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Patients with type 2 diabetes mellitus (T2DM) exhibit a distinct and high risk of ischemic

stroke with worse post-stroke neurovascular and white matter (WM) prognosis than

the non-diabetic population. In the central nervous system, the ATP-binding cassette

transporter member A 1 (ABCA1), a reverse cholesterol transporter that efflux cellular

cholesterol, plays an important role in high-density lipoprotein (HDL) biogenesis and in

maintaining neurovascular stability andWM integrity. Our previous study shows that L-4F,

an economical apolipoprotein A member I (ApoA-I) mimetic peptide, has neuroprotective

effects via alleviating neurovascular and WM impairments in the brain of db/db-T2DM

stroke mice. To further investigate whether L-4F has neurorestorative benefits in the

ischemic brain after stroke in T2DM and elucidate the underlying molecular mechanisms,

we subjected middle-aged, brain-ABCA1 deficient (ABCA1−B/−B), and ABCA1-floxed

(ABCA1fl/fl) T2DM control mice to distal middle cerebral artery occlusion. L-4F (16 mg/kg,

subcutaneous) treatment was initiated 24 h after stroke and administered once daily for

21 days. Treatment of T2DM-stroke with L-4F improved neurological functional outcome,

and decreased hemorrhage, mortality, and BBB leakage identified by decreased albumin

infiltration and increased tight-junction and astrocyte end-feet densities, increased

cerebral arteriole diameter and smooth muscle cell number, and increased WM density

and oligodendrogenesis in the ischemic brain in both ABCA1−B/−B and ABCA1fl/fl

T2DM-stroke mice compared with vehicle-control mice, respectively (p < 0.05, n = 9 or

21/group). The L-4F treatment reduced macrophage infiltration and neuroinflammation

identified by decreases in ED-1, monocyte chemoattractant protein-1 (MCP-1), and toll-

like receptor 4 (TLR4) expression, and increases in anti-inflammatory factor Insulin-like

growth factor 1 (IGF-1) and its receptor IGF-1 receptor β (IGF-1Rβ) in the ischemic brain

(p < 0.05, n = 6/group). These results suggest that post-stroke administration of L-

4F may provide a restorative strategy for T2DM-stroke by promoting neurovascular and

WM remodeling. Reducing neuroinflammation in the injured brain may contribute at least

partially to the restorative effects of L-4F independent of the ABCA1 signaling pathway.
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INTRODUCTION

Type-2 diabetes (T2DM) constitutes∼90% of all diabetic patients
and is a major risk factor for ischemic and hemorrhagic
stroke. Epidemiological investigation in both younger (15–
49 years) (1) and elderly (>65 years) (2) diabetic patients
show a 10 years cumulative recurrent ischemic stroke rate
of 29.7% for T2DM, and 12.0% for non-diabetic patients in
the 15–49 age group (1), and 4.26% of stroke events and
1.79% of death rates during 6 years of follow-up for >65
age group. Moreover, diabetic-stroke patients exhibit a high
level of neuroinflammation, worse neurovascular and white
matter (WM) injury with severe and long-lasting neurological
deficits compared with non-diabetic stroke patients (1–6).
Neuroinflammation is involved in the onset and progression
of stroke which is triggered by the infiltration of blood
macrophages (M1 macrophage) and the activation of glial cells
(microglia and astrocytes) which then released proinflammatory
cytokines/factors. These inflammatory mediators not only lead
to neurotoxicity and neuronal dysfunction and also induce
blood–brain barrier (BBB) disruption and leakage. BBB damage
allows the trafficking of immune cells and/or plasma proteins
into the brain parenchyma which amplifies neuroinflammation
and exacerbates neurovascular and WM injury (7). Therefore,
there is a compelling need to develop therapeutic strategies for
T2DM-stroke patients and elucidate the underlying molecular
biological mechanisms.

After adjusting for all possible covariables, blood levels of
low-density lipoprotein (LDL) cholesterol show a significant
association with increased risk of stroke and mortality (2,
8). However, high-density lipoprotein (HDL) and HDL-
increasing agents, such as Niacin, GW3965, T090317, etc.,
have demonstrated anti-neuroinflammation capabilities (9–14)
and protection of brain vasculature and WM after stroke in
preclinical studies (15–20). In T2DMpatients, levels of both HDL
and apolipoproteins and their functions such as the antioxidative
capacity are impaired, which contribute to neurovascular and
WM damage after stroke (8–12, 21–25).

In humans, the circulating blood contains only about
40% of the total amount of HDL, and most of the HDL
in the central nervous system (CNS) is synthesized in situ
mainly by the ATP-binding cassette transporter member A 1
(ABCA1), a reverse cholesterol transporter that efflux cellular
cholesterol (26, 27). ABCA1 not only plays a key role in HDL
biogenesis and in maintaining brain cholesterol metabolism, but
it also exerts highly anti-atherogenic effects and has remarkable
anti-inflammatory properties (28–33). We have previously
demonstrated that deficiency of ABCA1 in the brain induces
worse neurological functional deficits after stroke, increases BBB
leakage and aggravates OL loss and WM injury (17, 34–36).
The Apolipoprotein A-I (ApoA-I) mimetic peptide, 4F (D-4F,
synthesized from D-amino acids, and L-4F, synthesized from L-
amino acids) increases cholesterol efflux (37–43) and has anti-
inflammatory effects (44–46). In our previous study, we have
shown that treatment of stroke in type 1 diabetes mellitus
(T1DM) rats with D-4F or db/db-T2DM stroke mice treated
with L-4F significantly decreases neurovascular andWM damage

and improves neurological function in the early stage (4–7
days) after stroke (45, 46). However, whether L-4F is capable of
crossing the BBB and whether long-term post-stroke treatment
with L-4F promotes neurovascular and WM remodeling and
improves recovery of neurological function in T2DM, and
whether ABCA1 mediates L-4F-induced neurorestoration have
not been studied. Therefore, in this study, we employ middle-
aged, brain-ABCA1 deficient (ABCA1−B/−B) and ABCA1-floxed
(ABCA1fl/fl) control mice that were induced with T2DM and
subjected to stroke, to test whether L-4F treatment initiated
at 24 h after onset of ischemic stroke enhances neurological
recovery. We also test if L-4F treatment improves vascular and
WM rewiring in T2DM stroke and whether L-4F decreases
inflammation via ABCA1 dependent signaling pathway. We
demonstrate that L-4F can pass through the BBB and has
neurorestorative capabilities in promoting neurovascular and
WM remodeling, and oligodendrogenesis in the ischemic brain
of T2DM-stroke mice. Our data also indicate that reducing
neuroinflammation in the injured brain may contribute at least
partially to the neurorestorative effects of L-4F independent of
the ABCA1 signaling pathway.

MATERIALS AND METHODS

T2DM Induction
To investigate whether the ABCA1 signaling pathway
mediates L-4F-induced neurorestorative in T2DM-stroke
mice, ABCA1−B/−B and ABCA1fl/fl mice were employed. The
original breeders were provided by Dr. Michael Hayden from the
University of British Columbia, Canada. All mice used in this
study were self-bred in the Bioresources of Henry Ford Health
System, and all procedures were approved by the Institutional
Animal Care and Use Committee of Henry Ford Health System
(Code No. 1289, Approval Date 04/05, 2021). The litters were
heterozygous and the ABCA1−B/−B or ABCA1fl/fl phenotype
was identified with genotyping assay (29, 47). While studying
the effects of L-4F in both males and females is critical from a
translational point of view, in this study, to exclude the effects
of estrogen in females and in order to compare results with our
previous studies, only male ABCA1−B/−B and ABCA1fl/fl mice
(13-month-old, total 115 mice) were employed. These mice
were induced with T2DM using a combination of a high-fat
diet (HFD, 60% calories from fat, Research Diets, USA) and
a low dose of streptozotocin (STZ, ALX-380-010-G001, Enzo
Life Science, USA) injection (48–52). Briefly, 10-months-old
mice were fed an HFD for 2 months. Then, mice were fasted for
6 h and administered STZ on two consecutive days (75 mg/kg,
i.p. as first dose and 50 mg/kg, i.p as the second dose). Mice
were continued on an HFD for one more month. Bodyweight
and fasting blood glucose levels were measured, and mice with
glucose >250 mg/dl were considered as T2DM and included in
the study.

Stroke Model and Treatment
T2DM mice were subjected to permanent distal right middle
cerebral artery occlusion (dMCAo) surgery, as described
previously (31). At 24 h after dMCAo, mice were randomly
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divided into 4 groups: 1. ABCA1fl/fl control; 2. ABCA1fl/fl +

L-4F; 3. ABCA1−B/−B control; 4. ABCA1−B/−B + L-4F. Mice
were administered 16 mg/kg L-4F (BioMatik, Cambridge, ON,
Canada) or saline subcutaneously starting at 24 h after dMCAo
and once daily for 21 days. The dose of L-4F employed in
this study is the same as the optimal dose of D-4F which was
employed in our previous study (18). The treatment route using
subcutaneous administration of saline or L-4F in this study is
consistent with the treatment route employed in our previous
publication (46). Mice were sacrificed at 21 days after dMCAo.
A total of 86 mice were included excluding mice that died at
early time points after stroke and mice with lesion volume < 6%.
To record mortality, all the animals were counted daily and the
percentage of dead animals in each group was counted within the
21 days after dMCAo.

Behavioral Testing
To evaluate neurological function after stroke, all animals were
subject to an adhesive removal test and left foot-fault test
before dMCAo (baseline) and on days 1, 3, 7, 14, and 21 after
dMCAo, as described previously (19, 53). Experimental groups
and treatments were double-blinded to the investigators who
performed testing and analyzed data.

Blood Biochemistry Measurement
To test blood biochemistry, animals were fasted for 6 h, and blood
was collected from a tail vein before treatment on day 1 after
dMCAo as the baseline measurement and before sacrifice on day
21 after treatment. Blood glucose levels were measured using
glucose test strips and a glucose analyzer (Accu-Chek Compact
System; Roche Diagnostics, Basel, Switzerland). Blood levels of
HDL, total cholesterol (T-CH), and triglyceride were measured
using a CardioChek Plus analyzer 2,700 (Polymer Technology
System Inc., Indianapolis, IN) and test strips, following the
manufacturer’s instructions. Each sample was tested in triplicate
and the data are presented as mg/dl.

Cerebral Hemorrhagic Transformation and
Lesion Volume Measurement
Briefly, brains were immersion fixed in 4% paraformaldehyde,
paraffin-embedded, and then cut into seven (1mm thick) coronal
blocks. A series of 6µm thick sections were prepared and
stained with hematoxylin and eosin (HE), and hemorrhagic
transformation was identified by blood cell infiltration in the
cerebral ischemic brain and the percentage of hemorrhagic
transformation volume was calculated. For lesion volume
measurement, the percentage of the indirect lesion volume was
calculated, in which the intact area of the ipsilateral hemisphere
was subtracted from the area of the contralateral hemisphere,
with a micro-computer imaging device (MCID) imaging analysis
system (Imaging Research, ST. Catharines, ON, Canada) (54).

Histochemical and Immunohistological
Staining
For histochemical/immunostaining, a standard paraffin block
was obtained from the center of the lesion (bregma −1mm
to + 1mm). A series of 6-µm thick sections were cut from

the block. Histochemical-staining for Bielshowsky silver (BS,
an axon marker) and Luxol fast blue (LFB, a myelin marker),
and histoimmuno-staining for antibodies against albumin (BBB
leakage marker, 1:500; ab53435, Abcam), Occludin (a marker of
tight junction, OC-3F10, 1:100, Fisher), Aquaporin-4 (AQP4, a
protein expressed in astrocytic end-feet as another marker of
BBB, 1:1,500; ab3594, EMD Millipore), von Willebrand Factor
(vWF, a vessel marker, 1:400; A0082, Dako), α-smooth muscle
actin (αSMA, a smooth muscle cell-SMC marker, 1:800, Dako),
SMI31 (a marker of phosphorylated-neurofilament, 1:1,000,
Covance), adenomatous polyposis coli [APC, a marker of mature
oligodendrocytes-OLs (55), Ab-1, OP44, 1:100; Calbiochem], and
platelet-derived growth factor receptor alpha (PDGFRα, a marker
of oligodendrocyte progenitor cells-OPCs, C-20, SC-338, 1:100,
Chemicon) were performed.

Both D-4F and L-4F have robust anti-inflammatory properties
(56–58), improve HDL function (56, 59–63), and increase
cholesterol efflux (37, 38). In this study, to identify whether
D-4F/L-4F can pass the BBB and enter the brain, two ABCA1fl/fl-
T2DM-stroke mice were subcutaneously administered
saline or commercially available FITC-D-4F (Cat#SP160428,
Lot#P160412-LR051957, BioMatik, Cambridge, ON, Canada)
at 24 and 48 h after dMCAo. Mice were sacrificed 4 h after
last treatment and vibratome coronal sections (100µm) were
prepared for immunostaining with vWF, APC, and neuronal
nuclei (NeuN, for neurons, 1:300, MAB 377, Chemicon). Images
were analyzed using laser scanning confocal microscopy.

For immunostaining measurement, each section containing 8
fields of view within the cortex and corpus callosum (CC) from
the ischemic boundary zone (IBZ) were digitized using a 40×
objective (Olympus BX40) using a 3-CCD color video camera
(Sony DXC-970MD) interfaced with MCID. The percentage of
positively stained area for albumin, Occludin, AQP-4, BS, LFB,
and SMI-31 was measured using a built-in densitometry function
(MCID) with a uniform threshold set above unstained for all
the groups and the number of vWF+-vessels, αSMA+-arterioles,
APC+-OLs, PDGFR+-OPCs and the perimeter of vessels or
diameter of arterioles as well as the number of αSMA+-SMCs was
measured in both the contralateral and the ipsilateral brain.

Quantification of Myelination on Electronic
Microscope Images
To evaluate the ultrastructure of axonal myelination, brain tissues
were isolated from the IBZ of CC and processed to ultrathin
sections for EM analysis (n = 6 mice/group). Axonal structural
changes were identified at a magnification of 14,000× in a total of
6 fields of view per animal. The analysis includedmeasurement of
the percentage of myelinated axons, thickness of myelin sheath,
and G ratio (axon diameter/axon wrapped with myelin diameter
× 100%) in 10 ultrathin sections, as described previously (36).

Western Blot and Real-Time Quantitative
PCR (RT-PCR) Assay
Tissue from the ischemic area of the ipsilateral hemisphere from
both vehicle-control and L-4F-treated T2DM stroke mice were
isolated at 21 days after dMCAo. Brain-tissue lysate was subjected
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to WB analysis, as described previously (46, 64). The following
primary antibodies were used: AQP4 (1:5,000, Milipore, cat#
ab3594), myelin basic protein (MBP, 1:500, Millipore, cat#
MAB386), CD68 (ED-1, a marker of M1-macrophages, 1:1,000,
Serotec, cat# MCA341R), monocyte chemoattractant protein-
1 (MCP-1, 1:1,000, Abcam, cat# ab7202), toll-like receptor 4
(TLR4, 1:500, Santa Cruz, cat# sc-10741), Insulin-like growth
factor 1 (IGF-1, 1:500, Santa Cruz, cat# sc-9013), IGF-1 receptor β

(TGF-1Rβ,1:500, Santa Cruz, cat# sc-713), and β-actin (1:10,000,
Abcam, cat# ab6276).

Total RNA was isolated using a standard protocol and
quantitative RT-PCR was performed on an ABI Prism 7,000
Sequence Detection System using the Power SYBR Green PCR
Master Mix (Applied Biosystems, Foster City, CA). For each
sample, the cDNA was generated and used to amplify GAPDH,
AQP4, MBP, ED1, MCP-1, TLR4, IGF1, and IGF-1R as described
previously (46). All the primers for the RT-PCR assay were
designed using Primer Express software (ABI). Each sample was
detected in triplicates.

Statistical Analysis
A total of two-way ANOVA followed by Tukey post hoc Test
were used for analysis involving four groups, i.e., ABCA1fl/fl-
T2DM and ABCA1−B/−B-T2DM stroke with or without L-
4F treatment for analysis blood biochemistry, hemorrhage,
mortality, lesion volume, functional outcome, immunostaining,
EM measurement, WB and RT-PCR measurement. p < 0.05 was
set as a significant difference, and all data are presented as mean
± standard error (SE).

In this study, 9 survival animals in each group were employed
for the measurement of hemorrhage and lesion volume, and
histochemical and immunohisto-staining measurements. The
number of animals employed was determined using a priori
power calculation; 9 survival stroke animals per group provided
80% power at a significance level of <0.05, assuming a 20%
difference in both mean and SD at the 95% CI and a two-
sided test. For WB, RT-PCR, and EM analysis, 6 stroke mice
per group were needed. Plus, two additional ABCA1fl/fl-T2DM-
stroke mice, in this study, a total of 86 T2DM-stroke mice
were used.

RESULTS

L-4F-Treatment Decreases Blood Glucose,
Cerebral Hemorrhage, and Mortality,
Increases HDL and Improves Functional
Outcome After Stroke in T2DM Mice
Figure 1 shows that there were no significant differences in
the blood levels of glucose before treatment and triglyceride
and T-CH at 21 days after treatment among the 4 groups
of animals treated with or without L-4F for 21 days after
dMCAo. However, L-4F treatment significantly increased blood
HDL level and decreased glucose (p < 0.05, n = 21/group).
ABCA1−B/−B-T2DM mice exhibit increased hemorrhage, lesion
volume, and mortality compared to ABCA1fl/fl-T2DM-stroke
mice (p < 0.05, n = 9/group). There were no changes in lesion

volume at 21 days after L-4F treatment in both the ABCA1−B/−B-
T2DM and the ABCA1fl/fl-T2DM-stroke mice. However, the
hemorrhage volume and mortality rate was dramatically reduced
in L-4F treatment groups in both ABCA1fl/fl and ABCA1−B/−B

T2DM-stroke mice when compared to the vehicle control group,
respectively (p < 0.05).

ABCA1−B/−B-T2DM stroke mice exhibited significant
functional deficits as indicated by increased adhesive-removal
time on 3, 7, 14, and 21 days after dMCAo compared with
ABCA1fl/fl-T2DM mice (p < 0.05, n = 21/group). L-4F
treatment significantly reduced adhesive-removal time at 14 and
21 days after stroke indicating improved sensorimotor function
and decreased the left foot-fault rate at 7, 14, and 21 days
after treatment indicating an improved motor function in both
ABCA1fl/fl and ABCA1−B/−B T2DM-stroke mice (p < 0.05, n
= 21/group). These data indicate that L-4F treatment increases
blood HDL and reduces glucose levels, decreases cerebral
hemorrhagic transformation and mortality as well as improves
neurological functional outcomes in T2DM-stroke mice.

L-4F Treatment Decreases BBB Leakage
and Cerebral Vascular Damage in the
Ischemic Brain of T2DM-Stroke Mice
Figure 2 shows that the density of albumin in the ischemic
core area increased in ABCA1−B/−B-T2DM stroke mice, while
the expression of Occludin and AQP-4 within or around
blood vessels in both the contralateral and the IBZ area in
the ABCA1−B/−B-T2DM stroke mice significantly decreased
compared with the ABCA1fl/fl-T2DM stroke mice (p < 0.05, n
= 9/group). In addition, WB and RT-PCR assay indicate that
the level of AQP-4 in the ischemic brain is decreased in the
ABCA1−B/−B-T2DM stroke mice (p < 0.05, n = 6/group). L-
4F treatment significantly decreased albumin density indicating
improved BBB integrity and increased tight junction protein
in the ischemic brain in both ABCA1−B/−B and ABCA1fl/fl

T2DM-stroke mice measured by immunostaining (p < 0.05,
n = 9/group). Moreover, L-4F treatment also elevated AQP4
expression in the ischemic brain tissuesmeasured byWB and RT-
PCR (p < 0.05, n = 6/group) even though there is no significant
difference by immunostaining analysis.

Figure 3 shows that even though there were no significant
differences in the densities of vWF+-vessels and αSMA+-
arterioles in both the contralateral hemisphere and the IBZ, and
the diameter of arterioles and the number of αSMA+-SMCs
in the contralateral hemispheres between the ABCA1−B/−B

and ABCA1fl/fl T2DM-stroke mice, ABCA1−B/−B-T2DM stroke
mice exhibit decreased vessel perimeter in both the contralateral
hemisphere and the IBZ, and decreased arteriole diameter and
SMC number in the IBZ compared with ABCA1fl/fl-T2DM
stroke mice (p < 0.05, n = 9/group). L-4F treatment increased
the number of SMCs in both the contralateral hemisphere and
IBZ of ABCA1fl/fl-T2DM mice and increased SMC number and
arteriole diameter in the IBZ of ABCA1−B/−B-T2DM strokemice
21 days after stroke (p < 0.05, n= 9/groups). These data indicate
that T2DM-stroke induces BBB leakage and vascular injury
in the ischemic brain, while brain-ABCA1 deficit exacerbates
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FIGURE 1 | L-4F treatment does not change blood glucose levels before treatment and T-CH and triglyceride after treatment. However, L-4F treatment significantly

reduces glucose and increases HDL in the blood 21 days after treatment. L-4F treatment does not alter lesion volume but reduces cerebral hemorrhage and mortality

rate as well as improves functional outcome compared with vehicle-control groups in both ABCA1−B/−B and ABCA1fl/fl T2DM-stroke mice, respectively. A,B Fasting

blood levels of glucose (A) and lipids (B) measured before L-4F treatment at 1 day after dMCAo and 21 days after treatment. p < 0.05, n = 21/group; C–E Cerebral

hemorrhage volume (C), mortality (D), and lesion volume (E) at 21 days after L-4F treatment. Scale bar = 100µm; p < 0.05, n = 9/group; F,G. Foot-fault (F) and

adhesive removal (G) tests before dMCAo and 1, 3, 7, 14, and 21 days after dMCAo. *p < 0.05, n = 21/group.
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FIGURE 2 | L-4F treatment decreases BBB-leakage (albumin density) but increases tight-junction protein (Occludin) in the ischemic brain of T2DM mice at 21 days

after stroke. L-4F treatment did not show an increases AQP-4 expression in astrocyte end-feet measured by immunostaining. However, the WB and RT-PCR data

demonstrate that both the protein and mRNA level of AQP-4 in the ischemic brain was increased after 21 days of L-4F treatment. Scale bar = 50µm; *p < 0.05, n =

9/group in immunostaining measurement of Albumin, Occludin and AQP-4, n = 6/group in WB and RT-PCR assay.
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FIGURE 3 | L-4F treatment increases arteriolar diameter in the IBZ of ABCA1−B/−B -stroke mice and increases SMC-number in the IBZ of both ABCA1fl/fl and

ABCA1−B/−B T2DM-stroke mice. Scale bar = 50µm; *p < 0.05, n = 9/group.

T2DM-stroke induced vascular damage. Administration of L-
4F decreased T2DM-stroke induced vascular damage and BBB
permeability even in brain-ABCA1-deficient mice.

L-4F Treatment Increases WM Density and
Oligodendrogenesis in the Ischemic Brain
of T2DM-Stroke Mice
The immunohisto-chemical-staining and quantification data
show that the ABCA−B/−B-T2DM stroke mice exhibit a

significant decrease in the densities of axons, phosphorylated-
neurofilament, and myelin in the WM-bundles of CC (Figure 4,
p < 0.05, n = 9/group), and WB/RT-PCR assay show that
the protein and mRNA level of MBP was decreased in the
ischemic brain tissues (Figure 4, p < 0.05, n = 6/group) at 21
days after dMCAo compared with the ABCA1fl/fl-T2DM stroke
mice. The analysis from EM images indicates that both the
number of myelinated-axons and the thickness of myelin-sheath
decreased but G-ratio increased in the WM-bundles of CC in
both the contralateral brain and the IBZ of the ischemic brain
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FIGURE 4 | L-4F treatment increases the densities of axon, phospho-neurofilament, and myelin in the WM-bundles in the IBZ, and MBP protein level in the ischemic

brain of ABCA1fl/fl and ABCA1−B/−B T2DM mice at 21 days after stroke. Scale bar = 50µm. *p < 0.05, n = 9/group in immunostaining measurement; n = 6/group in

WB and RT-PCR assay.
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FIGURE 5 | L-4F treatment increases myelination identified by increased density of myelinated-axons, myelin-sheath thickness, and reduced G-ratio in the IBZ of

WM-bundles of the ischemic brain at 21 days after stroke in T2DM mice. Scale bar = 1µm, *p < 0.05, n = 6/group.

in the ABCA−B/−B-T2DM stroke mice (Figure 5, p < 0.05, n
= 6/group). Moreover, the number of APC+-OLs in the CC of
the IBZ and the number of PDGFRα+-OPCs in the cortex of
the IBZ of ABCA−B/−B-T2DM stroke mice were also reduced
(Figure 6, p < 0.05, n = 9/group). L-4F treatment significantly

decreased G-ratio, increased the axon density, phosphorylated-
neurofilaments, myelin density, number of myelinated-axons,
myelin-sheath thickness, and the number of OLs andOPCs in the
IBZ (p < 0.05, n= 9/group) and also the protein/mRNA levels of
MBP in the ischemic brain tissues (p< 0.05, n= 6/group) in both
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FIGURE 6 | L-4F treatment increases the number of OLs and OPCs in the IBZ of WM-bundles and cortex in the ischemic brain at 21 days after stroke in T2DM mice.

Scale bar = 50µm, *p < 0.05, n = 9/group.

ABCA1fl/fl-T2DM and ABCA−B/−B-T2DM stroke mice when
compared with the vehicle-control group, respectively. These
data indicate that L-4F treatment promotes WM remodeling
and oligodendrogenesis in the ischemic brain after stroke in
T2DMmice.

Identification of Localization of
FITC-Labeled D-4F After Treatment
Figure 7 shows that the FITC-labeled D-4F can pass through the
BBB to enter the ischemic lesion area and was primarily present
in vWF+-vessels and APC+-OLs and NeuN+-neurons in the
ischemic brain.

L-4F Treatment Reduces Macrophage
Infiltration and Decreases Inflammation in
the Ischemic Brain in T2DM-Stroke Mice
To investigate the mechanism underlying L-4F
treatment-induced neurorestoration in T2DM-stroke, the
macrophage/microglial and monocyte infiltration was measured
using the levels of ED-1 and MCP-1, and the inflammatory
factor TLR-4 and anti-inflammatory factors IGF-1 and IGF-
1Rβ were measured using WB and RT-PCR assay. Figure 8
shows that the ABCA−B/−B-T2DM stroke mice exhibit
an increased level of protein and mRNA of ED-1, MCP-
1, and TLR-4, whereas a lower level of IGF-1/IGF-1Rβ in
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FIGURE 7 | D-4F can pass through the BBB and enter into the ischemic brain, and was co-localized with vWF+-vessels, APC+-OLs, and NeuN+-neurons in the IBZ

of the ischemic brain of T2DM-stroke mice. The confocal image of mouse brain in control (A) and FITC-D-4F (B). D-4F was co-localized with vascular vessels (C),

OLs (D) and neurons (E), respectively.

the ischemic brain tissues when compared that with the
ABCA1fl/fl-T2DM stroke mice at 21 days after dMCAo (p
< 0.05, n = 6/group). L-4F treatment significantly decreases
ED-1, MCP-1, and TLR-4 expression and increases IGF-1
and IGF-1Rβ levels in the ischemic brain compared with the
vehicle-control group, respectively (p < 0.05, n = 6/group).
These data indicate that post-stroke administration of L-4F
in T2DM-stroke mice inhibits neuroinflammation which may
contribute to the L-4F treatment-induced neurorestoration after
brain injury.

DISCUSSION

The BBB contains vascular endothelial cells (ECs), pericytes,
tight junction, and astrocyte end-feet and interacts directly with
astrocytes and neurons in the neurovascular niche (65–67). The
BBB acts selectively as a transport interface and therapeutic
agents must pass the BBB to provide successful treatment of brain
injury or disease (67). Using commercially available FITC-labeled
D-4F, we demonstrated that D-4F/L-4F can pass through the BBB
to enter brain tissue and cells including ECs, OLs, and neurons.
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FIGURE 8 | L-4F treatment decreases ED1, MCP-1, and TLR-4 but increases IGF-1 and IFGR-1β in the ischemic brain in both ABCA1fl/fl and ABCA1−B/−B T2DM

mice at 21 days after stroke measured by WB or RT-PCR. n = 6/group.

Long-term endothelial dysfunction and impaired vasodilation,
as well as increased vasogenic edema and BBB leakage in the
ischemic brain, are highly associated with T2DM as a predictor
for secondary cerebrovascular events such as hemorrhage (68).
Neurovascular dysfunction triggers and exacerbatesWMdamage
which in turn hinders neurological functional recovery, and
leads to an enlarged infarct volume after stroke in both the
experimental T2DM-stroke model and T2DM-stroke patients
(51, 64, 69–73). In this study, we demonstrate that L-4F treatment
not only has beneficial effects on BBB integrity (identified by
decreased albumin infiltration, increased tight junction protein
expression, and AQP-4 expression in astrocyte end-feet), but
also on neurovascular remodeling (identified by increased
SMC number and enhanced vasodilation), WM remodeling
(identified by increased WM density and myelination), and
oligodendrogenesis (identified by the increased number of OLs
and OPCs) in the ischemic brains in the middle-aged wild-
type (ABCAfl/fl) T2DM-stroke mice. These results are consistent
with our previous findings that treatment of db/db-T2DM
stroke mice with L-4F reduced hemorrhage, infarct volume,
mortality, BBB leakage and WM damage, and increased cerebral
arteriole diameter and SMC number in the ischemic brain 4

days after stroke (46). We also found previously that in vitro,
L-4F treatment does not increase angiogenesis in mouse-brain
ECs cultured in high-glucose media, but increases primary
artery explant cell migration after stroke-induced injury and
enhances neurite and axonal outgrowth in primary cortical
neurons subjected to oxygen-glucose deprivation or high glucose
(46). D-4F treatment of T1DM-stroke rats also increases tight
junction protein expression and decreases BBB leakage, WM
damage, and pro-inflammatory factors, while increasing anti-
inflammatory M2 macrophage polarization in the ischemic brain
7 days after stroke (45). L-4F decreases markers of plasma
oxidation and promotes EC migration and EC-healing of carotid
arterial injuries in HFD-fed mice (74). L-4F-treated mice exhibit
reduced serum levels of oxidized phospholipids and increased
mean αSMA+-area in the aortic lesion in a murine lupus model
of accelerated atherosclerosis (75).

In the peripheral blood system, ApoA-I is a major
apolipoprotein involved in HDL formation and is highly
influenced by ABCA1, and ABCA1 is usually found in tissue
macrophages and activated monocytes (39, 76–80). In the CNS,
HDL synthesis uses ApoE as the predominant apolipoprotein
regulated by ABCA1 via facilitating cholesterol and phospholipid
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efflux to exogenous ApoE (81–83), and ABCA1 is also highly
expressed in neurons, astrocytes, OLs, and microglia (26, 29, 84–
87). D-4F promotes cholesterol efflux from macrophages via
ABCA1 (42). In this study, L-4F treatment increases blood
HDL in ABCAfl/fl-T2DM stroke mice. Since L-4F can cross
the BBB and reach the CNS, to further elucidate whether L-4F
treatment-induced neurorestorative effect on T2DM-stroke is
mediated by ABCA1 and ApoE signaling pathway, ABCA−B/−B

mice were employed. These mice were generated by crossing
loxP-flanked (floxed) ABCA1 mice with nestin-cre mice, by
which the ABCA1 gene is knocked out from all nestin-linage
cells (neural stem cells) in the brain including neurons, OLs, and
astrocytes, and these mice exhibit reduced brain ABCA1 and
ApoE and HDL content, and reduced level of ABCA1, ApoE
and HDL was also found in a primary cortical neuron or OPC
cultures (17, 29, 34–36, 47). Our results indicate that inhibition
of brain ABCA1 does not attenuate the neurorestorative benefits
induced by L-4F treatment in ABCA−B/−B-T2DM stroke mice.
D-4F is capable of forming HDL-like particles and delivering
cholesterol to the liver cells selectively through the scavenger
receptor class B type I (SR-BI) and enhances the cholesterol
delivery by native HDL (40). D-4F treatment increases Lecithin
cholesterol acyltransferase activity, increases HDL levels and
cholesterol efflux from macrophages, decreases inflammation
and oxidative stress, improves renal histological pathogenesis,
and causes lesion regression in ApoE(-/-) mice (38, 88–90). D-4F
also improves arterial vasoreactivity and arterial wall thickness
in hypercholesterolemic LDLR(-/-) mice and LDLR(-/-) and
ApoA-I(-/-) double-knockout mice which independent of
ApoA-I (59, 91). Administration of L-4F increases HDL and
ApoA-I concentration in the plasma, decreases albuminuria and
stimulates cholesterol efflux and related proteins expressions, and
reduces atherosclerotic lesions in ApoE (-/-) mice (39, 43, 92).
GW3965, an LXR agonist increases ApoA-I protein levels in the
CNS independent of ABCA1, which suggests that ApoA-I may
be regulated by distinct mechanisms on either side of the BBB
and that ApoA-I may serve to integrate peripheral and CNS
lipid metabolism (27). This study along with previous studies
suggests that L-4F derived therapeutic effects in brain rewiring
after stroke injury may, at least partially, be independent of the
ABCA1, ApoE, or ApoA-I.

Compared with non-DM stroke, T2DM stroke have chronic
states of oxidative stress and inflammation, which is highly
associated with extensive microvascular and WM damage (14,
50, 64, 93–97). Some studies report that D-4F and L-4F have
no effect on blood lipid, T-CH, or HDL levels but improve
HDL function in anti-oxidation and anti-inflammation in both
the peripheral and cerebral vascular systems (37, 38, 56, 59–
63, 74, 93, 98–102), which implies that D-4F and L-4F, similar
to HDL, have neuroprotective and neurorestorative potential in
atherosclerosis (37, 92, 101, 103–105), diabetes (101, 106, 107),
and ischemic stroke (45, 46). L-4F has the ability to preferentially
bind to proinflammatory oxidized lipids and decrease serum and
endothelium oxidized-LDL levels and improve vasodilation by
stimulation of the arterial wall cells including ECs and SMCs in
both wild-type and LDLR(-/-) mice fed with or without HFD
food (56–58, 108–111). Administration of D-4F improved the

migration of ECs and angiogenesis, alleviated oxidative stress
(107), and decreased circulating EC sloughing, superoxide anion
levels, and vasoconstriction in diabetic rats, which are associated
with an increase in antioxidant proteins, HO-1 and EC-SOD (93).
D-4F and L-4F have the ability to inhibit LDL-induced monocyte
chemotactic activity via inhibiting MCP-1, a key chemokine
that regulates migration and infiltration of monocytes and
macrophages, production in cultures of human aortic ECs (100,
112). D-4F suppressed IL-4-induced macrophage alternative
activation and pro-fibrotic TGF-β1 expression (113) and L-
4F-reduced vascular cell adhesion molecule-1 expression in
lipopolysaccharide (LPS)-induced inflammatory responses (114).
D-4F treatment evokes a vascular protective role in LPS-induced
acute lung injury by improving the endothelial progenitor cell
(EPC) numbers, differentiation, and function, and decreasing
plasma levels of the pro-inflammatory mediators such as TNF-
α and ET-1 partially via the PI3K/AKT/eNOS signaling pathway
(115). D-4F treatment also reduces infiltration of macrophages
in diabetic ApoE-/- mice (101), and also decreases arterial
macrophage traffic and inflammatory factors such as IL-1β,
IFN-g, and TNFα on HFD-fed mice or rabbits (106, 116,
117), In thisstudy, L-4F treatment decreased the infiltration
of M1-macrophages, MCP-1, and TLR-4 (a key inflammatory
factor expressed in M1-macrophages whose activation leads
to activation of the intracellular signaling pathway NFκB and
inflammatory cytokine production), while increasing IGF-1
and IGF-1Rβ in the ischemic brain in both ABCAfl/fl and
ABCA−B/−B mice. These results are consistent with our previous
findings that D-4F treatment of T1DM rats decreases MMP9 and
proinflammatory mediators TNFα, TLR-4 and increases anti-
inflammatoryM2-macrophage polarization (45). Administration
of L-4F to db/db T2DM stroke mice mitigated macrophage
infiltration and reduced TNFα (46) in the ischemic brain.
IGF1 is involved in neurogenesis, oligodendrogenesis, and
myelination (118), and reduces stroke-induced BBB damage
and sustained antiinflammation in the brain (119). IGF1 also
decreases cholesterol efflux via ABCA1 and SR-BI expression
(120). Similarly, in T2DM patients L-4F treatment restored the
HDL anti-inflammatory index in diabetic plasma samples (121).

In this study, L-4F-treated T2DM-stroke animals also
exhibit decreased blood glucose level, which is consistent
with our previous results that L-4F decreased high-mobility
group box-1 (HMGB-1), advanced glycation end-product
receptor (RAGE), and plasminogen activator inhibitor-1
(PAI-1) in the ischemic brain in T2DM-stroke mice (46).
D-4F treatment also increased blood glucose clearance and
improve insulin tolerance in HFD-fed mice (106) and D-4F
treatment ameliorated disordered glycolysis impaired by ox-LDL
(107). Whether L-4F treatment-induced neurorestorative
benefits are due to blood glucose regulation warrants
future investigation.

Summary
In this study, we demonstrate that L-4F can pass through
the BBB and has neurorestorative benefits such as promoting
neurovascular and WM remodeling and oligodendrogenesis
in the ischemic brain as well as improvement of neurological
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functional recovery in T2DM-stroke mice. L-4F-treated
T2DM-stroke mice exhibit suppressed neuroinflammation
in the ischemic brain of both ABCA1−B/−B and ABCA1fl/fl

T2DM stroke mice. These findings indicate that post-
stroke administration of L-4F may provide a potential
strategy for neurorestoration following stroke injury in the
T2DM population, and reducing neuroinflammation in
the injured brain may contribute to the neurorestorative
effects of L-4F at least partially independent of the ABCA1
signaling pathway.

Limitation
In this study, all brain tissue samples were collected 21 days
after stroke. Tissue sampling at this late time point enables
the study of long-term vascular and WM remodeling effects
in the brain, however, from this delayed sampling we are
unable to glean information of BBB leakage and inflammatory
responses at the acute phase of stroke recovery, which warrants
future investigation.
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