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The term neuromyelitis optica spectrum disorder (NMOSD) describes a group of

clinical-MRI syndromes characterized by longitudinally extensive transverse myelitis,

optic neuritis, brainstem dysfunction and/or, less commonly, encephalopathy. About

80% of patients harbor antibodies directed against the water channel aquaporin-4

(AQP4-IgG), expressed on astrocytes, which was found to be both a biomarker and a

pathogenic cause of NMOSD. More recently, antibodies against myelin oligodendrocyte

glycoprotein (MOG-IgG), have been found to be a biomarker of a different entity, termed

MOG antibody-associated disease (MOGAD), which has overlapping, but different

pathogenesis, clinical features, treatment response, and prognosis when compared

to AQP4-IgG-positive NMOSD. Despite important refinements in the accuracy of

AQP4-IgG and MOG-IgG testing assays, a small proportion of patients with NMOSD

still remain negative for both antibodies and are called “seronegative” NMOSD. Whilst

major advances have been made in the diagnosis and treatment of these conditions,

biomarkers that could help predict the risk of relapses, disease activity, and prognosis are

still lacking. In this context, a number of serum and/or cerebrospinal fluid biomarkers are

emerging as potentially useful in clinical practice for diagnostic and treatment purposes.

These include antibody titers, cytokine profiles, complement factors, and markers of

neuronal (e.g., neurofilament light chain) or astroglial (e.g., glial fibrillary acidic protein)

damage. The aim of this review is to summarize current evidence regarding the role of

emerging diagnostic and prognostic biomarkers in patients with NMOSD and MOGAD.
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INTRODUCTION

The term neuromyelitis optica (NMO) was first used in 1894 by
Devic and his fellow, Fernand Gault, to propose a distinct disease
entity characterized by simultaneous myelitis and bilateral optic
neuritis (1). From Devic’s first report until 2004, NMO remained
an elusive condition that many thought was a monophasic,
more aggressive variant of multiple sclerosis (MS). A major
landmark in NMO history was the discovery, by Lennon et al.
(2), that sera from patients with NMO outlined microvessels,
pia, subpia, and Virchow-Robin spaces when tested on tissue-
based indirect immunofluorescence. The putative agent of NMO,
aquaporin-4 antibodies (AQP4-IgG), was subsequently found to
bind the AQP4 water channel (3). AQP4 is highly expressed in
the foot processes of astrocytes, particularly in the domains that
interacts with dystrophin-associated proteins and microvessels.
The discovery of AQP4-IgG led to the evidence that (1)
NMO with positivity for AQP4-IgG is a predominantly an
astrocytopathy, and (2) AQP4-IgG is both the pathogenetic cause
and the biomarker that defines a distinct disorder which differs
from MS.

Whilst NMO was initially defined by the occurrence of
longitudinally extensive transverse myelitis (LETM) and optic
neuritis, the development of more specific assays, particularly
cell-based assays (CBAs) with transfected HEK-293 cells
expressing AQP4 (4), led to the realization that the spectrum of
disorders associated with AQP4-IgG was broader than previously
thought, encompassing limited forms of the disease (e.g., isolated
optic neuritis or isolated myelitis), and also brain and brainstem
involvement (previously regarded as an exclusion criteria for
NMO). These concepts were reflected by the evolution of the
diagnostic criteria in 2006 (5) and 2015 (6), the latter emphasizing
the importance of AQP4-IgG serostatus, and the adoption
of the new nomenclature of “neuromyelitis optica spectrum
disorder” (NMOSD) including both AQP4-IgG seropositive and
seronegative cases.

About 20% of patients who are diagnosed with NMOSD
according to the 2015 NMOSD criteria are seronegative for
AQP4-IgG, and among these seronegative patients, about 30%
will bear antibodies directed against myelin oligodendrocyte
glycoprotein (MOG), which is predominantly expressed in
oligodendrocytes or, more rarely, in soluble isoforms (7). The
biological role of MOG is still unclear and may represent an
adhesion molecule. MOG was initially detected by enzyme-
linked immunosorbent assay (ELISA) and immunoblotting, but
these assays recognized non-native and non-pathogenic MOG
epitopes, probably due to missing glycosylation and incorrect
antigen structure. Consequently, MOG antibodies were detected
on these older assays with great heterogeneity in patients with
MS and were initially thought to represent a biomarker of
demyelination (8, 9). The development of CBAs that recognize
the native MOG conformation allowed to define the distinct
phenotype of this condition, in particular when a high titer
cut-off value is used (10–13). These advances have led to the
development of specific diagnostic criteria that required both the
presence of a compatible clinical phenotype including myelitis,
optic neuritis, acute disseminated encephalomyelitis (ADEM) or

brainstem syndromes and MOG-IgG positivity tested through
a conformational assay (14, 15). The accumulating evidence of
differences in clinical-MRI features, relapse risk, treatment, and
outcome led to the concept that patients with MOG antibodies
are affected by a distinct syndrome that differs from MS and
AQP4-IgG-seropositive NMOSD. The term MOG antibody-
associated disease (MOGAD) was thus coined to characterize
these patients with autoimmune oligodendrocytopathy (16).

Despite advances in MOG and AQP4 antibody testing, up
to 30% of patients with NMOSD remain seronegative for these
antibodies. Seronegative NMOSD remains an elusive condition
that poses relevant challenges to clinicians in terms of diagnosis
and treatment because of its variable prognosis and outcomes
(Figure 1).

Over the last few years, different studies have focused on
the clinical and paraclinical characterization of NMOSD and
MOGAD as distinct demyelinating disorders, but, despite the
recent advances, many questions still remain unanswered. The
disease course of these conditions, particularly of seronegative
NMOSD and MOGAD patients, is unpredictable, with 50%
of patients having a monophasic course. There are currently
no clinical, paraclinical, or radiological markers that can
predict a monophasic or relapsing disease course, which
could require different therapeutic choices. In a similar yet
different perspective, although the relapsing course of AQP4-IgG
seropositive NMOSD always requires immunosuppressive drugs,
there are no clinical predictors of treatment response.

In this uncertain setting, the identification of reproducible,
repeatable, and easily accessible biomarkers could be of
utmost relevance to guide clinicians in these diagnostic and
therapeutical challenges.

DIAGNOSTIC CRITERIA AND ASSAYS FOR
DIAGNOSING NMOSD AND MOGAD

Neuromyelitis Optica Spectrum Disorder
Based on the most recent 2015 NMOSD diagnostic criteria, the
diagnosis of AQP4-IgG NMOSD requires the presence of (i)
1 clinical core feature including optic neuritis, acute transverse
myelitis, APS, acute brainstem syndrome, narcolepsy or acute
diencephalic lesion or symptomatic cerebral syndrome with
typical NMOSD brain lesions, (ii) positive testing for AQP4-IgG
(CBAs are recommended), and (iii) the exclusion of alternative
diagnoses such as MS, sarcoidosis, infections, neoplasms,
and paraneoplastic disorders. The diagnosis of seronegative
NMOSD relies on the presence of at least two different clinical
manifestations of NMOSD, one being ON, transverse myelitis or
AP, with evidence of consistent demyelinating lesions on MRI
and negativity of AQP4-IgG tested with the best available assay
(6). CSF analysis usually demonstrates pleocytosis (observed in
up to 51% of cases), whereas CSF restricted oligoclonal bands are
found in only about 16% of patients (17).

AQP4-IgG can be detected using different laboratory
techniques such as live- or fixed-CBAs revealed using
immunofluorescence or flow-cytometry/fluorescence-activated-
cell-sorting (FACS), ELISA or tissue-based assays. These assays,
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FIGURE 1 | Relationship between aquaporin-4-IgG seropositive and seronegative neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte

glycoprotein antibody-associated disease (MOGAD). About 30% of NMOSD seronegative patients results positive for MOG-IgG. AQP4-IgG, aquaporin-4 antibodies;

MOG-IgG, myelin oligodendrocyte glycoprotein antibodies.

with the exception of tissue-based assays, recognize one of
the two isoforms of AQP4, i.e., M1 or M23. The presence of
antibodies against each specific isoform has not been associated
with different clinical features or outcomes (18). The comparison
between diagnostic assays have proved that CBAs, either
live or fixed, are the most accurate test for the detection of
AQP4-IgG (accuracy: 99.3%) and that M23 expressing cells
may perform better than M1-based assays (4, 19). Therefore,
live CBAs which use the M1 isoform are the most accurate
diagnostic test.

Since the detection of AQP4-IgG is fundamental for treatment
decisions, assays such as tissue-based assays and ELISA, whose
sensitivity ranges between 60 and 78% and may lead to false
negative results (20), are not preferred. Indeed, some patients that
tested positive on ELISA but negative with CBA had alternative
diagnoses identified suggesting a potential for false positivity
(21). Even though early reports preferred immunofluorescence
over FACS (19), live cell-based assays (either live or fixed) either
detected by FACS or by visual immunofluorescence have very
high specificity (22). Immunohistochemistry may be useful to
detect the typical AQP4-IgG staining patterns on rodent tissue
composite, but then AQP4-IgG presence should be confirmed
using CBAs (23).

Finally, CSF testing for AQP4-IgG is not routinely
recommended since it is less sensitive than serum testing

(24). Indeed, almost all CSF positive patients are positive in
serum at high titers (24).

Myelin-Oligodendrocyte Glycoprotein
Antibody-Associated Disease
The diagnosis of MOGAD relies on MOG-IgG detection by CBA
in patients with compatible clinical-MRI phenotypes, including
ADEM or encephalitis, brainstem syndromes, transverse myelitis
(often longitudinally extensive with central gray and conus
involvement), and ON (typically longitudinally extensive with
>50% of the optic nerve length affected often accompanied by
perioptic gadolinium enhancement on MRI). The ON attacks are
usually associated with optic disc edema and can be bilateral,
recurrent, and show steroid dependence. Pleocytosis is found in
38–55% of patients while CSF restricted oligoclonal bands are
rarely detected in this condition (6–12% of patients) (25–28).

Testing for MOG-IgG in serum through CBAs, both with
FACS or visual based indirect immunofluorescence, using full-
length human MOG and Fc or IgG1 as secondary antibodies is
recommended, although CSF testingmay help in cases of patients
with a negative serum test and phenotype suggestive of MOGAD
(14, 15, 29).

The diagnosis of MOGAD strongly relies on MOG-IgG
detection so that the accuracy of diagnostic assays is of
utmost importance. According to a multicenter international
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comparative study (30), live-CBAs (with either FACS or
immunofluorescence detection) have the greatest concordance
(96%), while fixed-CBAs show a slightly lower value (90%) for
the diagnosis of MOGAD. ELISA showed no concordance and
was unable to distinguish positive and negative patients and
thus this method should not be used for diagnostic purposes of
MOGAD. Unfortunately, concordance was overall low even for
CBAs for sera with borderline/low positivity, which highlights
the importance of testing MOG-IgG only when the pre-test
probability is high, in order to avoid false-positive results (31).
Although diagnostic criteria do not recommend testing MOG-
IgG in CSF, some recent studies have reported some patients
with MOG-IgG positivity only in the CSF (not serum) who had
a clinical and neuropathological MOGAD phenotype (29, 32).
Therefore, seronegative patients whose clinical phenotypes are
strongly suspicious for MOGAD may benefit from MOG-IgG
testing in the CSF, because up to 4–7% of these patients may
harbor CSF-restricted antibodies. Patients with CSF restricted
MOG-IgG have similar clinical phenotype in comparison with
seropositive ones, with the notable exception of isolated optic
neuritis, which is uncommon in patients with CSF-restricted
MOG-IgG (29, 33, 34). Finally, MOG isoforms (7) and IgG
subclasses (35) binding analysis have been performed, but they
are currently used for research purposes only.

POTENTIAL BIOMARKERS OF NMOSD
AND MOGAD

The role of biomarkers in NMOSD andMOGAD is vital to 1. Aid
clinicians in differentiating these conditions from typical MS; 2.
Determine the relapse risk; 3. Define disease prognosis; 4. Assist
treatment choices.

Current biomarkers are related to different pathogenetic
aspects of the diseases and may be broadly classified into these
4 groups (Figure 2):

- Antibody titers and persistence
- Complement proteins
- Cytokines and other immunological markers
- Markers of neuronal and astroglial damage.

Antibody Titers and Persistence
Antibody titers reflect antibody concentration and thus may
represent a useful biomarker for CNS disorders associated
with pathogenic antibodies. Indeed, in other conditions such
as NMDA-R encephalitis, higher titers at diagnosis predict a
worst outcome and increases in titer in the CSF are associated
with relapses (36). MOG-IgG titers have also an important
diagnostic role because only high titers have been consistently
associated with a defined phenotype, whilst low positive titers
me be found in other neurological conditions and they be also
found in atypical phenotypes which are not related to MOGAD
(31, 37).

However, the role of antibody titers in patients with AQP4-
IgG-NMOSD and MOGAD as a prognostic and predictive factor
is still debated and differences exist in the potential role of

these titers as biomarkers, reflecting the heterogeneity of the
underlying biology.

Regarding AQP4-IgG-NMOSD, AQP4-IgG serum titer at
the time of attack has been found to be higher in patients
presenting with ON (38) and to be associated with the severity
and outcome of the event (blindness, length of myelitis on MRI)
(39, 40), however these findings were not consistently replicated
in other studies (41, 42) and therefore the utility of AQP4-IgG
titers in predicting disease is unclear. Furthermore, antibody
titers may fluctuate during disease course, particularly during
the relapse and remission phase. Several studies demonstrated
that patients have higher AQP4-IgG titers at the time of
relapse when compared to the remission phase (39, 43–45)
however this difference was not seen in all studies (42, 46).
An increase of antibody titers may precede relapses, but it is
important to note that some patients with high or increasing
titers may not experience relapses (43–45, 47). Similarly,
patients with low or stable titers, initially thought to be
predictive of monophasic disease (39, 48), may also experience
relapses (43, 45, 46). Intriguingly, up to 55% of patients may
become seronegative during their disease course and experience
subsequent relapses with a concomitant increase of AQP4-IgG
titers (45), limiting the prognostic role of seronegative conversion
after onset.

AQP4-IgG titer in the CSFmay have a different dynamic when
compared to serum titer. CSF levels of AQP4-IgG are mainly
related to the antibody leak in the CNS due to an increased
permeability of the blood-brain barrier (49). AQP4-IgG in the
CSFmay bemore frequently detected during attacks (85%) rather
than during remission (49) and their ratio to serum titers is also
increased in the acute stage (50). CSF titers may decrease after a
relapse, whilst serum titers remain stable, and their reduction has
been reported to be associated with clinical improvement (51).
However, there are less studies on the prognostic utility of AQP4-
IgG in the CSF because the difficulty in obtaining CSF and the
observation that serum is more sensitive than CSF as a biomarker
of NMOSD.

Finally, some studies have found that antibody titers may
decrease after immunotherapy (39, 43) and may increase when
treatment is suspended (43). The reduction of antibody titers
after treatment has been reported to help predict responders
to rituximab (44). However, these findings have not been
consistently replicated across different studies (41, 46), which
limits the use of AQP4-IgG as a clinical biomarker to monitor
treatment efficacy.

MOG-IgG titers represent a complex biomarker, influenced by
several factors including age and clinical presentation at onset.
Studies have suggested that MOG-IgG titers are higher during
relapses (13, 26) and may be highest in patients presenting
with myelitis (12) or ADEM (10, 52). A study by Cobo-
Calvo et al. found that antibody titers at the first episode
was related with acute disability at onset, but not with long-
term outcome or a predictor of relapse (53). In contrast, a
study by Hennes et al. found a high titer at onset predicted
a relapsing course in a pediatric cohort (54), and therefore
usefulness of the initial MOG-IgG titer level in prognostication
remains unclear.
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FIGURE 2 | Summary of current evidence regarding the role of biomarkers in neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte

glycoprotein associated disorder (MOGAD). MS, multiple sclerosis; Th, T-helper; CSF, cerebrospinal fluid; IL-6, interleukin-6; AQP4-IgG, aquaporin4 antibodies;

HERV-w, human endogenous retroviruses; MOG-IgG, myelin oligodendrocyte glycoprotein antibodies; GFAP, glial fibrillary acid protein; NfL, neurofilament light chain;

NfH, neurofilament heavy chain.

MOG-IgG titer often declines over time after the first
demyelinating attack. In pediatric patients with ADEM, MOG-
IgG titers are usually high at onset, and may subsequently decline
or become seronegative, in about 50% of patients regardless of the
onset titer (52, 55). This may have important clinical relevance
because seronegative pediatric patients have been shown to have a
significantly lower risk of relapse (55, 56). The persistence of high
MOG-IgG titers may predict relapses in this setting (54), but up
to 72% of persistently positive pediatric ADEM patients will also
remain monophasic. When including both adult and pediatric
ADEM patients, Lopez et al. found that only 12% of patients
that became seronegative experience relapses, compared to 88%
of persistently seropositive ones (15). Several other studies,
including both pediatric and adult MOGAD patients with a
variety of phenotypes, have found that seronegative conversion
is associated with a lower relapse risk in MOGAD patients
(25, 26, 35, 57).While 50% of pediatricMOGAD patients become
seronegative, only roughly 25% of adults become seronegative.
It should be noted that while persistent seropositivity may be
associated with an increased risk of relapse, not all patients

with persistent seropositivity will inevitably experience relapses.
Indeed, Juryncyzk et al. found that among 72% of patients
that remained persistently seropositive after the first attack,
only 59% experienced further relapses (25), thus proving that
persistently MOG-IgG seropositivity is not always associated
with further clinical events. In addition, some patients that
become seronegative can rarely relapse and become seropositive
at the time of the relapse (55).

The role of antibody titers in AQP4-IgG-NMOSD and
MOGAD is extremely complex and likely differs in the two
conditions. The predicting role of AQP4-IgG titers regarding
outcomes, disease course or relapses is vastly controversial
due to the inconsistency of the results, which may potentially
be explained by the different methods used to determine the
titer of AQP4-IgG. Some studies used CBAs (39), while others
used fluorescence-based immunoprecipitation assay (FIPA) (49)
or ELISA (45). Beside methodological differences, it is clear
that some relapses in patients with AQP4-IgG-NMOSD occur
regardless of AQP4-IgG titer at onset and its fluctuation during
the disease course does not always correlate with disease activity.
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These features make AQP4-IgG titer a non-optimal biomarker
for this condition.

On the contrary, in patients with MOGAD the dynamics
of MOG-IgG titers may be helpful in identifying patients that
will experience a monophasic disease course since patients that
become seronegative will more frequently bemonophasic. On the
other hand, persistently positive MOG-IgG patients may have a
higher chance of relapse, but can also have a monophasic disease
course, and therefore, in this setting, antibody titers are less
helpful as predictors. Of note, the results found in patients with
MOGAD may be more consistent because all recent studies use
MOG-IgG testing with conformational CBAs.

Complement Proteins
Both AQP4-IgG and MOG-IgG predominantly belong to
the IgG1 subclass and thus may activate the complement
cascade. The role of complement activation was noticed even
before the discovery of AQP4-IgG (58) and it is now clearly
demonstrated (59).

Complement activation and complement-associated cell
killing (60) have relevant therapeutic implications in AQP4-IgG
NMOSD, including the successful randomized clinical trial of
eculizumab in prevention of relapses (61).

On the other hand, the role complement in patients with
MOGAD is still a matter of debate (62, 63).

Complement proteins are a potential biomarker of AQP4-IgG
NMOSD and have been proposed to be useful to distinguish
NMOSD from other demyelinating disorders, such as MS.
Indeed, many studies used patients with MS as controls along
with patients without inflammatory neurological disorders. The
comparison of complement proteins between these groups have
regrettably led to inconsistent results. Indeed, an initial study
found that C4d and sC5-C9 complex were higher in NMOSD
patients in comparison with healthy controls and MS patients
(64). Similar results regarding the increase of sC5b-9 complex in
serum and CSF were replicated in other studies (65, 66), which
failed to give consistent results regarding C3 and C4 proteins. C3
was found to be equal (66, 67) or increased when compared to
healthy controls (65). Similarly, C4 was reported to be increased
(64) and decreased (65) in NMOSD patients. Kuroda et al. found
that CSF concentrations of C3 and C4 did not segregate in the
different groups (67). Hoellou et al. found that CSF C3 and C4
were similar in pediatric MS and MOGAD, but C5a was higher
in the latter group (68).

More recent studies have systemically assessed complement
proteins, activation products and regulators in patients with
NMOSD in serum (69) and CSF (70). These studies highlighted
that plasmatic C1Inh, C5 may be helpful to distinguish NMOSD
vs. healthy controls, whilst C1Inh and C5b–C9 could segregate
MS and NMOSD (69). Finally, CSF levels of C3, C4, C5, C9,
FH, FHR, and C1Inh may be used to differentiate the two
inflammatory conditions (70).

Some studies have reported an association between
complement levels and disease activity in patients with
AQP4-IgG NMOSD. In particular, serum C3 levels were
found to correlate with EDSS (65) and CSF C5a values were
associated with MRI activity and delta EDSS (67). In addition,

a study by Veszeli et al. suggests complement may be altered,
although not activated, even in patients in remission and under
disease-modifying treatment (71).

Recent studies have tried to distinguish specific complement
signatures in AQP4-IgG NMOSD compared to MOGAD
patients. Patients with AQP4-IgG NMOSD had lower (72) or
comparable (73) levels of C3 and lower concentration of C4 when
compared to patients with MOGAD (72, 73). According to a
different study by Hakobayn et al. Bb, C4a and C5a components
were higher in AQP4-IgG NMOSD patients, while iC3b and
C5b–C9 were higher in MOGAD patients (69). On the contrary,
Keller and colleagues surprisingly found that all complement
levels with the exception of C3a were higher in patients with
MOGAD when compared to NMOSD (63). These discordant
findings may be related to the fact that samples were obtained
during remission (73) or at first event (72). This study also
found that patients withMOGADhave higher complement levels
when compared to healthy controls and MS (63). However,
the complement levels did not differ between patients with
a monophasic or relapsing disease course and did not differ
between patients during relapse or in remission (63). Therefore,
its role as a biomarker of disease is limited. Future studies are
required to confirm complement’s role in MOGAD (74).

Overall, complement may be a useful biomarker to
discriminate patients with MS, MOGAD, and NMOSD, but
studies have been mixed and larger prospective studies are
required. Some studies have also demonstrated that complement
may be associated with some clinical and radiological indexes of
disease activity and severity. However, results among different
studies have led to discordant findings, probably due to
methodological and sampling issues (e.g., use of CSF or serum,
sampling during remission or active disease). Despite these
inconsistencies, these studies show that complement may play a
key role in the pathogenesis of these disorders and may represent
a potential therapeutic target.

Cytokines and Other Immunological
Biomarkers
The different pathogenesis between MS and other antibody-
mediated demyelinating disorders has led to the question
whether cytokine signatures could differ in these conditions,
and thus whether cytokines could represent a useful tool in the
differential diagnosis.

The importance of studies on cytokines, and in particular
interleukin-6 (IL-6), underlies the success of the recent
randomized clinical trial on satralizumab, which was found to
be more effective in AQP4-IgG NMOSD, but less effective for
seronegative NMOSD (75). Similarly, tocilizumab was found to
reduce the risk of relapses in both in AQP4-IgG NMOSD and
MOGAD (76, 77).

Early studies on “opticospinal multiple sclerosis” (OSMS),
which likely were cases of NMOSD, have demonstrated that a
discrete number of cytokines, in particular T-helper 2 (Th2) and
T-helper 17 (Th17) related ones, could differentiate OSMS from
both unaffected patients and patients with other forms of acute
myelitis (78) or MS (79).
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Among these cytokines, CSF levels of Th2-related IL-6 seem
to have a prominent role in patients with NMOSD. Indeed,
IL-6 is increased during relapses (80) and it may be a useful
biomarker to discriminate between MS and NMOSD (81–
85). IL-6 has been shown to correlate with the length of
myelitis (83), EDSS (82), particularly in untreated patients (86),
and correlate with markers of glial and myelin damage [as
glial fibrillary acid protein (GFAP) (84, 86, 87) and myelin
basic protein (MBP) (87)]. CSF IL-6 levels may also predict
the outcome after a relapse and the occurrence of further
short-term relapses (88). Of note, AQP4-IgG seropositive and
seronegative NMOSD patients have different concentrations of
IL-6 (80, 84), with seropositive patients harboring the highest
concentration. In contrast to CSF testing, several studies have
shown that measuring IL-6 in serum/plasma is not useful in
discriminating between NMOSD and other conditions (84, 85,
89). However, Monteiro et al. (90) demonstrated that plasma
concentrations of IL-6 and interleukin-17 (IL-17) are associated
with relapses and disability measured with the EDSS score in
patients with NMOSD.

Other relevant cytokines analyzed in NMOSD include the
Th17 related-ones -IL-8 (85, 86) and IL-17 (82, 86, 89, 90)-
and the T-helper regulatory interleukin-10 (IL-10) (84, 87).
Individual reports have also highlighted that other chemokines or
related molecules, such as CXCL8, CXCL10 (82), CXCL13 (91),
BAFF, and APRIL (92), could be useful biomarkers in NMOSD.
However, they have been analyzed in only few studies and further
evidence is required.

As for MOGAD, studies on cytokines have demonstrated
that patients with MOGAD share a similar cytokine signature
to that observed in patients with NMOSD, with a predominant
involvement of IL-6, IL-8, IL-10, and IL-17 (68, 85, 87, 93)
that may be used to distinguish MOGAD from MS but not
from NMOSD. Intriguingly, human endogenous retroviruses
(HERVs), a novel biomarker that has been studied mainly in
MS (94), has shown promising results in terms of differentiating
among demyelinating diseases. HERV-w peptides have been
found in 78% of patients with MS and in 8% of patients with
NMOSD, regardless of AQP4-IgG serostatus (95), suggesting a
potential role in differentiating these entities. Moreover, a recent
study by Arru et al. found HERV-w peptides in 91% of patients
with MOGAD compared to only 32% in AQP4-IgG NMOSD,
which suggests it may be a helpful diagnostic biomarker to
distinguish between these two conditions (96).

Taken together, the role of cytokines and immunological
markers may be useful in NMOSD and MOGAD to predict
the short-term outcome and to identify patients that will
experience a new attack. However, the role of cytokines, and
in particular of IL-6 which has the most solid evidence as a
biomarker, is limited by the fact that most of the clinical and
prognostic correlations are found with CSF rather than serum IL-
6 levels. This limitation is relevant because it prevents monitoring
cytokines levels over time and the use of these biomarkers in
longitudinal studies.

On the other hand, cytokines levels may be useful to
distinguish NMOSD from MS, which has relevant clinical and
therapeutical implications. MOGAD and NMOSD share similar

cytokines signature and therefore cytokines may not be useful
in the differential diagnosis. However, HERV-w peptides have
shown promising results in differentiating the two conditions.

Markers of Neuronal and Astroglial
Damage
Markers of neuronal and astroglial damage represent a broad
spectrum of molecules that are released in the CSF after CNS
injury. The two main molecules that have been the most studied
within this category are neurofilament light chain (NfL) and
GFAP, although other molecules such as astrocytic marker S100B,
MBP, neurofilament heavy chain (NfH), and tau proteins have
also been analyzed in a few studies in patients with NMOSD
and MOGAD.

Briefly, neurofilaments are intracellular proteins involved
in radial growth and stability of axons that are released,
together with other axonal cytoskeletal proteins, into the CSF
after neuroaxonal damage. NfL has been demonstrated to be
a promising biomarker (97), useful in different neurological
conditions such as MS, dementia, stroke, traumatic brain injury,
Parkinson’s disease, Huntington disease, encephalitis, peripheral
neuropathies, and amyotrophic lateral sclerosis (98–102). On
the other hand, GFAP represents the main cytoskeletal protein
of mature astrocytes, and it is also involved in regeneration,
plasticity, and reactive gliosis (103). GFAP is a promising
biomarker in the setting of traumatic brain injury, MS,
frontotemporal dementia, and other diseases (104, 105).

Both NfL and GFAP are released in the CSF after axonal or
astroglial injury, respectively, and a small proportion of these
proteins can also be detected, at lower concentration, in the
blood. First- and second-generation assays such as ELISA or
immunoblot could detect these biomarkers properly only in the
CSF because of the lack of sensitivity. New generation assays
(such as electrochemiluminescence and, particularly, single-
molecule array -SIMOA-) are able to detect these molecules in
the blood with high sensitivity, thus allowing the conduction
of longitudinal studies and monitoring of their values over
time (99).

Initial studies on patients with NMOSD were performed
with ELISA on CSF samples and were thus limited by the lack
of longitudinal follow-up or remission phase data, given the
difficulties in repeating lumbar punctures outside the setting of
an acute event. There are only two studies using ELISA in serum,
which provided conflicting results. In particular, Storoni et al.
found higher concentrations of serum GFAP in patients with
AQP4-IgG related ON (106), while this was not found by Fuji
and colleagues (107).Most of these earlier studies, predominantly
performed on CSF, showed that the makers of astrocytic damage,
GFAP and S100B, were higher in patients with NMOSD when
compared to patients with MS or healthy controls (84, 87, 107–
112). One recent study that combined GFAP and glutamine
synthetase (GS) analyses found that markers of astrocytic damage
were higher in patients with AQP4-IgGNMOSDwhen compared
to MS, but also found some seronegative NMOSD patients
with high levels of GFAP and GS (113). Other studies have
demonstrated that the values of GFAP and S100B are lower
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in seronegative patients when compared to AQP4-IgG positive
NMOSD patients (87). Given the ability of GFAP to discriminate
between NMOSD andMS (112), the increase of GFAP values was
proposed as a supportive criterion for NMOSD diagnosis (110).
However, the utility of GFAP and S100B in discriminating among
MOGAD, AQP4-IgG NMOSD, and double seronegative patients
was not consistent according to the few studies which tried to
address this issue (111, 112).

Regarding the associations with clinical features, GFAP levels
in the CSF have been found to be related to EDSS on relapse (108,
109), EDSS during remission (112), EDSS at 6 months follow-
up (109), and the number of spinal cord segments involved
(108, 109). S100B values have been associated with the number
of spinal cord segments involved (108, 109) and EDSS on relapse
(109, 112) and on remission (112). GFAP have been shown to be
more elevated in patients with myelitis when compared to those
with brain lesions and ON (109, 112) and reduces after treatment
(108, 109).

Evidence regarding other biomarkers tested with ELISA on
CSF is more limited. MBP was found to be higher in both
MOGAD and AQP4-IgG NMOSD patients when compared to
MS (87, 111), although this association was not consistent with
a previous study (109) showing MBP correlation with EDSS
and length of myelitis. NfH values were found to be higher in
NMOSD when compared to controls patients (110, 114), but
similar to those detected in patients with MS (115). On the
other hand, NfL levels were higher in NMOSD in comparison
to both healthy controls and patients with MS (115). NfL values
correlated with disability in both NMOSD and MS, whilst NfH
was associated with disability in MS only. Despite the lack of
association with disability, the increase of NfH concentration
persisted after relapses in NMOSD (114). Intriguingly, one study
analyzing NfL concentration in seronegative NMOSD patients
failed to detect differences in comparison with non-inflammatory
controls, in contrast to results found in AQP4-IgG NMOSD
patients (84).

The advent of next-generation assays, particularly SIMOA,
have reshaped the analysis of these biomarkers by allowing a
more consistent and reproducible measure in serum, which
has the clear advantage of being more accessible than CSF.
Recent studies focused on the role of serum GFAP (sGFAP) and
NfL (sNfL) during the relapse and remission phase of AQP4-
IgG-NMOSD and MOGAD, their association with clinical and
paraclinical variables and their role in predicting further relapses.

Most of studies have found higher levels of sGFAP and
sNfL in patients with NMOSD and MOGAD compared
to healthy controls (116–121), although one study which
analyzed samples obtained in sustained clinical remission failed
to confirm this finding (122). Intriguingly the few studies
which included seronegative NMOSD patients did not find
differences of sNfL concentration between seronegative NMOSD
patients and healthy controls (116), thus suggesting a different
underlying biology.

The role of biomarkers of tissue damage in differentiating
MS and other demyelinating disorders is still a matter of
debate and data are likely influenced by the timing of sampling
(relapse vs. remission). For example, Mariotto et al. found higher

concentrations of sNfL in patients with MOGAD and NMOSD
when compared toMS in samples obtainedmostly during disease
activity (116), while Watanabe et al. did not find a difference
in sNfL values between MS and NMOSD when samples were
obtained during remission (118). Other studies found discordant
results with similar levels of sNfL between the two conditions
(123) or even higher values in patients with MS (124). On the
other hand, most studies have found that sGFAP concentration is
higher in NMOSD (118, 124).

As for the difference between patients with NMOSD and
MOGAD, one study found that GFAP levels are higher in patients
with NMOSD (125), whilst tau and sNfL were comparable.
However, other reports did not find any differences between
the two conditions in terms of sNfL levels (116, 124) or
sGFAP (124). Samples obtained during relapses may help to
differentiate between MOGAD and NMOSD. For example,
Kim et al. found that tau protein was increased during
MOGAD relapses, while sGFAP and sNfL levels were increased
during AQP4-IgG NMOSD relapses (125). In addition, the
relationship between sGFAP and sNfL (i.e., the sGFAP/sNfL
ratio) may be a more specific index of astrocytic damage
and may be able to better differentiate these conditions (118,
119, 124) but future larger studies are required to confirm
these findings.

Regarding prognosis, sGFAP plays a key role in patients with
AQP4-IgG NMOSD and the dynamics of this molecule has
been elucidated by a prospective study conducted during the
NMO-Momentum trial for inebiliziumab (126). Higher sGFAP
levels were found in patients with AQP4-IgG NMOSD, which
was also related with age and EDSS. The NMO-Momentum
trial found that higher baseline levels of sGFAP was associated
with a 3-fold increased risk of subsequent relapses, and within
1 week from a relapse, sGFAP concentration increased and
started to decline 5 weeks after the event. The severity of
relapse was correlated with the sGFAP concentration. However,
it was noted that patients may experience an increase of
sGFAP without concomitant relapses, though in these cases
minor neurological symptoms (not defined as relapses) or
asymptomatic MRI lesions may be detected. The NMO-
Momentum trial also showed that treatment with inebilizumab
reduced the concentration of sGFAP in treated patients and
reduced the risk of relapse. Intriguingly, patients may experience
relapses during treatment with inebilizumab, however sGFAP
concentrations do not significantly increase, suggesting that
relapses on treatment may induce less astrocytic damage or
may be a reflection of inebilizumab stabilizing the blood-brain
barrier (126).

Other studies in AQP4-IgG NMOSD have also demonstrated
that sGFAP is higher during relapses (118, 119, 121, 124, 125),
that higher concentration of sGFAP may predict the
occurrence of relapses (118, 122), and that sGFAP
concentration may discriminate between stable and active
disease (119, 121, 125). sGFAP concentrations decrease
over time after a relapse (119) but may remain elevated
during the remission stage (118, 121) and then normalize
after 3–4 months (122, 127). Of note, sGFAP levels may
subtly increase during inter-attack periods (127) or may
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increase over time in absence of immunotherapy (119),
suggesting possible subclinical ongoing astrocytic damage in
AQP4-IgG NMOSD.

Regarding the role of sNfL in AQP4-IgG NMOSD, most
studies have found that serum sNfL to be increased during
relapses (121, 125) and to slowly decrease over time (119, 127) or
normalize after treatment (118, 121), reaching comparable levels
to that observed in healthy controls in sustained remission (122).
However, one single study detected stable sNfL values during
relapses (124).

Finally, serum sGFAP values have been associated with EDSS
score (118, 121–125), Multiple Sclerosis Composite Scale (122),
the occurrence of myelitis (118, 124), and a recent relapse (118,
121). Conversely, serum sNfL have been associated with EDSS
only (118, 121, 123, 124).

The role of these biomarkers in patients with MOGAD is
less defined. sNfL and sGFAP may increase during relapses
(124) and the increase of sNfL is more marked in severe
attacks (117). In patients with multiple relapses, sNfL have
been found to be increased only during the first relapse and
then remain stable, supporting the role of the first attack
in determining long-term disability (128). On the contrary,
one aforementioned study has demonstrated that only serum
tau, and not sGFAP or sNfL, increases during relapses (119).
Another study found that sNfL increases during relapses among
patients with MOGAD, but sGFAP did not increase (129). As
in NMOSD, sNfL levels reduce over time after an acute attack
(128) and during remission they may be similar to controls
(122, 129).

In MOGAD, sNfL values are associated with EDSS (117,
124, 125), are higher in pediatric patients presenting with
encephalopathy (130) and both sGFAP and sNfL have been found
to be associated with a recent brain lesion (124). In addition,
tau concentration has been found to be associated with EDSS
(125). Serum biomarkers may also have a diagnostic role when
associated with neuroradiological findings: indeed, the ratio
between sNfL and the T2 lesion area on MRI (neurofilament
light chain/area ratio) may discriminate between spinal cord
infarction and other acute myelopathies, such as NMOSD or
MOGAD (131).

Overall, current evidence shows that molecules related to
neuronal and astroglial damage are promising biomarkers in
NMOSD, and particularly GFAP seems to be a reliable marker
of disease activity. The improvements in the diagnostic assays
have allowed to study the dynamics of these molecules in the
serum during and after relapses, and even in remission. The
presence of baseline elevated concentrations of GFAP predicts
the occurrence of relapses in NMOSD and thus it may be
used to identify patients that may require more aggressive
treatment. Similarly, GFAP could be used as a marker of
treatment response to promptly identify non-responders.
On the other hand, the increase of GFAP before a relapse
may be useful to monitor patients without therapy and to
promptly treat them when increasing concentrations of this
biomarker are detected. Finally, GFAP may be useful to
determine subclinical progression in patients with NMOSD.
Despite these promising studies, the role of GFAP in clinical

practice has not been established and reliable cut-offs are
not yet available to determine remission and relapses.
Although some studies tried to determine clear cut-offs
for disease status, the included populations were small and
methodological issues may hinder the reproducibility of
these values.

The role of these biomarkers in patients with MOGAD is
still uncertain and requires more clinical evidence, although tau
and NfL may be promising molecules, given their association
with disability, even though their association with relapses is
still unclear and deserves further study. Finally, GFAP and NfL
may be useful markers to differentiate MS from MOGAD and
NMOSD, although studies have been mixed. The adoption of
the GFAP/NfL ratio, which represent a marker of astrocytic
damage that accounts for both NfL and GFAP, may better
discriminate among different demyelinating disorders, but needs
to be explored in future studies.

CONCLUSIONS

Ideal biomarkers should be precise, easily accessible,
reproducible, and most importantly be able to predict the
disease course and aid in the differential diagnosis. Biomarkers
are an emerging and promising field that may help clinicians
in the management of patients with MOGAD and NMOSD,
and their incorporation as surrogate endpoints in clinical trials
is warranted.

Regarding the application of biomarkers in the clinical
practice, this review has shown that (a) seronegative conversion
of MOG-IgG may be helpful in MOGAD to distinguish
monophasic and relapsing patients, so that monitoring MOG-
IgG titer over time is recommended. On the contrary,
evidence does not support monitoring in AQP4-IgG in
NMOSD. Even if CSF testing of AQP4-IgG and MOG-IgG
is not routinely indicated, there is growing evidence that
evaluating for MOG-IgG in the CSF may be useful to identify
rare patients with MOGAD when serum is unrevealing; (b)
complement proteins shed light on the pathogenesis of antibody-
mediated demyelinating disorders and may support the use of
complement-directed therapies, but their role as biomarkers has
yet to be defined; (c) cytokines, and in particular IL-6, may be
useful to distinguish NMOSD/MOGAD from MS, and may be
useful as a short-term prognostic factor; (d) given the advances
in assay sensitivity allowing evaluation of proteins released after
astroglial or neuronal damage in the serum, these markers of
injury are becoming promising biomarkers in these conditions.
In particular, serum levels of GFAP have a strong association with
AQP4-IgG NMOSD disease course, whilst the contrasting data
related to MOGAD and seronegative NMOSD patients warrants
additional future studies.
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