards and recruited
corresponding healthy individuals as controls. The inclusion
criteria for the PSD patients were as follows: have a diagnosis
of hemorrhagic or ischemic stroke; meet the DSM-5 diagnostic
criteria for PSD, where depressive symptoms occur within 1
week to 3 months after the stroke; mild to moderate depression,
HAMD scores between 8 and 24; Han nationality, right-handed,
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FIGURE 1 | The lesion map in PSD patients. Warm colors indicate the overlay of PSD patient’s lesions. PSD, post-stroke depression; L, left; R, right.

TABLE 1 | Demographic and clinical characteristics.

Variable SG0W SG8W HC t/χ2 p

(n = 15) (n = 15) (n = 21)

Mean ± SD Mean ± SD Mean ± SD

Age (years) 64.13 ± 6.01 60.67 ± 6.95 / 0.181a

Sex (male/female) 8/7 9/12 0.385 0.535b

Education (years) 9.40 ± 3.38 10.29 ± 2.61 / 0.241a

Duration (days) 62.87 ± 15.73

HAMD 14.00 ± 6.02 2.95 ± 1.50 8.103 0.001c

14.00 ± 6.02 6.73 ± 5.41 3.911 0.002d

Stroke type

Ischemia 9 (60.0)

Hemorrhage 6 (40.0)

Lesion volume (cm3 ) 1.65 ± 1.46

Location of lesion

Basal ganglia 9 (60.0)

Frontal lobe 3 (20.0)

Thalamus 3 (20.0)

SG0W, post-stroke depressive patients before treatment; SG8W, post-stroke depressive patients after 8 weeks treatment; HCs, healthy controls.
aMann–Whitney U test.
bChi-squared test.
c Independent-sample t-test.
dPaired t-test.

HAMD, 24-item Hamilton Depression Scale.

TABLE 2 | ReHo and fALFF differences between SG0W and HC.

Brain areas BA MNI coordinates Peak voxels t

X y z

ReHo

SG0W < HC

CAL.L BA18 −8 −88 −6 65 −4.867

SG0W > HC

SFG.L BA8 −20 18 58 55 3.717

fALFF

SG0W < HC

IPL.L BA40 −44 −36 46 140 −4.651

SG0W, post-stroke depressive patients before treatment; HC, healthy controls; ReHo, regional homogeneity; fALFF, fractional amplitude of low-frequency fluctuation; MNI, Montreal

Neurological Institute; BA, Brodmann; CAL.L, left calcarine sulcus; SFG.L, left superior frontal gyrus; IPL.L, left inferior parietal cortex.

Frontiers in Neurology | www.frontiersin.org 3 April 2022 | Volume 13 | Article 860290

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Yao et al. Brain Activity in PSD Patients

aged between 50 and 70 years old; meet the conditions of
MRI scan (without any contraindications); are not allowed
to use electroconvulsive therapy, psychotherapy, other types
of psychiatric drugs or mood stabilizers within 8 weeks
of medication.

The exclusion criteria were as follows: have severe physical
obstacles, speech impediments, and other obstacles, unable
to complete psychological measurement; have other serious
physical diseases; have used or are using other antipsychotic
drugs; are receiving therapies such as psychotherapy and physical
therapy; have other mental illnesses or severe depression (HAMD
> 24).

The recruited healthy volunteers (HCs) had no history of
brain trauma or mental illness, could complete psychological
tests, and met the conditions of magnetic resonance scanning
without any contraindications. Fifteen PSD patients and 21
HCs were ultimately recruited. This study was approved
by the Ethics Committee of Shanxi Medical University and
was enrolled in the Chinese Clinical Trial Registry (clinical
registration number: ChiCTR1900026358). All participants
provided informed consent. The subjects and clinical data of this
study were consistent with our previous study (17).

The patients took 1.44 g per day in two divided doses
according to the instructions of SG. Professional psychological
testers performed HAMD on PSD patients in the quiet
assessment room during the baseline period and the 8th weekend
of treatment (25). Professional imaging technicians performed
brain MRI scans on PSD patients during the baseline period and
the 8th weekend. The administration of SG occurred after the
MRI scan at the baseline. After the administration of SG for
8 weeks, the MRI scan was performed immediately without a
washout period. TheHC group only performedHAMDand brain
MRI scans at the baseline.

Data Acquisition
Imaging data of all subjects were scanned by the imaging
physicians in theMRI room using a 3TGerman Siemens scanner.
The 3D T1 parameters were as follows: 160 transverse slices
without gaps; voxel size = 0.9 × 0.9 × 1.2 mm3; repetition
time/echo time (TR/TE) = 2,300/2.95ms; matrix = 240 × 256;
flip angle = 9◦; Functional arguments were listed: voxel size =

3.75 × 3.75 × 4 mm3; flip angle = 90◦; 32 transverse slices
without gaps; 212 time points; TR/TE= 2,500/30 ms.

Lesion Mapping
A lesion overlay was created for all PSD patients. A neurosurgeon
manually marked the 3D T1 lesion contour images of each
patient with MRIcron software (http://www.mccauslandcenter.
sc.edu/mricro/mricron/). After spatial standardization of SPM12
toolkit, overlapping images of group lesions were constructed by
combining individual lesion templates to form a unified group
lesion template (Figure 1).

Data Preprocessing
DPARSF (http://www.restfmri.net) and SPM12 toolkits
(http://www.fil.ion.ucl.ac.uk/spm) were used to complete
the preprocessing of functional data. The first 10 images of

all subjects were deleted due to signal instability and the
subjects’ adaptation to scanning noise. The remaining images
were corrected in time and space, and the translation/rotation
measurement parameters of the functional image data were
removed over ±2.5 mm/±2.5◦. The individual average frame
displacement (FD) was calculated based on the translation and
rotation indices of the head movement parameters. FD exceeding
0.5mm was regarded as an abnormal movement value and was
used to eliminate the influence of head movement. The personal
3D T1 image was registered to the functional image, and the
3D T1 image was segmented and normalized to Montreal space
(MNI) using a 12-parameter non-linear affine transformation. A
cost correction script was used to eliminate lesion areas to avoid
deviations caused by spatial standardization, that is, to exclude
the influence of the lesion area signal on subsequent analysis (26).
The functional image was resampled to 2× 2× 2 mm3 voxel size
after spatial normalization. Then a Gaussian kernel of full-width
at half-maximum of 6mm was used for spatial smoothing.
Furthermore, band pass filter (0.01–0.08Hz) was used to correct
the linear drift of the time point. Additionally, white matter
signals, 24 movement parameters, and cerebrospinal fluid were
eliminated as covariates.

ReHo Analysis
The functional images required for ReHo analysis were not
smoothed during preprocessing. For the time series similarity
of functional areas, the KCC was used to measure the local
consistency, and 27 adjacent voxels were defined as a functional
area. The DPARSF software was utilized to calculate local
consistency between the time series of each voxel and the time
series of adjacent 26 voxels one by one to obtain the individual
ReHo graph. Finally, Fisher-z transformation was used in ReHo
values to improve data normality, and the resulting z-valued
ReHo was used for subsequent statistical analysis.

fALFF Analysis
To improve specificity and sensitivity, the fALFF value was
calculated as the ratio of the power of a specific frequency band
(0.01–0.08Hz) to the power of the entire detection frequency
band (0.01–0.25Hz) for inhibiting non-specific signals in the
functional imaging. Finally, Fisher-z transformation was used
in fALFF values to improve data normality, and the resulting
z-valued fALFF was used for subsequent statistical analysis.

Statistical Analysis
The DPARSF toolkit was used to perform independent-sample
t-tests on the ReHo and fALFF values of PSD patients before
treatment (SG0W) and HCs, respectively. The Gaussian random
field (GRF) correction was used for multiple comparison
correction (voxel level p < 0.01 and cluster level p < 0.05).
The average values of altered brain regions were extracted
for post hoc comparison. Pearson correlation was performed
to explore whether ReHo and fALFF values in altered brain
regions were associated with HAMD scores in all subjects at
the baseline (Bonferroni correction at p < 0.05). Furthermore,
receiver operating characteristic (ROC) analysis was performed
to determine optimal threshold for distinguishing between
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FIGURE 2 | The comparison in ReHo and fALFF between HC and SG0W. (A)

The brain region where the ReHo values of SG0W decreased; (B) The brain

region where the ReHo values of SG0W increased; (C) The brain region where

the fALFF values of SG0W decreased; SG0W, post-stroke depressive patients

before treatment; HC, healthy controls; ReHo, regional homogeneity; fALFF,

fractional amplitude of low-frequency fluctuation; L, left; R, right.

SG0W and HCs. Paired t-test was performed to compare SG0W
and PSD patients after 8 weeks of treatment (SG8W), which
analyzed the changes in the ReHo and fALFF values of the
altered brain regions after the administration of SG for 8 weeks.
In addition, the independent-sample t-test was performed to
explore distinction of the scale scores between SG0W and HCs,
and the paired t-test was performed to explore distinction of scale
scores between SG0W and SG8W.

RESULTS

Demographic and Clinical Features
There was no difference in sex (χ2

= 0.385, p = 0.535), age
(Mann–Whitney U test, p = 0.181) and education level (Mann–
Whitney U test, p = 0.241) between PSD patients and HCs, and
the average volume of lesions in PSD patients was 1.65 ± 1.46
cm3 (Table 1). Furthermore, the HAMD scores of PSD patients
were higher than that of HCs (t = 8.103, p < 0.001) at the
baseline, and the HAMD score of SG8W were lower than that
of SG0W (t = 3.911, p= 0.002).

ReHo Differences
Compared to HCs, the ReHo values of the left calcarine sulcus
(CAL.L) were lower, and the ReHo values of the left superior
frontal gyrus (SFG.L) were higher (p < 0.05 GRF correction,
cluster size >50 voxels) in PSD patients at the baseline (Figure 2

and Table 2). Average signals of altered brain regions were
extracted for the post hoc comparison (Figure 3). The ReHo
values of the CAL.L in PSD patients were lower than those in
HCs at the baseline and increased after the administration of SG
for 8 weeks. The ReHo values of the SFG.L in PSD patients were
higher than those in HCs at the baseline and decreased after the
administration of SG for 8 weeks.

fALFF Differences
Compared toHCs, the fALFF values of left inferior parietal cortex
(IPL.L) were lower in PSD patients at the baseline (p < 0.05
GRF correction, cluster size >50 voxels) (Figure 2 and Table 2).
Average signals of altered brain regions were extracted for the
post hoc comparison (Figure 3). Compared to HCs, the fALFF
values of IPL.L in PSD patients were lower at the baseline, and
increased after the administration of SG for 8 weeks.

ROC Analysis
The ROC curve was used to explore average ReHo values and
fALFF values of altered brain regions, and the area under the
ROC curve (AUC) was used to detect rate of diagnosis. The ROC
analyse showed that the changes in three altered brain regions
could be used to identify PSD patients and HCs: the ReHo values
of CAL.L (0.956, p< 0.001), the ReHo values of the SFG.L (0.867,
p < 0.001), and the fALFF values of IPL.L (0.946, p < 0.001)
(Figure 4).

Correlation Analysis
As shown in Figure 5, the ReHo values of CAL.L and the fALFF
values of IPL.L were negatively correlated with HAMD scores
in all subjects at the baseline. The ReHo values of the SFG.L
were positively correlated with HAMD scores in all subjects at
the baseline.

DISCUSSION

In our previous study, we have found that dynamic low-
frequency amplitude (dALFF) in the right precuneus and
dynamic functional activity (dFC) in the right precuneus and
left angular gyrus are reversed after drug administration and are
correlated with cognitive function. However, our approach with
ReHo and fALFF made some new discoveries. In this study, we
detected that the depression symptoms of PSD patients were
reduced after the administration of SG for 8 weeks, which was
consistent with previous studies (17, 27). Additionally, the study
found that ReHo values of CAL.L, SFG.L, and fALFF values
of IPL.L in PSD patients were abnormal, which were reversed
to normal values after the administration of SG for 8 weeks.
Moreover, in the baseline period, the average signal values of
altered brain areas were related to depressive symptoms, and
ROC analysis showed that the three altered brain area changes
could be used to distinguish PSD patients fromHCs. Our findings
may help understand the neuroimaging mechanisms of SG in
improving depression of PSD patients.

In previous studies, it has been found that the functional
connectivity of the default mode network (DMN) and the salient
network (SN) in PSD patients is related to severity of depressive

Frontiers in Neurology | www.frontiersin.org 5 April 2022 | Volume 13 | Article 860290

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Yao et al. Brain Activity in PSD Patients

FIGURE 3 | The post hoc comparison of the average signals in altered brain regions. (A) Comparison of ReHo values in the CAL.L; (B) Comparison of ReHo values in

the SFG.L; (C) Comparison of fALFF values in the IPL.L; *p < 0.05, **p < 0.01, ***p < 0.001; SG0W, post-stroke depressive patients before treatment; SG8W,

post-stroke depressive patients after 8 weeks treatment; HC, healthy controls; ReHo, regional homogeneity; fALFF, fractional amplitude of low-frequency fluctuation;

CAL.L, left calcarine sulcus; SFG.L, left superior frontal gyrus; IPL.L, left inferior parietal cortex.

FIGURE 4 | ROC curve analysis of average signals in altered brain regions. (A) The AUC was 0.956 (p < 0.001; 95% CI 0.829–0.996) for ReHo values in the CAL.L.

(B) The AUC was 0.867 (p < 0.001; 95% CI 0.712–0.957) for ReHo values in the SFG.L. (C) The AUC was 0.946 (p < 0.001; 95% CI 0.816–0.994) for fALFF values

in the IPL.L. ROC, receiver operating characteristic curves; AUC, area under the curve; ReHo, regional homogeneity; fALFF, fractional amplitude of low-frequency

fluctuation.

FIGURE 5 | The correlations between altered brain regions and clinical features. (A) The correlation between HAMD scores and ReHo values of the CAL.L (r =

−0.618, p < 0.001) in all subjects at the baseline; (B) The correlation between HAMD scores and ReHo values of the SFG.L (r = 0.461, p = 0.014) in all subjects at

the baseline; (C) The correlation between HAMD scores and fALFF values of the IPL.L (r = −0.625, p < 0.001) in all subjects at the baseline; the red dots, patients

with post-stroke depression at the baseline; the black dots, healthy controls; HAMD, 24-item Hamilton Depression Scale; ReHo, regional homogeneity; fALFF,

fractional amplitude of low-frequency fluctuation; CAL.L, left calcarine sulcus; SFG.L, left superior frontal gyrus; IPL.L, left inferior parietal cortex.
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symptoms (28). Studies have also found that compared to
stroke patients without depressive symptoms, PSD patients show
abnormal functional connections between the left inferior gyrus
and left inferior frontal gyrus, and this is related to the severity
of depression (29). It has been further found that gray matter
volume of the prefrontal and motor cortex in PSD patients is
reduced, and the functional connectivity between it, anterior
cingulate cortex, and the insula is abnormal (30). Additionally,
depressive symptoms of PSD patients have been shown to be
associated with lower functional connectivity between the left
dorsolateral prefrontal lobe and the right superior gyrus (31).
While previous studies have mostly explored the relationship
between depressive symptoms and brain function integration
in PSD patients based on functional connectivity and brain
structure indicators, ours was the first to combine the ReHo and
fALFF to explore both the relationship between depression and
local brain activity in PSD patients. By understanding functional
abnormalities of local brain activity involved in depressive
symptoms of PSD patients, we may provide more effective and
targeted interventions.

Previous studies have found that the CAL.L, an important
area for visual and auditory processing, is involved in multiple
independent networks and is involved inmultisensory processing
in visual, auditory, language, and emotional aspects (32). A study
examining aphasia after stroke has shown that the activation
of the CAL.L as a visual and auditory pathway is closely
related to the processing of language and memory (33). Further
studies have found that the ReHo abnormalities in the CAL.L
and the left middle occipital gyrus are related to emotional
facial recognition in patients with bipolar disorder, as well as
interpersonal relationships in the social environment (34). We
speculate that the dysfunction of the CAL.L may not only lead
to impairments in emotional and social functioning, but also in
language and memory in PSD patients. SG may directly enhance
emotion and memory functions of PSD patients by affecting the
local brain activity in this area.

The SFG is the center node of executive control network and
emotion network, and abnormal function of SFG may induce
depression (35). Dysfunction of the SFG may be associated with
impaired emotional regulation and damage top-down control of
the limbic region in depressive patients (36). One study has found
that volume of gray matter in the SFG.L decrease in patients
with depression, and that the functional connection between the
SFG.L and the left hippocampus also decrease in conjunction
with depressive symptoms (37). Further studies have found that
the function of the SFG.L in depressive patients is abnormal
compared to those with bipolar disorder or healthy controls,
and that it may be related to the severity of rumination (38).
It has been further found that the level of stress perception
in adolescents is strongly correlated with spontaneous brain
activity of the SFG.L, and that perceived stress mediates the
relationship between the spontaneous activity of the SFG and
depressive symptoms (39). In our current study, we observed that
PSD patients showed a compensatory increase in spontaneous
activity of the SFG.L in response to depressive symptoms, which
tended to return to normal levels after SG administration for
8 weeks.

The IPL.L is associated with cognitive functions such
as language recognition, memory processing, and attention
processing (40, 41). Previous studies have shown that neural
activity in the parietal cortex of primates is related to the relative
subjective desire to act in strategic games and foraging, and
that the parietal cortex is associated with the processing of
rewards and tasks (42). There is also evidence to suggest that
the IPL.L is related to cognitive control, directly linking cognitive
control andmotivational function in the brain (43). Furthermore,
depressive symptoms of PSD patients have been shown to be
associated with abnormal functional connectivity in the IPL.L in
comparison to stroke patients without depressive symptoms (44),
which is partially consistent with our findings. Additionally, the
IPL.L is a crucial region in the DMN (45, 46). Abnormal DMN
function in PSD patients has been observed to be related to the
severity of depressive symptoms and impairment of cognitive
function (47). The altered ReHo values of the IPL.L in our study
may be associated with abnormal local brain activity and DMN
dysfunction of PSD patients, and SG may improve depressive
symptoms by reversing this abnormality.

However, this study also has some limitations. First, the
sample size was small. PSD patients were generally older and
had poor physical conditions due to stroke, and it was difficult
to insist on long scanning periods of MRI scanning. PSD patients
also had poor compliance, and the 8-week longitudinal follow-up
increased the difficulty of collecting subjects. Future data should
attempt to include more observations from a larger sample.
Second, PSD patients showed heterogeneous stroke locations,
and future studies should attempt to collect data from PSD
patients with similar stroke locations. Finally, due to limited
funds, we were only able to obtain baseline data from the control
group. Time effect is also an important factor, and we will collect
the control group data after 8 weeks in future studies.

In summary, our study shows that SG might ameliorate
depression in PSD patients by affecting local brain activity and
local synchronization. Our findings provide new insights for
exploring the neurobiological mechanisms of SG in improving
depression of PSD patients.
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