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Background: The rupture risk assessment of intracranial aneurysms (IAs) is clinically

relevant. How to accurately assess the rupture risk of IAs remains a challenge in

clinical decision-making.

Purpose: We aim to build an integrated model to improve the assessment of the rupture

risk of IAs.

Materials and Methods: A total of 148 (39 ruptured and 109 unruptured) IA subjects

were retrospectively computed with computational fluid dynamics (CFDs), and the

integratedmodels were proposed by combiningmachine learning (ML) and deep learning

(DL) algorithms. ML algorithms that include random forest (RF), k-nearest neighbor

(KNN), XGBoost (XGB), support vector machine (SVM), and LightGBMwere, respectively,

adopted to classify ruptured and unruptured IAs. A Pointnet DL algorithm was applied

to extract hemodynamic cloud features from the hemodynamic clouds obtained from

CFD. Morphological variables and hemodynamic parameters along with the extracted

hemodynamic cloud features were acted as the inputs to the classification models.

The classification results with and without hemodynamic cloud features are computed

and compared.

Results: Without consideration of hemodynamic cloud features, the classification

accuracy of RF, KNN, XGB, SVM, and LightGBM was 0.824, 0.759, 0.839, 0.860,

and 0.829, respectively, and the AUCs of them were 0.897, 0.584, 0.892, 0.925, and

0.890, respectively. With the consideration of hemodynamic cloud features, the accuracy

successively increased to 0.908, 0.873, 0.900, 0.926, and 0.917. Meanwhile, the AUCs

reached 0.952, 0.881, 0.950, 0.969, and 0.965 eventually. Adding consideration of

hemodynamic cloud features, the SVM could perform best with the highest accuracy

of 0.926 and AUC of 0.969, respectively.

Conclusion: The integrated model combining ML and DL algorithms could improve the

classification of IAs. Adding consideration of hemodynamic cloud features could bring

more accurate classification, and hemodynamic cloud features were important for the

discrimination of ruptured IAs.

Keywords: intracranial aneurysm, rupture risk, deep learning, machine learning, hemodynamic cloud

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2022.868395
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2022.868395&domain=pdf&date_stamp=2022-05-12
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:haiyunli@ccmu.edu.cn
https://doi.org/10.3389/fneur.2022.868395
https://www.frontiersin.org/articles/10.3389/fneur.2022.868395/full


Chen et al. A Model for Classifying IAs

INTRODUCTION

Intracranial aneurysms (IAs) are pathological dilations at major
branching of the Willis circle, occurring in 3–5% of the
population (1). The rupture of IAs would lead to subarachnoid
hemorrhage (SAH) with high mortality and disability rates (2).
How to accurately assess the rupture risk of IAs remains a
challenge. Hemodynamic is considered to play a crucial role in
the growth and rupture of IAs. Many studies attempt to utilize
their morphological variables and hemodynamic parameters to
assess the rupture risk of IAs (3–6).

The morphological variables related to the rupture risk of
IAs included location, height, aspect ratio (AR), size ratio (SR),
size, and so on. Additionally, the hemodynamic parameters
associated with the rupture risk of IAs contained wall shear stress
(WSS), oscillatory shear index (OSI), pressure and low shear
area (LSA), and so on. Duan et al. (7) applied AR, SR, location,
and other morphological variables combining age, gender, and
other clinical risk factors to assess the rupture risk of IAs
with multivariate logistic regression model and further evaluated
the importance of morphological variables with the univariate
analysis method. Juchler et al. (8) explored the irregular shape of
IAs and found that the irregular shape was related to the stability
of vascular wall, and that the size as well as location of IAs had
a great impact on their rupture. Regarding the hemodynamic
parameters, Cebral et al. (5) utilizedmaxWSS, LSA, concentrated
inflow streams, and some other hemodynamic parameters to
compare the differences between ruptured and unruptured IAs
using the Student’s t-test. In addition, Xu et al. (9) investigated
the influence of blood flow instability on the rupture of IAs
and explored the discrepancy of WSS, LSA, and pressure loss
coefficient in ruptured and unruptured IAs statistically.

At present, machine learning (ML) has shown significant
potential in the assessment of rupture risk of IAs (10–13).
Liu et al. (11) fed some morphological features extracted
from PyRadimics and clinical features into general linear,
ridge, and lasso regression models to predict aneurysm
stability and obtained the highest area under the curve
(AUC) of 0.86. Ou et al. (12) applied SVM, artificial neural
network (ANN), XGBoost, and logistic regression algorithms
on multidimensional data of morphologies, demographics,
clinical features, lifestyle behaviors, and lipid profiles to assess
rupture risk of IAs and achieved the best AUC value of 0.882
with XGBoost. Detmer et al. (13) calculated morphological
variables and hemodynamic parameters and utilized logistic
group lasso regression modeling to discriminate the ruptured
from unruptured IAs, and the AUC of the model was 0.8359.
Shi et al. (14) applied the logistic regression (LR), SVM, RF,
and multilayer perceptron (MLP) algorithms to hemodynamic
parameters derived from CFD such as WSS, OSI, and pressure
to assess the rupture risk of IAs, and SVM achieved the best AUC
of 0.88. Tanioka et al. (15) employed three RF models to analyze
the effects of maximum size, projection length, neck width,
WSS, OSI, flow velocity, and other morphological variables and
hemodynamic parameters on the classification of the rupture
status of IAs, and three models’ accuracy was 0.77, 0.71, and
0.78, respectively. In addition, Silva et al. (16) adopted RF and

SVMs with linear and RBF kernel to distinguish the ruptured
and unruptured IAs based on aneurysm size, location, aneurysm
side, age, sex, and other history information, with the AUCs
reached 0.81, 0.77, and 0.78. In addition, deep learning was also
beginning to be applied to the risk assessment of IAs. Kim et al.
(17) took advantage of a convolutional neural network (CNN) to
3D digital subtraction angiography for rupture risk assessment
in small-sized IAs and showed an accuracy of 0.77 and AUC
of 0.76. Liu et al. (18) applied a feed-forward artificial neural
network to morphological features, demographic factors, and
hypertension and smoking histories for the assessment of rupture
risk of communicating artery aneurysms, achieving the highest
AUC of 0.95. Bizjak et al. (19) applied univariate thresholding,
multivariate random forest and multilayer perceptron (MLP)
learning, and deep shape learning on morphological features
and deep shape features to predict IA growth. The deep shape
learning method could achieve the highest accuracy of 0.82. Yang
et al. (20) utilized CNN on hemodynamic factors of WSS and
strain to predict the rupture risk of cerebral aneurysms, and the
best AUC was up to 0.883.

The accuracy of the assessment of rupture risk of IAs still
needs to be improved for clinical decision-making. Current
studies mainly considered the morphological variables and
hemodynamic parameters, neglecting the hemodynamic cloud
features reflected the spatial distribution characteristics of
hemodynamic, as well as the features of impingement zone and
inflow jet. It is generally accepted that complex flow patterns,
small impingement regions, and narrow inflow jet are more
likely to be identified in ruptured IAs (21). We speculate
that hemodynamic clouds and impingement zone and inflow
jet would be helpful to assess the rupture risk of IAs. In
this paper, we proposed an integrated model combining ML
and DL algorithms to classify ruptured and unruptured IAs,
adopting the morphological variables, hemodynamic parameters,
and hemodynamic clouds within the impingement zone and
inflow jet.

METHOD

In this paper, we proposed an integrated model combining
machine learning (ML) and deep learning (DL) algorithms.
ML algorithms were applied to classify the ruptured and
unruptured IAs, which included random forest (RF), k-nearest
neighbor (KNN), XGBoost (XGB), support vector machine
(SVM), and LightGBM. In addition, a Pointnet DL algorithm
was used to extract the hemodynamic cloud features for the
ML classification models. The morphological variables were
computed on the IA geometric models, and the hemodynamic
clouds were obtained from computational fluid dynamic
(CFD), and hemodynamic parameters were calculated on
hemodynamic clouds. In particular, the hemodynamic clouds
within impingement zone and inflow jet were determined
and served as the inputs to the DL algorithm for features
extraction, and the extracted hemodynamic cloud features
were acted as the inputs to the classification models. Based
on morphological variables and hemodynamic parameters

Frontiers in Neurology | www.frontiersin.org 2 May 2022 | Volume 13 | Article 868395

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Chen et al. A Model for Classifying IAs

with/without hemodynamic cloud features, the rupture status of
IAs was classified by these ML algorithms’ classification models.
The framework of the integrated model is shown in Figure 1.

Geometric Model and Morphological
Variables
A total of 148 IAs located at the internal carotid artery
were recruited, including 109 unruptured and 39 ruptured
IAs. All the participants provided their informed consent.
Besides, the protocol of this study was approved by the Ethics
Committee of Beijing Tiantan Hospital Affiliated to Capital
Medical University. The 3D rotational angiography images of
each IAs were acquired using a GE LCV + Digital Subtraction
system (LCV; GE Medical Systems), and then, the 88 projection
images were transferred to a 3D dataset using isotropic voxels
on a dedicated GE workstation (Advantage Unix; GE Medical
Systems). Subsequently, the IA geometry was extracted from the
acquired raw Digital Imaging and Communications in Medicine
(DICOM) files with a commercial softwareMimics 10.0 (Belgium
Materialize Company), next, the IA geometry was converted
into a triangulated surface model, and the blood vessel wall was
built based on the surface along the normal direction of the
wall. Finally, the established model was modified as a 3D-solid
volume model upon software SolidWorks 2012 (SolidWorks
Corp, Concord, MA) (Figure 2).

Applying the IA geometric model, the neck width, height,
diameter of vessel, size ratio (SR), and aspect ratio (AR) were
determined by Geomagic Studio 2013 (Raindrop Geomagic,
Durham, USA). Surface area, volume, and surface area/volume
(S/V) of IAs were calculated by CFD-Post. Besides, the geometric
shapes of IAs were classified into a smooth type and an irregular
type with daughter sacs. In addition, in terms of the location,
aneurysms were classified into a side wall type or a bifurcated
aneurysm. So, 10 morphological variables were achieved.

Hemodynamic Clouds and Hemodynamic
Parameters
The hemodynamic clouds and the hemodynamic parameters
were achieved based on CFD with ANSYS 18.0 (ANSYS Inc.,
Canonsburg, PA, USA). First, the computational mesh was
generated with ANSYS ICEM 18.0, by setting the mesh element
size to 0.25mm, and we generated boundary fitted prism layers
with an average node space increasing by a ratio of 1.3 as
well. Then, we applied ANSYS Fluent 18.0 to solve the flow-
governing Navier–Stokes equation, assuming the aneurysm wall
to be no-slip and rigid and modeling the blood as incompressible
under laminar flow conditions, whereas the density and dynamic
viscosity were set to 1,060 kg/m3 and 0.004 N·s/m2, respectively.
The inlet boundary conditions included a pulsatile velocity that
was determined by a transcranial Doppler (TCD) scanning from
a healthy subject, and a zero-pressure gradient was adopted at
the outlets. The cardiac cycle was 0.8 s with a time step of 0.01 s
for each cardiac cycle (22). A total of two cycles were simulated
whereas the systolic phase of the second cardiac cycle was chosen
for output. Finally, the hemodynamic clouds were achieved, from
which the hemodynamic parameters were calculated.

A total of five acquired hemodynamic clouds of WSS, OSI,
pressure, velocity, and time average WSS (TAWSS) are shown in
Figure 3, and the hemodynamic cloud features were extracted by
the DL algorithm.

After obtaining the hemodynamic clouds with CFD, we
adopted the hemodynamic clouds within impingement zone
and inflow jet as the inputs to the DL algorithm for feature
extraction. To determine impingement zone and inflow jet
in the sac of IAs, the profiles of WSS and blood velocity
were computed. Inflow jet was determined by referring
to the direction and magnitude of blood flow inside the
sac (Figure 4), and the profile with high velocity in the
streamline was regarded as inflow jet. Impingement zone
was determined by referring to the region with high WSS
(>80% of the maximum WSS in sac) distribution and the
influence area of the inflow jet, as shown in Figure 4. Finally,
the hemodynamic cloud features were extracted from the
hemodynamic clouds within impingement zone and inflow
jet applying a Qi et al. (23) DL algorithm. The extracted
hemodynamic cloud features along with morphological variables
and hemodynamic parameters were acted as the inputs to the
classification models.

The data exported from hemodynamic clouds were point
cloud. Combing five acquired hemodynamic clouds ofWSS, OSI,
pressure, velocity, and time average WSS (TAWSS), each point
cloud contains not only a three-dimensional coordinate value (x,
y, z), but also the values of WSS, OSI, pressure, velocity, and
TAWSS. The DL algorithm was established based on Pointnet
(23) to directly process the point cloud data, and the algorithm
framework is shown in Figure 5.

In this study, 5,000 point clouds were randomly chosen
from the hemodynamic clouds within impingement zone and
inflow jet as the inputs to the DL algorithm, and a T-net was
utilized to convert the point cloud data. A shared MLP was
applied for feature extraction, transforming the data matrix
to a feature matrix and increasing the dimension from 8 to
64 meanwhile. Additionally, the T-net was utilized for feature
conversion the second time. The purpose of using T-net two
times is to predict an affine transformation matrix to align
input points and point features in the sample, so as to improve
the network performance. Subsequently, feature extraction was
carried out again using another shared MLP and the dimension
of feature matrix increased from 64 to 1,024 gradually. The
dimension of data is increased from 8 to 1,024 to avoid the
loss of important features when maxpooling is finally used.
Maxpooling is a symmetric function that aggregates the features
of all points at the last layer of the network and outputs a
1,024-dimensional feature, which is defined as the hemodynamic
cloud feature.

For hemodynamic parameters, high OSI area (HOA), LSA,
WSS, OSI, pressure, and velocity and some corresponding
parameters such as maximum, average, and minimum
values of them were calculated by CFD-Post. Energy
loss (EL) of IAs was also computed, which has been
described in detail in our previous study (24). A total of
eighteen hemodynamic parameters were ultimately used
for classification.
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FIGURE 1 | Framework of the integrated model.

FIGURE 2 | IA models (the areas marked by red boxes are sacs of IAs).
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FIGURE 3 | Hemodynamic clouds of WSS, TAWSS, velocity, OSI, and pressure.

Machine Learning Algorithms
To distinguish the ruptured IAs from the unruptured, five
ML algorithms that include RF, KNN, XGB, SVM, and
LightGBM were served as classification models. The input data
comprise morphological variables, hemodynamic parameters,
and hemodynamic cloud features and are divided into two
groups, feature group A includes morphological variables
and hemodynamic parameters, and feature group B contains
morphological variables, hemodynamic parameters, and
hemodynamic cloud features (Figure 6). To alleviate the impact
of redundant features on the classification accuracy, data in
features group B were preprocessed with normalization, feature
screening, and feature dimension reduction.

In feature selection, the recursive feature elimination (RFE)
method (25) was applied to screen out important variables. In
addition, the kernel principal component analysis (KPCA) was
utilized to reduce dimension (26).

As shown in Figure 1, we adopted 10-fold cross-
validation to avoid overfitting. Moreover, we repeated the
cross-validation 100 times to ensure randomness of the
dataset partitioning, shuffling the dataset randomly before
partitioning each time. In the process of repeated cross-
validation, the hyperparameters of the machine learning
algorithm were always consistent, so as to ensure the
validity of the results. The results of each test included
accuracy, AUC, sensitivity, and specificity, and the average

value of each parameter would be calculated to evaluate the
model performance.

RESULT

Applying the classification models to distinguish the ruptured
IAs from the unruptured IAs, the performance metrics for
classification was achieved. In our model, applying the ML
algorithms to morphological variables and hemodynamic
parameters, the classification accuracy of RF, KNN, XGB,
SVM, and LightGBM was 0.824, 0.759, 0.839, 0.860, and
0.829, respectively, and the AUCs of them were 0.897,
0.584, 0.892, 0.925, and 0.890. Adding consideration of
hemodynamic cloud features, the accuracy successively
increased to 0.908, 0.873, 0.900, 0.926, and 0.917, respectively.
Meanwhile, the AUCs reached 0.952, 0.881, 0.950, 0.969, and
0.965 eventually.

The classification accuracy of feature group B was higher than
that of feature group A. A maximum classification accuracy of
92.6% was achieved with the SVM classifier by applying feature
group B. Meanwhile, sensitivity, specificity, and AUC were 0.850,
0.954, and 0.969, respectively. Detailed results are shown in the
Table 1 and Figure 7.

Since the overall distribution of these results was not normal,
the Wilcoxon signed rank test was chosen to compare the results
of the two models. The p-value calculated was all <0.05, so the
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FIGURE 4 | The impingement zone (yellow) and the inflow jet (orange).

effectiveness of feature group B was significantly better than that
of feature group A.

DISCUSSION

Since the mechanisms of IA growth and rupture and their
interactions regarding pathogenesis are not fully understood,
ML(DL) may be a promising approach for risk assessment of
IA growth and rupture, as it can be employed as gray or black
box model. These types of models cannot be a substitute for
basic research to explore the mechanisms of IA growth and
rupture, but can support clinical practice and assist clinical
decision-making. Morphological variables and hemodynamic
parameters of IA growth were found to be correlated with the
rupture risk of IAs, which are the two main risk assessment
parameters for rupture. However, morphological variables and
hemodynamic parameters of IA growth have different weights
for rupture risk assessment, the most existing studies applied
ML algorithms to morphological variables and hemodynamic
parameters to assess the rupture risk of IAs (13–15, 27–30).
Although the models worked with relatively high classification

accuracy, how to accurately assess the rupture risk of IAs remains
a challenge in clinical decision-making. The existing studies did
not take the hemodynamic cloud features into consideration.
In addition, the hemodynamic clouds represent the spatial
distribution characteristics of hemodynamic. Compared with
hemodynamic parameters, hemodynamic clouds will provide
different types of discriminative features for the rupture risk
assessment of IAs. Different from the existing methods, based
on morphological variables and hemodynamic parameters, we
added hemodynamic cloud features to improve classification
performance. Our integrated model combined of ML and DL
algorithms. ML algorithms such as RF, KNN, XGB, SVM, and
LightGBM were, respectively, adopted to classify ruptured and
unruptured IAs. In addition, DL algorithm such as Pointnet
was applied to extract hemodynamic cloud features for the
ML classification models, and the hemodynamic cloud features
within impingement zone and inflow jet were selected. It was
found that there were significant differences in the impingement
zone and inflow jet between unruptured IAs and ruptured IAs.
However, there are no quantified parameters associated with
impingement zone and inflow jet for rupture risk assessment
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FIGURE 5 | Framework of DL algorithm.

FIGURE 6 | Classification models inputting different features were established using machine learning algorithm to compare the influence of different features on

classification results.
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TABLE 1 | Performance of five algorithms with two feature groups.

Algorithm Feature AUC 95%CI Accuracy Sensitivity Specificity

RF Group A 0.897 0.894–0.900 0.824 0.518 0.934

Group B 0.952 0.950–0.954 0.908 0.733 0.971

KNN Group A 0.584 0.579–0.588 0.759 0.227 0.950

Group B 0.881 0.879–0.883 0.873 0.572 0.980

XGB Group A 0.892 0.889–0.895 0.839 0.596 0.926

Group B 0.950 0.948–0.952 0.900 0.757 0.952

SVM Group A 0.925 0.922–0.928 0.860 0.683 0.923

Group B 0.969 0.967–0.970 0.926 0.850 0.954

LightGBM Group A 0.890 0.887–0.893 0.829 0.563 0.924

Group B 0.965 0.963–0.967 0.917 0.783 0.966

FIGURE 7 | The ROC curve of five classification models established using different ML algorithms.

of IAs. It is generally accepted that complex flow patterns,
small impingement regions, and narrow inflow jet are more
likely to be identified in ruptured IAs (14, 21). We adopted
hemodynamic cloud features within impingement zone and
inflow jet to characterize impingement zone and inflow jet.
In our experiment, adding consideration of hemodynamic
cloud features within impingement zone and inflow jet, the
classification performance is significantly improved. We found
that the hemodynamic cloud features could improve the
classification accuracy and AUC of the five classifier models
to varying degrees. Specifically, the sensitivity of each model
was improved most significantly. One possible reason is that
the impingement zone and inflow jet are very specific for
ruptured IAs. It should be noted that impingement zone and
inflow jet are not the direct cause of IA growth rupture. It

is difficult to distinguish unruptured IAs from ruptured IAs
only using the characteristic parameters of impact zone and
inflow jet.

In addition, impingement zone is almost a qualitative
concept without quantitative criteria, and impingement zone
can generally be roughly determined according to the high
WSS distribution. In this study, WSS that exceeds 80% of
the maximum WSS is considered as high WSS. According
to the distribution of high WSS, impingement zone can be
determined. The size of impact domain has a certain influence
on classification performance. Furthermore, the flow rate will
affect the size and location of jet impingement zone, but the
impact on classification performance is acceptable. Due to the
limitations of medical ethics, the patient-specific blood flow
velocity is very difficult to be obtained, many studies adopted the
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flow velocity of a healthy subject for numerical simulation. In this
study, the flow velocity was not patient-specific and taken from
transcranial Doppler (TCD) performed in the craniocervical
arteries of a healthy subject. Then, a flow velocity curve within
a cardiac cycle (0.8 s) could be achieved through a non-linear
fitting method.

In general, ML algorithms are the effective tools for processing
heterogeneous data, which is relatively simple, practical, and easy
to interpret. ML algorithms are relatively well-suited to identify
the rupture risk of IAs. AmongML algorithms, SVM is especially
suitable for classification with the relatively small sample size
and the unbalanced categories as well as heterogeneous data.
In our experiments, excluding hemodynamic cloud features,
SVM has the best performance with accuracy of 0.860 and
AUC of 0.925. Including hemodynamic cloud features, SVM still
has the best performance with accuracy of 0.926 and AUC of
0.969. Our experiment results indicated that the hemodynamic
cloud features within impingement zone and inflow jet
significantly improve the performance of our classification
models, no matter which classification model, the hemodynamic
cloud features could contribute to the discrimination of
ruptured IAs.

There were some limitations in this study. First, the sample
size was relatively small, and more subjects are required
to improve generalization performance and increase model
robustness, allowing models to have more sufficient quality.
Second, classification models were developed based on the data
from a single institution, multicenter data can be pooled to
improve the reliability of results. Third, CFD simulates fluid
flows and analyzes the flow characteristics using numerical
methods, in which blood was assumed to be Newtonian fluid,
elasticity of the arterial wall was not considered, and the
boundary conditions were not specific to the patient. Fourth,
CFD simulations are time-consuming and laborious for many
radiologists, neurosurgeons, and technologists, and it is not easy
to perform CFD analysis in clinical practice. Finally, the findings
in this study should be confirmed in a prospective study.

CONCLUSION

The integrated model combining ML and DL algorithms could
work with relatively high classification accuracy in assessment
of the rupture risk of IAs, and the hemodynamic cloud features
within impingement zone and inflow jet could significantly
improve the performance of the classification models, which
were important for the discrimination of ruptured IAs. Adding
consideration of hemodynamic cloud features, SVM had the
best classification performance with accuracy of 0.926 and AUC
of 0.969.
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