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Inflammation-based scores have been increasingly used for prognosis prediction

in neurological diseases. This study aimed to investigate the predictive value of

inflammation-based scores combined with radiological characteristics in children with

moderate or severe traumatic brain injury (MS-TBI). A total of 104 pediatric patients with

MS-TBI were retrospectively enrolled and randomly divided into training and validation

cohorts at a 7:3 ratio. Univariate and multivariate logistic regression analyses were

performed to identify independent predictors of prognosis in pediatric patients with

MS-TBI. A prognostic nomogram was constructed, and its predictive performance

was validated in both the training and validation cohorts. Sex, admission platelet-

to-lymphocyte ratio, and basal cistern status from initial CT findings were identified

as independent prognostic predictors for children with MS-TBI in multivariate logistic

analysis. Based on these findings, a nomogramwas then developed and its concordance

index values were 0.918 [95% confidence interval (CI): 0.837–0.999] in the training cohort

and 0.86 (95% CI: 0.70–1.00) in the validation cohort, which significantly outperformed

those of the Rotterdam, Marshall, and Helsinki CT scores. The proposed nomogram,

based on routine complete blood count and initial CT scan findings, can contribute to

individualized prognosis prediction and clinical decision-making in children with MS-TBI.

Keywords: early mortality, moderate or severe traumatic brain injury, pediatrics, nomogram, radiology,

inflammation

INTRODUCTION

Traumatic brain injury (TBI) is a major social and clinical issue because it is one of the leading
causes of mortality or permanent disability in children and adolescents worldwide (1). Pediatric
TBI has exhibited various unique characteristics compared with adult TBI, which may be explained
by age-related anatomical and physiological differences (2). While the clinical management of TBI
has improved significantly in recent years, childrenwithmoderate or severe TBI (MS-TBI) continue
to have poor clinical outcomes (2).
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Predicting outcomes is critical for satisfactory pediatric TBI
care. Undeniably, individual prognosis prediction contributes
to improved clinical decision-making and helps minimize
secondary brain injury (SBI). Computerized tomography (CT)
is routinely performed to evaluate structural lesions in pediatric
TBI because of its availability and speed. Indeed, it has been
studied for its predictive value for mortality and functional
outcomes in both individual injury characteristics and composite
grading systems, including the Rotterdam CT score (3), Marshall
CT classification (4), and Helsinki CT scoring system (5).
However, few studies have comprehensively examined and
compared the predictive values of admission CT imaging
characteristics in pediatric TBI.

Hemodynamic alterations and systemic inflammation are
always present in patients who sustain TBI (6). Additionally,
complete blood counts are frequently performed as non-invasive
laboratory procedures in clinical practice. Peripheral blood
counts, including neutrophil, lymphocyte, and platelet counts,
have previously been used to assess central nervous system and
peripheral inflammation following injury (7). Recently, several
inflammation-based prognostic scores, including the neutrophil-
to-lymphocyte ratio (NLR) (8), platelet-to-lymphocyte ratio
(PLR) (9), lymphocyte-to-monocyte ratio (LMR) (10) and
systemic immune-inflammation index (SII) (11) have been
demonstrated to accurately predict outcomes in patients with
neurological diseases such as stroke, subarachnoid hemorrhage
(SAH), and Alzheimer’s disease (12–14). Indeed, these are
low-cost and reproducible diagnostics that can be quickly
calculated from a blood sample collected under simple laboratory
conditions and can identify the mortality risk associated with
TBI. However, no study has evaluated the predictive value of
these scores in pediatric TBI.

Therefore, the purpose of this study was to retrospectively
evaluate and compare the prognostic values of initial CT scan
findings and blood test-based inflammation scores in a cohort
of 104 children with TBI. Moreover, we established an accessible
and easy-to-use nomogram to predict early mortality in pediatric
TBI based on intake examinations.

MATERIALS AND METHODS

Patients
We retrospectively screened 104 pediatric patients with MS-
TBI admitted to our hospital, the 2nd Affiliated Hospital of the
Wenzhou Medical University Emergency Department, between
January 2015 and January 2020. This study was approved by
The Research Ethics Committee of the 2nd Affiliated Hospital of

Abbreviations: MS-TBI, moderate or severe traumatic brain injury; PLR, platelet

to lymphocyte ratio; C-index, concordance index; CI, confidence interval; CT,

computerized tomography; SBI, secondary brain damage progression; CNS,

central nervous system; NLR, neutrophil to lymphocyte ratio; LMR, lymphocyte to

monocyte ratio; SII, systemic immune-inflammation index; GCS, Glasgow Coma

Scale; Hb, hemoglobin; HCT, Hematocrit; MCV, mean corpuscular volume; RDW-

CV, red cell distribution width–coefficient of variation; IVH, intraventricular

hemorrhage; SAH, subarachnoid hemorrhage; SDH, subdural hematoma; EDH,

epidural hematoma; ROC, receiver operating characteristic; IQR, interquartile

range; OR, odds ratio; AUC, area under the curve; HPA, hypothalamic–pituitary–

adrenal axis.

Wenzhou Medical University and complied with the standards
of the Declaration of Helsinki. Informed consent was obtained
from each patient for using their data for research. The inclusion
criteria of our study were as follows: (I) history of TBI < 24 h,
(II) age < 15 years, (III) initial CT scan conducted within 24 h
of injury, (IV) presence of TBI at hospital admission (Glasgow
Coma Scale [GCS]: 3–12). The exclusion criteria were as follows:
(I) history of TBI or chronic psychiatric conditions, (II) lack of
clinical information and imaging, and (III) presence of multiple
trauma. All pediatric patients were assessed and treated according
to standard procedures. Early mortality was defined as death
at hospital discharge (15, 16). Patients were randomly divided
into a training cohort (N = 73) and validation cohort (N =

31) in a 7:3 ratio. The training cohort was used to screen
variables and construct the model. The validation cohort was
used to validate the results obtained from the training cohort. The
flowchart of patient enrollment and scheme for analysis is shown
in Figure 1.

Clinical and Radiological Variables
Clinical variables were retrospectively retrieved from the
electronic medical records, including patient characteristics (age,
sex, and GCS score), blood test results (neutrophil, lymphocyte,
monocyte, red blood cell, white blood cell and platelet counts,
hemoglobin, hematocrit (HCT), mean corpuscular volume
(MCV), red cell distribution width–coefficient of variation
(RDW-CV), and radiological variables (hemorrhagic mass
volume, intraventricular hemorrhage (IVH), SAH, midline
shift, subdural hematoma (SDH), epidural hematoma (EDH),
intracerebral hematoma, hemorrhagic brain contusion, and basal
cistern status). All blood samples were collected before treatment
at admission. All initial CT data obtained within 24 h of
injury were evaluated independently by two neuroradiologists.
A consensus was used to settle disagreements. CT scans were
performed using a GE Light-Speed VCT 64 slice scanner (GE
Healthcare, Milwaukee, WI, USA). The CT scan parameters were
a tube voltage of 120 kV, automatic tube current modulation, and
a layer thickness of 5 mm.

Rotterdam scores are based on the following CT
presentations: whether the basal cistern was categorized as
normal, compressed, or absent; whether the midline shift
was <5mm or <5mm; whether EDH was absent or present;
and whether SAH/IVH was absent or present. Marshall CT
scores use the three CT findings (midline shift, basal cisterns
status, and lesion volume) and the type of hemorrhagic mass
management (whether it was surgically evacuated or not).
Helsinki CT scores were classified according to the level of TBI
severity, as evaluated by the authors (Supplementary Table 1).
In addition, the inflammation-based prognostic scores
including the SII, NLR, PLR, and LMR were calculated
and are described in Supplementary Table 2. The optimal
threshold value for each score and blood test parameters was
determined by performing an analysis of the receiver operating
characteristic (ROC) for early mortality status. The value
with the maximum Youden index was chosen as the optimal
cut-off value.
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FIGURE 1 | Flowchart of patient enrollment and scheme for analysis.

Statistics
Data are presented as median with interquartile range (IQR)
for continuous variables and as counts with percentages
for categorical variables. Univariate and multivariate logistic
regression analyses were used to identify independent risk factors
for early mortality in the training cohort. All variables in the
univariate analysis (P < 0.05) were included in the multivariate
analysis, and a backward stepwise selection was performed. The
nomogram for predicting early mortality was developed based
on variables that were considered statistically significant in the
multivariate analysis. The ROC analysis and concordance index
(C-index) value were applied to measure the discrimination
performance of the nomogram in comparison with current CT
scoring systems in both the training and validation cohorts.

All statistical analyses were performed using Stata version
15.1 (StataCorp, College Station, TX, USA) and R version 4.1.1.
Differences were considered statistically significant when the
two-tailed P-value was <0.05.

RESULTS

Patient Characteristics
The entire cohort consisted of 104 patients (60 male and 44
female) with MS-TBI. The median age of the patients was 6
(IQR: 3.5–8) years. The median GCS score was 7 (IQR: 5–
9). The primary reason for trauma was fall from height (75
patients, 72.1%), followed by motor vehicle/motor cycle crashes
(27 patients, 26.0%), and violence (2 patients, 1.9%).

Among these pediatric patients, the basal cistern was normal
in 18 (17.3%) patients, compressed in 49 (47.1%) patients, and
absent in 37 (35.6%) patients. EDH, SDH, and intracerebral
hematoma were observed in 71 (68.3%), 49 (47.1%), and 71
(68.3%) patients, respectively. SAH and IVH were present in
98 (94.2%) and 17 (16.3%) patients, respectively. Moreover, the
midline shift was > 5mm in 24 patients (23.1%). Regarding
the CT scoring systems, the median values of the Rotterdam,
Marshall, and Helsinki CT scores were 4 (IQR: 3–5), 5 (IQR: 2–
5), and 3 (IQR: 1–6), respectively. At the time of discharge from
the hospital, 86 children survived, while 18 died, resulting in a
17.3% mortality rate. Other clinicopathological characteristics,
including blood test variables, are summarized in Table 1.

Risk Factors for Early Mortality in Children
With MS-TBI
The optimal cut-off values for blood test parameters were
determined by ROC analysis and are presented in Table 2. In the
training cohort, our univariate analysis revealed that basal cistern
(OR= 6.84, 95% confidence interval [CI]: 1.83–25.59, P= 0.004),
sex (OR = 6.15, 95% CI: 1.50–25.23, P = 0.012), MCV (OR =

0.15, 95% CI: 0.04–0.62, P = 0.009), HCT (OR = 0.16, 95% CI:
0.04–0.62, P= 0.008), RDW-CV (OR= 3.69, 95%CI: 1.02–13.37,
P = 0.047), NLR (OR = 3.62, 95% CI: 1.01–12.99, P = 0.048),
PLR (OR = 9.17, 95% CI: 2.24–37.58, P = 0.002) and LMR (OR
= 0.18, 95% CI: 0.04–0.90, P = 0.036) were associated with early
mortality in children with MS-TBI. Furthermore, multivariate
analysis demonstrated that basal cistern (OR = 22.12, 95% CI:
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TABLE 1 | Characteristics of the patients in the training and validation cohorts.

Variable No. of patients (%) or Median (IQR)

Entire cohort (N = 104) Training cohort (N = 73) Validation cohort (N = 31)

Age (year) 6 (3.5–8) 6 (4–8) 5 (3–7)

Sex

-male 60 (57.7) 45 (61.6) 15 (48.4)

-female 44 (42.3) 28 (38.4) 16 (51.6)

GCS Grade 7 (5–9) 7 (5–9) 8 (5–9)

The basal cistern

-normal 18 (17.3) 14 (19.2) 4 (12.9)

-compressed 49 (47.1) 34 (46.6) 15 (48.4)

-absent 37 (35.6) 25 (34.3) 12 (38.7)

The midline shift

-≤ 5mm 80 (76.9) 57 (78.1) 23 (74.2)

-> 5mm 24 (23.1) 16 (21.9) 8 (25.8)

EDH

-absent

33 (31.7) 23 (31.5) 10 (32.3)

-present 71 (68.3) 50 (68.5) 21 (67.8)

SAH

-absent

6 (5.8) 3 (4.1) 3 (9.7)

-present 98 (94.2) 70 (95.9) 28 (90.3)

SDH

-absent

55 (52.9) 40 (54.8) 15 (48.4)

-present 49 (47.1) 33 (45.2) 16 (51.6)

IVH

-absent

87 (83.7) 61 (83.6) 26 (83.9)

-present 17 (16.3) 12 (16.4) 5 (16.1)

Intracerebral hematoma

-absent 33 (31.7) 24 (32.9) 9 (29.0)

-present 71 (68.3) 49 (67.1) 22 (71.0)

Hemorrhagic mass volumes >25 mL

-absent 92 (88.5) 63 (86.3) 29 (93.6)

-present 12 (11.5) 10 (13.7) 2 (6.5)

Rotterdam scores 4 (3–5) 4 (3–5) 4 (3–5)

-II 5 (4.8) 4 (5.5) 1 (3.2)

-III 27 (26.0) 19 (26.0) 8 (25.8)

-IV 38 (36.5) 29 (39.7) 9 (29.0)

-V 23 (22.1) 13 (17.8) 10 (32.3)

-VI 11 (10.6) 8 (11.0) 3 (9.7)

Marshall scores 5 (2–5) 5 (2–5) 5 (3–5)

-II 32 (30.8) 25 (34.3) 7 (22.6)

-III 10 (9.6) 8 (11.0) 2 (6.5)

-IV 5 (4.8) 3 (4.1) 2 (6.5)

-V 44 (42.4) 27 (37.0) 17 (54.8)

-VI 13 (12.5) 10 (13.7) 3 (9.7)

Helsinki CT scores 3 (1–6) 3 (1–6) 3 (1–5)

White blood cell counts (x109/L) 22.2 (15.1–26.8) 19.6 (13.5–25.3) 25.4 (21–29.3)

Neutrophil counts (x109/L) 16.9 (10.1–22.2) 15.0 (8.1–21.2) 19.1 (12.8–25.1)

Lymphocyte counts (x109/L) 2.7 (1.3–5.0) 2.4 (1.3–4.7) 3.1 (1.5–5.6)

Monocyte counts (x109/L) 1.0 (0.7–1.4) 1.0 (0.6–1.4) 1.2 (0.8–1.5)

Hb (g/L) 106 (92–121) 109 (93–122) 99 (86–120)

Red blood cell counts (x1012/L) 3.9 (3.3–4.3) 4.0 (3.4–4.3) 3.7 (3.1–4.2)

(Continued)
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TABLE 1 | Continued

Variable No. of patients (%) or Median (IQR)

Entire cohort (N = 104) Training cohort (N = 73) Validation cohort (N = 31)

HCT 0.32 (0.27–0.36) 0.32 (0.27–0.36) 0.30 (0.26–0.35)

MCV (fl) 82.9 (79.6–85.5) 82.5 (79.7–85.2) 83.3 (79.5–86.2)

RDW-CV (%) 12.9 (12.4–13.4) 13.0 (12.5–13.7) 12.7 (12.4–13.3)

Platelet counts 289.5 (211.5–249.5) 280.0 (210.0–335.0) 310.0 (217.0–368.0)

SII 1513.2 (665.7–3405.1) 1280.4 (614.9– 3163.0) 1991.6 (820.9–3517.6)

NLR 5.1 (2.4–11.6) 4.5 (2.4–11.5) 6.4 (3.0–13.6)

PLR 96.7 (55.8–190.5) 97.6 (58.3–194.0) 88.3 (46.5–172.1)

LMR 2.6 (1.5–5.7) 2.6 (1.5–6.2) 2.4 (1.4–5.3)

IQR, interquartile range; GCS, Glasgow Coma Scale; EDH, epidural hematoma; SAH, subarachnoid hemorrhage; SDH, subdural hematoma; IVH, intraventricular hemorrhage; Hb,

hemoglobin; HCT, Hematocrit; MCV, mean corpuscular volume; RDW-CV, red cell distribution width–coefficient of variation; SII, systemic immune-inflammation index; NLR, neutrophil

to lymphocyte ratio; PLR, platelet to lymphocyte ratio; LMR, lymphocyte to monocyte ratio.

TABLE 2 | Receiver operating characteristic curve analyses of the blood

test-based parameters.

Variables AUC Cut-off

value

P-value

White blood cell counts (x109/L) 0.60 (0.45–0.75) 20 0.588

Hb (g/L) 0.71 (0.61–0.81) 103 0.126

Red blood cell counts (x1012/L) 0.64 (0.50–0.78) 3.89 0.701

HCT 0.74 (0.63–0.86) 0.293 0.061

RDW-CV (%) 0.58 (0.42–0.75) 13.4 0.047

MCV (fl) 0.68 (0.55–0.80) 81.3 0.068

SII 0.71 (0.58–0.84) 1,722 0.106

NLR 0.64 (0.50–0.79) 3.35 0.202

PLR 0.73 (0.58–0.88) 49.56 0.204

LMR 0.69 (0.54–0.83) 2.375 0.020

AUC, area under the curve; Hb, hemoglobin; HCT, Hematocrit; RDW-CV, red cell

distribution width–coefficient of variation; MCV, mean corpuscular volume; SII, systemic

immune-inflammation index; NLR, neutrophil to lymphocyte ratio; PLR, platelet to

lymphocyte ratio; LMR, lymphocyte to monocyte ratio.

2.43–201.58, P = 0.006), sex (OR = 8.38, 95% CI: 1.30–54.18,
P = 0.026), and PLR (OR = 63.22, 95% CI: 4.50–888.79, P =

0.002) were independent risk factors for early mortality in this
population (Table 3).

Development and Validation of the
Nomogram
Based on the independent risk factors identified by the
multivariate logistic regression analysis in the training cohort, we
constructed a nomogram to predict the risk of early mortality
in pediatric patients with MS-TBI. Each variable was assigned
a score based on its β coefficient (Figure 2). The nomogram
had C-index values of 0.918 in the training cohort and 0.86
in the validation cohort (Table 4). The area under the curve
(AUC) values demonstrated the excellent predictive ability of
our current nomogram [training cohort: AUC = 0.92 (95% CI:
0.84–1.00); validation cohort: AUC = 0.86 (95% CI: 0.70–1.00)],

which significantly outperformed the currently used Rotterdam,
Marshall, and Helsinki CT scores (Table 4 and Figure 3).

Optimal Cut-Off Value of the Nomogram
To facilitate the use of the newly developed nomogram, we
determined the optimal threshold value of the nomogram to
be 135 points based on the ROC analysis of the entire cohort.
Patients were divided into low-risk (score ≤ 135 points) and
high-risk (score >135 points) groups. In the training cohort, the
early mortalities were 5.1% in the low-risk group and 64.3% in
the high-risk group. In the validation cohort, the early mortalities
were 9.1% in the low-risk group and 44.4% in the high-risk group.
Therefore, the current nomogram could serve as an easy-to-use
model with good performance for risk discrimination in pediatric
patients with MS-TBI.

DISCUSSION

TBI is an injury to the cranium and its intracranial components
produced by an external mechanical force, which changes the
brain’s structure and function (17). Primary and SBI is a
pathological process following TBI (18). Primary brain injury
occurs when the brain tissue is subjected to mechanical force,
resulting in axonal, vascular, and glial cell damage. SBI occurs
due to the initiation of inflammatory cascades by the release
of different inflammatory chemicals and neurotransmitters from
the injured neuronal and glial cells in the brain (19).

Currently, the GCS is the most commonly used technique
for assessing the severity of TBI. On the other hand, GCS
is a collection of clinical descriptive data that does not
include structural information about cerebral abnormalities.
Additionally, the GCS had a low prognostic value in the early
stages post-injury, and neurological examination in children is
challenging. More importantly, a history of neurological illnesses
and the presence of an EDH during the intermediate waking state
may affect the accuracy of GCS (20). As a result, finding efficient
biomarkers for the prognosis of pediatric TBI from admission
examinations is critical. The predictive value of inflammation
scores in pediatric TBI cases with a combination of intake CT
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TABLE 3 | Univariate and multivariate analysis of early pediatric mortality in the training cohort.

Univariate analysis Multivariate analysis

OR (95% CI) P-value OR (95% CI) P-value

Age 1.00 (0.95–1.05) 0.940

Sex 6.15 (1.50–25.23) 0.012 8.38 (1.30–54.18) 0.026

Basal cistern 6.84 (1.83–25.59) 0.004 22.12 (2.43–201.58) 0.006

Midline shift 0.67 (0.13–3.43) 0.632

EDH 2.63 (0.53–13.10) 0.239

SDH 0.90 (0.26–3.15) 0.868

IVH 1.93 (0.44–8.51) 0.387

Intracerebral hematoma 2.82 (0.57–14.05) 0.206

Hemorrhagic mass volumes greater than 25mL 1.54 (0.28–8.53) 0.619

White blood cell counts 2.36 (0.64–8.66) 0.197

Hb 0.32 (0.09–1.20) 0.091

Red blood cell counts 0.53 (0.15–1.86) 0.322

HCT 0.16 (0.04–0.62) 0.008

MCV 0.15 (0.04–0.62) 0.009

RDW-CV 3.69 (1.02–13.37) 0.047

SII 0.21 (0.04–1.02) 0.053

NLR 3.62 (1.01–12.99) 0.048

PLR 9.17 (2.24–37.58) 0.002 63.22 (4.50–888.79) 0.002

LMR 0.18 (0.04–0.90) 0.036

OR, odds ratio; CI, confidence interval; EDH, epidural hematoma; SAH, subarachnoid hemorrhage; SDH, subdural hematoma; IVH, intraventricular hemorrhage; Hb, hemoglobin; HCT,

Hematocrit; MCV, mean corpuscular volume; RDW-CV, red cell distribution width–coefficient of variation; SII, systemic immune-inflammation index; NLR, neutrophil to lymphocyte ratio;

PLR, platelet to lymphocyte ratio; LMR, lymphocyte to monocyte ratio.

FIGURE 2 | Nomogram to predict early mortality in pediatric patients with moderate or severe traumatic brain injury (MS-TBI).

findings is still unclear and has not been extensively explored. To
bridge this gap, the present study, for the first time, compared
the predictive values of various inflammation prognostic scores
and CT scan parameters in a large cohort of 104 children
with MS-TBI.

In this study, ROC analysis was applied to determine
the optimal cut-off values of various blood test parameters
(Table 2). In the training cohort, the univariate and multivariate
logistic regression analyses demonstrated that the basal cistern,
sex, and PLR could independently predict early death in
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TABLE 4 | Performance of the nomogram in predicting early mortality in pediatric patients with TBI comparing with current CT scoring systems.

Performance parameter Training cohort Validation cohort

Nomogram Marshall Rotterdam Helsinki Nomogram Marshall Rotterdam Helsinki

AUC 0.92 0.87 0.76 0.76 0.86 0.69 0.66 0.72

95% CI low 0.84 0.74 0.64 0.60 0.70 0.38 0.41 0.42

95% CI high 1.00 1.00 0.88 0.92 1.00 1.00 0.91 1.00

C-index 0.92 0.87 0.76 0.76 0.86 0.69 0.66 0.72

TBI, traumatic brain injury; CT, computerized tomography; AUC, area under the curve; CI, confidence interval.

FIGURE 3 | Receiver operating characteristic (ROC) curves of the nomogram and current CT scoring systems in the training (A) and validation cohorts (B).

pediatric patients with MS-TBI (Table 3). To further facilitate
clinical practice, we constructed a nomogram for prognosis
prediction (Figure 2). The C-index and AUCs demonstrated that
the nomogram significantly outperformed current CT scoring
systems, including the Rotterdam CT, Marshall CT, and Helsinki
CT scores in both the training and validation cohorts (Table 4).
All these data demonstrated that the current nomogram
could serve as a preferable model for pediatric patients
with MS-TBI.

The mechanism underlying the excellent predictive value of
the newly developed nomogram may be explained as follows.
PLR was initially introduced to represent systemic inflammation
and to estimate the prognosis of patients with cancer and
autoimmune diseases (21, 22). Recent research has demonstrated
that PLR is a simple parameter that can be used to predict
clinical outcomes in patients with stroke, cerebral hemorrhage,
and SAH (13, 23–26). In response to physiological stress, such
as traumatic injury, the body produces more cortisol, whose
elevated levels can result in lymphopenia (27); the higher the
physiological stress, the higher the cortisol level, which results
in a decrease in the body’s lymphocyte count. Contrastingly, an
increased lymphocyte count indicates a more targeted immune
response and a more persistent inflammatory pathway (28).

Moreover, lymphocytes represent a more tightly controlled
inflammatory route, and apoptosis induced by lymphocytes is
less harmful to neighboring cells than other cell death models
caused by uncontrolled inflammation (29). Thus, a decreased
lymphocyte count post-TBI may reflect the damaging effect
of the inflammatory response, resulting in an exacerbated
SBI post-TBI. On the other hand, along with their well-
known hemostatic functions, platelets play an active role in
inflammation regulation. While platelets bind to coagulation
factors, they also include a large variety of inflammatory factors,
such as TNF-α, interleukins, and serotonin, all of which are
involved in tissue injury and repair (7). Therefore, it is reasonable
to conclude that a high PLR may be associated with an increased
risk of death in pediatric patients with MS-TBI.

Additionally, previous research has demonstrated that
obliterated cisterns are associated with increased intracranial
pressure and poor outcomes (30, 31), suggesting that the
status of the cisterns can be used as an early non-invasive
method for identifying patients at high risk of death or severe
disability, despite the initial neurological examination indicating
otherwise. Further, some studies that focused on adults explored
sex differences in outcomes following moderate/severe TBIs,
mainly showing an absence of differences or better outcomes in
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women compared to men. However, following mild TBI, most
studies indicate worse psychological and global functioning
outcomes in women. Biological differences, particularly sex
steroids, represent another pathway that can mediate these
sex differences in outcomes. Animal models suggest that the
hypothalamic-pituitary-adrenal axis, which modulates the stress
response, and microglia, which influence cerebral inflammation,
have sex-specific responses. Indeed, these preclinical models
have shown that female rodents present a stronger inflammatory
response than males after TBI (32–37).

Nevertheless, this study has several limitations that are
worth mentioning. First, as a single-center retrospective
study, potential selection bias was inevitable, although we
had performed strict inclusion criteria. Second, the cut-off
values for inflammation-based indices used in this study were
determined by ROC analysis based on outcome data, and
further validation studies determining optimal threshold values
for these inflammation indices are needed. Third, peripheral
platelet and lymphocyte counts may be affected by other
pathological conditions, including metabolic syndrome and
renal dysfunction. Hence, the clinical significance of PLR
should be cautiously explained with full consideration of any
concurrent diseases.

CONCLUSIONS

We identified sex, admission PLR, and basal cistern status
from initial CT findings as independent prognostic predictors
in pediatric patients with MS-TBI, which may contribute to
individualized prognosis prediction and better clinical decision
making. However, a larger data set from multiple centers is still
needed to confirm the findings of this research and promote its
clinical implementation.
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