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In the last four decades, monoclonal antibodies and their derivatives have emerged

as a powerful class of therapeutics, largely due to their exquisite targeting specificity.

Several clinical areas, most notably oncology and autoimmune disorders, have seen

the successful introduction of monoclonal-based therapeutics. However, their adoption

for treatment of Central Nervous System diseases has been comparatively slow, largely

due to issues of efficient delivery resulting from limited permeability of the Blood Brain

Barrier. Nevertheless, CNS diseases are becoming increasingly prevalent as societies

age, accounting for ∼6.5 million fatalities worldwide per year. Therefore, harnessing the

full therapeutic potential of monoclonal antibodies (and their derivatives) in this clinical

area has become a priority. Adeno-associated virus-based vectors (AAVs) are a potential

solution to this problem. Preclinical studies have shown that AAV vector-mediated

antibody delivery provides protection against a broad range of peripheral diseases,

such as the human immunodeficiency virus (HIV), influenza and malaria. The parallel

identification and optimization of AAV vector platforms which cross the Blood Brain

Barrier with high efficiency, widely transducing the Central Nervous System and allowing

high levels of local transgene production, has now opened a number of interesting

scenarios for the development of AAV vector-mediated antibody delivery strategies to

target Central Nervous System proteinopathies.

Keywords: AAV vectors, AAV vector-mediated antibody delivery (A-MAD), Monoclonal antibodies, Nanobodies

(VHH), Central Nervous System, Blood Brain Barrier (BBB)

INTRODUCTION

Antibodies, or Immunoglobulins (Ig), are glycoproteins produced by the immune system,
characterized by their ability to recognize and bind a specific region (epitope) of an antigen
with high specificity and (generally) high affinity, neutralizing potential pathogens. The basic
structure of an Ig, determined by X-ray crystallography, is a tetramer of ∼150 kDa, formed
by two identical pairs of heavy (50 kDa) and light polypeptide chains (25 kDa), joined by
disulfide bonds. Heavy and light chains present highly variable complementarity determining
regions (CDRs), which form the Fragment antigen binding (Fab) regions of the antibody,
responsible for antigen recognition and binding. In contrast, the Fragment crystallizable (Fc)
region binds to a variety of receptors on immune cells, to mediate antibody interaction
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with other components of the immune system and provide
effector function (Figure 1).

The use of antibodies as therapeutic agents has increased
considerably in the last 40 years, thanks to the generation
of monoclonal antibodies (mAbs)—monovalent, laboratory-
produced antibodies, derived from a single B-lymphocyte
cell clone (1). Since the approval of the first therapeutic
mAb, Muromonab-CD3 (OKT-3), by the US Food and Drug
Administration (FDA) in 1985 (2), a further 80 mAb-based
therapeutics have been approved for a range of clinical
applications, with oncology, immunology and hematology being
the predominant therapeutic areas (3, 4). This increased use of
mAbs is no doubt partly fueled by progressive improvements
in general safety, due to the development of less immunogenic
chimeric (5, 6), humanized (7), and fully human structures (8)
(Figure 1). mAbs have now achieved the status of best-selling
pharmaceutical products: as of 2018, eight out of the ten best-
selling drugs globally were mAbs; and in 2020 one single mAb,
the anti-TNFα monoclonal Adalimumab (Humira R©), generated
an annual revenue of $19.9 billion (9). Interestingly, as of 5 years
ago,∼570 mAbs were in evaluation in different phases of clinical
trials and, based on previous completion rates, it is expected that
a significant number of these novel mAbs therapeutics will come
to market (10).

Proteinopathies are a large class of CNS diseases,
characterized by the progressive accumulation of abnormal
protein aggregates/inclusions, which are generally thought
to confer a toxic gain-of-function (Table 1) (32). Generally,
these toxic proteins accumulate intracellularly, although the
toxic Aβ peptide classically associated with Alzheimer’s disease
accumulates extracellularly. Proteinopathies usually arise
as adult onset, degenerative disorders, initially localized to
specifically vulnerable regions of the CNS before spreading
through the brain, possibly due to prion-like propagation
mechanisms (33–36). Hence, drug delivery approaches that can
widely target the CNS are required for the treatment of these
severely debilitating conditions. In principle, mAbs represent
an ideal therapeutic to treat these diseases, due to their high
specificity for their protein targets [either directly targeting
a toxic protein, or the processing enzymes responsible for
its production, such as the β-site amyloid precursor protein
cleaving enzyme 1 (BACE1) in Alzheimer’s disease (AD)].
Importantly, the exquisite specificity of mAbs can be harnessed
to target desired domains/functions of a protein while leaving
the activity of other key domains intact (37). It can also be
used to discriminate toxic protein variants from non-toxic
forms, as shown by the ability of mAbs to distinguish different
α-synuclein strains responsible for distinct synucleinopathies
(38–40) and different structural variants of Aβ1−42 in Alzheimer’s
disease (AD) (41). This degree of targeting precision is superior
to that achievable using alternative strategies, such as RNA
interference (RNAi) and antisense oligonucleotides (ASOs),
which lead to complete loss of protein function. RNAi and
ASOs have also been reported to have additional problems
linked to increased risks of toxicity (42–44) and off-target
effects (45–47), and also appear unsuitable for depletion of
long-lived proteins, as they operate at the transcriptional

level, and so are dependent on protein depletion to have an
effect (48).

The use of mAbs as CNS therapeutics, however, is complicated
by two main issues: (i) their large multimeric structure, limiting
their ability to cross the Blood Brain Barrier (BBB) following
intravenous administration (49) and (ii) their moderate half-
life (∼11–30 days in humans) (49). Combined, these issues
mean that mAbs require repeated administration at high
doses to maintain therapeutically relevant levels in the CNS,
as shown by chAducanumab (Aduhelm R©), which requires
monthly intravenous infusions to achieve disease modifying
effects in AD (50). Repeated administration does, however,
have a number of disadvantages. First, it can negatively impact
on patient compliance. Second, it will result in accumulating
costs, particularly for long-term, adult-onset neurodegenerative
diseases, which will require high levels of dosing over a
sustained period.

As such, the vast majority of mAbs currently on the market
are indicated for the treatment of acute peripheral conditions,
with oncology, autoimmune diseases and dermatology being the
most prevalent therapeutic areas. In contrast, the development
of mAbs therapeutics for the treatment of CNS disorders is
lagging behind, albeit with a few exceptions, such as anti-CGRP
and anti-CGRP receptor mAbs for the treatment of migraine
(forecast to become best-selling drugs by 2024) (51), and
the aforementioned chAducanumab, regardless of the ongoing
controversy surrounding its clinical efficacy.

Hence, to fully exploit the unique specificity properties of
mAbs (and their derivatives) within the CNS, we believe it is
essential to employ technologies that allow efficient BBB crossing
and provide long-term, stable drug exposure in the CNS. In
this respect, recombinant vectors based on Adeno-Associated
Viruses (rAAV) have been identified as promising tools to unlock
the potential of mAbs (and their derivatives) for the treatment
of CNS proteinopathies. In this review, we will summarize
the current status of the field and highlight areas of potential
improvement that we believe will turn the prospect of rAAV
vector-mediated antibody delivery (A-MAD) for the treatment of
CNS proteinopathies into a reality in the near future.

THE BLOOD BRAIN BARRIER

“Blood brain barrier” is a working terminology that defines the
microvasculature of the CNS, which possesses a unique structure
and properties [extensively reviewed in (52)] (Figure 2A).
The BBB allows the selective transport of molecules essential
to maintain the CNS microenvironment and proper CNS
function, while acting as a barrier against toxic compounds and
dangerous microorganisms (Figure 2B). The shielding effect of
the BBB, however, also severely limits the efficient penetration
of therapeutics from the periphery into the CNS. In general,
compounds which have a molecular weight >400 Da and are
capable of forming more than 8 hydrogen bonds are efficiently
excluded from the CNS by the BBB (53). This is especially
problematic in the case of antibody-based therapies, due to their
size. Typically, only 0.1–0.2% of systemically injected antibody
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FIGURE 1 | Full-length antibody structure. (Top) Schematic of a typical antibody structure, generated from a murine source. Two heavy chains and two light chains

are connected in pairs by disulphide bonds. The fragment antigen binding (Fab) region contains highly variable complementarity determining regions (CDRs),

responsible for the specific recognition and binding of antigens. The fragment crystallizable (Fc) region binds to specific receptors on immune cells, modulating the

immune response, as well as some proteins of the complement system. (Bottom) Reduced immunogenicity of mAbs through protein engineering. The clinical

success of mAbs has largely been driven by application of protein engineering techniques, which have allowed the development of safer, less immunogenic

structures, when compared to mAbs of solely murine origin. Chimeric antibodies are characterized by approximately one third of their structure being derived from the

original murine source. In these antibodies, murine-derived variable regions are linked to a human constant domain scaffold. By convention, chimeric mAbs are named

using the “-ximab” suffix. In humanized mAbs, 90% of the structure is of human origin, with only the antigen binding sites deriving from the original mouse source.

Humanized mAbs are named using the “-zumab” suffix. Fully human mAbs are entirely derived from human sources and thus display minimal immunogenicity in

clinical use. Fully human antibodies are named using the “-umab” suffix.

accesses the CNS. Clearly, if therapeutic mAbs are not accessible
to the brain, their utility for the treatment of proteinopathies
will be limited. Hence, given the benefits of antibody-based
therapies and the increasing unmet clinical need presented by
CNS diseases, there is an ongoing search for technologies which
can circumvent the CNS and efficiently deliver antibody-based
therapeutics into the parenchyma (54) (see Section ‘Delivery

of mAbs and their derivatives to the Central Nervous System’
below).

Disruption of the BBB has been reported at late stages
of several proteinopathies, such as AD, Parkinson’s disease
(PD), Huntington’s disease (HD) and Amyotrophic lateral
sclerosis (ALS) (55, 56). In these conditions, in fact, multiple
neurodegeneration pathways are driven by immune responses
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TABLE 1 | List of A-MAD approaches in preclinical models of the most common CNS proteinopathies.

Protein Proteinopathy Antibody format Delivery platform Model Reference

α-synuclein* Parkinson’s disease and

dementia with lewy bodies

VHH rAAV5/ICV Sprague–Dawley rats Chatterjee et al. (11)

α-synuclein* scFv rAAV1/ICV DAT-Cre rats Chen et al. (12)

Tau* Frontotemporal dementia Full-length rAAVrh.10/ICV Tau P301S mice Liu et al. (13)

Aβ* Alzheimer’s disease scFv rAAV1/ICV 3xTg-AD mice Ryan et al. (14)

Aβ* scFv rAAV1/ICV TgCRND8 mice Levites et al. (15)

Aβ* scFv rAAV2/ICV Tg2576 mice Fukuchi et al. (16)

Aβ* scFv rAAV/ICV 3xTg-AD mice Sudol et al. (17)

Aβ* scFv rAAV5/ICV APPswe/PS1dE9 mice Kou et al. (18)

Aβ* Full-length rAAV1/IM Tg2576 mice Shimada et al. (19)

Aβ* scFv rAAV1/IM APPswe/PS1dE9 mice Yang et al. (20)

Aβ* scFv-IgG** rAAV1/ICV APP/PS1 mice Elmer et al. (21)

Tau* Full-length rAAVrh.10/ICV Tau P301S mice Allen et al. (22)

Tau* scFv rAAV8/ICV Tau P301S mice Ising et al. (23)

Tau* scFv rAAV5/ICV JNPL3 mice Vitale et al. (24)

Tau* scFv rAAV1/ICV rTg4510 mice Goodwin et al. (25)

TDP-43* Amyotrophic lateral sclerosis scFv rAAV9/IT TDP-43A315T mice Pozzi et al. (26)

SOD-1* scFv rAAV1/IT SOD1G93A mice Patel et al. (27)

SOD-1* scFv rAAV9/IV SOD1G93A mice Ghadge et al. (28)

PrPC Prion disease scFv rAAV2/ICV TSE mice Wuertzer et al. (29)

Huntingtin* Huntington’s disease scFv rAAV1/ICV B6.HDR6/1 mice Snyder-Keller et al. (30)

Huntingtin* scFv rAAV6/ICV R6/2_Tg mice Amaro and Henderson (31)

*Evidence for prion-like cell to cell transmission.

**Engineered for Fc effector function.

ICV, Intracerebroventricular; IM, Intramuscular; IT, Intrathecal; IV, Intravenous; TDP-43, Transactive response DNA binding protein-43; SOD1, Superoxide dismutase 1.

(associated with the influx of toxic blood-derived debris, cells
and pathogenic microorganisms), as well as impaired oxygen
transport and consequent hypoxia associated inflammation (56,
57). However, it is unclear whether such disruption would
facilitate the entry of therapeutics into the CNS and, if it did,
whether any benefits would offset the deleterious effects of
barrier breakdown. Furthermore, the degree of BBB breakdown
is likely variable and incomplete, suggesting that the use of BBB-
crossing technologies to deliver antibodies into the CNS would
still allow higher levels of therapeutic to be achieved (58), as
shown in preclinical models of neurodegenerative disease with
various degrees of BBB disruption. Finally, postponing drug
administration until an advanced stage of disease, when extensive
BBB disruption is potentially observed, would in all likelihood
limit the therapeutic benefits, since significant (and currently
irreparable) CNS damage would already have occurred. As such,
developing novel technologies to circumvent the intact BBB,
allowing the efficient delivery of mAbs into the CNS, is essential if
we are to harness their full therapeutic potential for the treatment
of CNS proteinopathies.

Delivery of mAbs and Derivatives to the
Central Nervous System
One way to overcome the shielding effect of the BBB is to
inject therapeutics directly into the brain parenchyma. However,
not only are direct injections highly invasive and damaging to

the local tissue, but they are typically characterized by limited
distribution of the therapeutic, which is retained near the
injection site, limiting the use of this approach to treat multi-
region CNS diseases (61–65). To some extent, these problems
can be overcome by direct injection into the cerebrospinal fluid
(CSF), but this method is also associated with potentially severe
adverse effects, particularly if large boluses of drugs are rapidly
administered (66). Drug entry into the CNS can also be achieved
using administration of hyperosmotic solution (67) or by use of
ultrasound to temporarily disrupt the BBB (68), although random
opening of the barrier for undefined periods of time also involves
the risk of potentially severe adverse effects (56). Ideally, the
treatment of multi-region CNS diseases requires a drug delivery
system which combines minimal invasiveness with widespread
drug delivery.

To date, the most commonly exploited technology for the
minimally invasive delivery of drugs to the CNS has been
based on the naturally occurring process of receptor-mediated
transcytosis (RMT), which serves to shuttle essential metabolites
to the brain. This process can be subverted by so-called “Trojan
Horses,” mAbs against endogenous BBB receptors, such as
the insulin receptor (IR) or transferrin receptor (TfR). These
antibodies bind their targets and are effectively carried across
the BBB by RMT. By fusing the biologic of interest to the
“Trojan Horse,” it is possible to obtain CNS delivery, following
a single systemic bolus (69). This approach also underlies
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FIGURE 2 | The Blood Brain Barrier. (A) Schematic of the BBB shown in cross-section. Main cellular components are shown. Endothelial cells are fused together by

tight junctions, and surrounded by pericytes and astrocytic end feet. Figure adapted from (59). (B) Transport pathways across the Blood Brain Barrier. Ions, water and

other small molecules necessary to maintain CNS homeostasis (such as glucose for metabolic support) can cross the BBB using a variety of mechanisms, including

those based on passive diffusion, from high to low concentrations, and active transport, requiring ATP hydrolysis. Molecules can cross the BBB using either

(Continued)
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FIGURE 2 | paracellular (between cells) or transcellular (across cells) pathways. Receptor-mediated transcytosis (RMT) allows selective uptake of macromolecules,

including plasma proteins, enzymes, hormones and growth factors, via receptors expressed on the luminal side of the BBB. Trojan horse antibody strategies exploit

RMT to enable delivery of conjugated drugs within the CNS. Adsorptive-mediated transport (AMT) relies on the electrostatic interaction between positively charged

molecules (in general charged peptide moieties) and the negatively charged plasma membrane. Carrier-mediated transport (CMT) is an energy-dependent

mechanism, allowing co-transport of molecules, either in the same direction (symport) or in the opposite direction (antiport). Active efflux transport (AET) is involved in

the clearance of molecules, including drugs, from the brain. Due to the general impermeability of the BBB and the reliance on specialized and specific transport

mechanisms for transport of molecules into the CNS, high molecular weight therapeutics, such as mAbs and their derivatives, are largely excluded from the CNS.

Figure adapted from (60).

alternative technologies, such as the so-called “Brain Shuttle”
(BS), which utilizes an antibody fragment against the TfR to
transport biologics into the CNS (70). However, the “Trojan
Horse” strategy is characterized by limited efficiency (CNS uptake
of 1.1% and 3.5% of a systemically injected dose of TfR- or
IR-targeting mAb in rhesus monkey, respectively) (71) and
suffers from safety concerns linked to chronic administration
of high antibody doses (71, 72). The widespread adoption of
RMT-based technologies is impacted by a number of further
issues. These include the fact that insulin and transferrin
receptors are not uniquely expressed at the BBB site, raising
safety concerns linked to non-site-specific distribution of the
therapeutic (73). Potential solutions to overcome these concerns
are currently being investigated, as shown by reports suggesting
that a reduction in the antibody binding affinity to the TfR
increases brain uptake, while mitigating adverse effects observed
in the periphery (e.g., reduction in reticulocyte count) (73, 74).
Additionally, receptor-specific “Trojan Horse” antibodies, such
as anti-IR or -TfR are generally species-specific, requiring tuning
of the binding profile in each species tested, which will negatively
impact on the ease of their translation into humans (75, 76).

In contrast, rAAV vectors are emerging as ideal candidates for
mAbs delivery to the CNS, as described below.

rAAV VECTORS FOR IN VIVO GENE
TRANSFER TO THE CNS

Naturally occurring AAV is a non-enveloped virus, in which a
single stranded (ss) DNA genome of ∼4.8 kb is contained within
an icosahedral protein capsid. The genome encodes three genes
which act in various processes relating to the viral life-cycle. The
four proteins encoded by the rep gene (Rep78, Rep68, Rep52, and
Rep40) are required for viral genome replication and packaging,
while expression of the cap gene produces viral capsid proteins
(VP1, VP2, and VP3 subunits). Finally, an alternate reading
frame overlapping the cap gene encodes the assembly-activating
protein (AAP), which promotes interaction between VPs for
capsid formation and stability. These coding sequences are
packaged between two inverted terminal repeats (ITRs), essential
for genome replication and packaging (77) (Figure 3). The initial
interaction of AAV with cells, prior to infection, is mediated
by interactions with specific carbohydrates on the surface of
target cells, such as sialic acid, galactose and heparin sulfate (78).
The preferential binding for one or more of these molecules,
determined by differences in the sequences of the different VP
proteins, determines the tropism of specific AAV serotypes.

Recombinant AAV (rAAV) vectors are formed by substitution
of the viral genes with a synthetic expression cassette, in which

a promoter element drives the expression of the therapeutic
transgene of interest, followed by a polyadenylation (polyA)
signal (Figure 3). In the typical rAAV vector production method,
rep and cap are supplied in trans, alongside a helper plasmid
containing essential genes (E4, E2a, and VA) which play a role
in AAV replication (79). Standard ss rAAV have an optimal
transgene capacity of ∼4.8 kb, including regulatory sequences,
such as promoters and regulatory elements, including the widely
used polyadenylation sequence (polyA tail); packaging of coding
sequences exceeding 5.2 kb is inefficient, and unfavorably impacts
on transduction (80).

Over the past 30 years, rAAV vectors have been employed in
a variety of clinical trials, both for peripheral (NCT03588299,
NCT03001830, NCT02396342 for the treatment of hemophilia
A and B) and CNS conditions (NCT01621581, NCT01973543,
NCT03562494 for the treatment of Parkinson’s disease;
NCT00087789, NCT03634007 for the treatment of Alzheimer’s
disease) (81). These trials have shown rAAVs to have a largely safe
clinical profile. One area of concern with systemic administration
of high vector doses is potential hepatotoxicity, which has been
reported in some clinical trials. However, it appears that this
can be managed using corticosteroid administration (82). The
FDA and the EMA approval of Zolgensma R©, a pioneering
AAV9-based medication for the treatment of Spinal Muscular
Atrophy (SMA) in pediatric patients, is potentially the tip of
the iceberg for AAV use in treating CNS diseases. In fact, as of
January 2022, ∼50 additional clinical studies employing rAAV
vectors for the treatment of CNS disorders had been either
completed or were ongoing (www.clinicaltrials.gov) (83).

rAAV Vector-Mediated Antibody Delivery
(A-MAD)
Convincing proof-of-principle has been obtained for rAAV
vector-mediated for the treatment of peripheral conditions.
In these studies, AAV vectors have been employed as gene
transfer vehicles to deliver the coding sequence for specific
antibodies into non-hematopoietic cells, driving antibody
production and secretion for pre- or post-challenge treatment
(84). This approach, known as Vectored Immunoprophylaxis
(VIP), induced lifelong expression of significant doses of mAbs
in multiple models of disease for the prevention of infection with
various pathogens (85), such as Influenza A (86) and Hepatitis C
(87) viruses, Plasmodium falciparum (88) and HIV (89–91). Such
has been the success of this approach that VIP is currently being
tested in phase 1 clinical trials (NCT01937455; NCT03374202) in
HIV-infected adults (92).
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FIGURE 3 | rAAV vectors for systemic delivery of mAbs. (Left) AAV capsid structure. The AAV capsid is composed of 60 protein monomers (VP1, VP2, and VP3

subunits with a stoichiometry of 1:1:10) arranged in icosahedral symmetry. (Top right) Representation of the single stranded (ss) DNA genome found in naturally

occurring AAVs. Two open reading frames (ORFs) express genes necessary for replication (rep) and capsid structure (cap). An alternate reading frame overlapping the

cap gene encodes the assembly-activating protein (AAP), promoting capsid formation and stability. (Bottom right) In recombinant AAV-based vectors (rAAV), the viral

genes are substituted by a synthetic transgene cassette, in which a promoter drives expression of a transgene of interest, followed by a polyA tail.

Based on this accumulated weight of evidence, it is our
opinion that the outstanding therapeutic potential of antibodies
offers a unique opportunity to target CNS proteinopathies.
Significant benefits of A-MAD strategies have emerged in
preclinical models of CNS diseases (Table 1), and the translation
of this technology into a therapeutic strategy for humans has
now become a priority. We believe that combining mAbs
derivatives and rAAV vectors truly has the potential to offer long-
awaited therapeutic options against chronic and/or degenerative
CNS proteinopathies, as (i) certain AAV serotypes have the
ability to cross an intact BBB in multiple animal species,
including non-human primates, resulting in widespread CNS
transduction (93); (ii) rAAV vectors are able to infect the non-
dividing (post-mitotic) cells of the CNS and are considered
safe, due to their non-replicative and non-integrating nature;
(iii) rAAV vectors provide stable, long-lasting production
of the therapeutic of interest [up to 15 years in a non-
human primate parkinsonian model (94)]; and (iv) due to
the vector life-cycle, therapeutics are produced within the cell
and, therefore, are able to access intracellular targets with
ease (83).

Systemic Delivery of AAV Vectors to Target
CNS Disorders
Systemic administration of rAAV vectors with BBB crossing
properties arguably represents the best option for treating
multi-region CNS disease using mAbs (or derivatives).
Unlike approaches relying on local vector administration,
such as intraparenchymal (IP) (95), intrathecal (IT) (96, 97)
and intracerebroventricular (ICV) (98) injections, in which
transduction is largely limited to the area surrounding
the injection site, systemic delivery results in widespread
transduction of the CNS. However, systemic administration
does require the use of much higher vector doses to achieve
adequate levels of CNS transduction, raising concerns about
potential immunotoxicity (99). Although systemic delivery
of AAV vectors has proved to be largely safe in a number
of clinical trials targeting peripheral conditions [e.g., Spinal
Muscular Atrophy Type I (NCT02122952); Duchenne Muscular
Dystrophy (NCT03368742); and Mucopolysaccharidosis
(NCT03315182) (100)], potential concerns linked to off-target
transduction of peripheral organs and immune responses to
the AAV capsid and/or the transgene cannot be completely

Frontiers in Neurology | www.frontiersin.org 7 April 2022 | Volume 13 | Article 870799

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Marino and Holt CNS Antibody Delivery Using AAV

discounted, particularly when targeting adult CNS conditions,
which will generally require higher rAAV vector doses than those
administered to children.

Consequently, introduction of modifications to the rAAV
vector capsid, responsible for vector tropism, and the transgene
cassette, have become increasingly important to (i) minimalize
safety concerns, limiting unwanted transduction of peripheral
organs (ii) improve BBB crossing, and (iii) improve transgene
expression levels in a cell-type specific manner. A major issue
with systemic AAV administration is the presence of pre-existing
neutralizing antibodies (NAbs) in approximately half of the
human population, as a result of exposure to naturally occurring
AAVs. NAbs are durable and display considerable cross-reactivity
across serotypes, severely hindering transduction efficiency (101).
Engineering the rAAV vector capsid to evade NAbs is, therefore,
an important strategy to improve the efficiency of systemic
delivery and A-MAD in the CNS (Figure 4). In the following
sections, we will discuss recent innovations in the fields of capsid
and transgene engineering, that we believe will help facilitate the
use of A-MAD to treat CNS proteinopathies.

IMPROVEMENT OF AAV VECTORS FOR
A-MAD: ENGINEERING THE CAPSID

Important advances in the clinical application of rAAV vectors
havemostly been based onAAV9, as this serotype is characterized
by higher transduction efficiency in the CNS, cardiac and
skeletal muscle, pancreatic tissue and liver in comparison with
other serotypes (102), and lacks the proinflammatory cytokine
induction typically observed with lentiviral vectors. The ability
of AAV9 to cross the BBB from the peripheral circulation
and transduce non-dividing cells in the CNS has been behind
the successful development of Zolgensma, with several other
therapeutics currently being investigated for the treatment of
CNS proteinopathies. An additional advantage of AAV9 is that
the prevalence of anti-AAV9 NAbs in humans is lower than
that observed for other serotypes, such as AAV1 and 2 (103).
Given the useful properties of this serotype, we believe that
further engineering of the AAV9 capsid could generate highly
efficient BBB crossing capsids for use as minimally invasive
delivery platforms for mAbs (and derivatives) for the treatment
of CNS disorders.

Engineering the AAV Capsid Using Rational
Design
Knowledge of AAV biology, including aspects of capsid structure,
assembly and transduction mechanism, has allowed engineering
of vectors with the aim of enhancing, or introducing, new and
beneficial characteristics (104). This strategy is known as rational
capsid design. Through rational design, novel AAV serotypes,
showing enhanced specificity for CNS cell-types in comparison
to peripheral organs, have been produced. Rational design
generated AAV9.HR, a serotype able to preferentially transduce
neurons upon systemic administration in neonatal mice, while
de-targeting the periphery (105). AAV9.HR was derived from the
parental serotype AAV9 by introducing the mutations His527Tyr

and Arg533Ser, which influence galactose and LamR receptor
binding (105, 106).

Rational capsid design has also allowed creation of entirely
artificial AAV capsids, using phylogenic analyses to enable
de novo gene synthesis of ancestral capsid proteins from the
common ancestors of AAVs currently in circulation. These
reconstructed ancestral capsids possess intriguing features, such
as an enhanced thermostability and wide transduction patterns
(107) that could open interesting scenarios for the delivery of
mAbs (and derivatives) to a targeted CNS cell-type. Particularly
relevant for CNS targeting is serotype Anc80L65, which has
shown a 4-fold increase in the ability to transduce astrocytes,
when compared to AAV9, following intravenous administration
in adult mice (108). Preferential targeting of astrocytes via A-
MAD could lead to significant benefits for the treatment of
Transactive response DNA binding protein of 43 kDa (TDP-
43)-related proteinopathies, such as ALS and frontotemporal
dementia (FTD), where astrocyte activation and inflammation
appear as strong effectors in disease progression (109). Of
interest, a current gap in rAAV platform technology is the lack of
serotypes able to efficiently transduce microglia, in our opinion
one of the most valuable therapeutic targets in the CNS, due
to their involvement in numerous proteinopathies (110–112).
To date, modification of the AAV6 capsid through site-directed
mutagenesis has been shown to increase transduction efficiency
in monocyte-derived dendritic cells (113). However, microglia
remain largely resistant to transduction (114). Further research
efforts, directed toward the identification of microglia-targeting
rAAVs, can open interesting scenarios for A-MAD strategies
targeting the inflammatory component of CNS proteinopathies,
although the potential impact of cell-transduction on the
activation state of microglia may prove to be a significant
challenge (115).

Engineering the AAV Capsid Using
Directed Evolution
Modification of AAV capsids can also be achieved through
methods that do not rely on a priori information, but
on random events [capsid shuffling (116), peptide insertion
(117), random mutagenesis (118)]. These approaches, known
collectively as directed capsid evolution methodologies, have
succeeded in generating rAAV capsids with remarkable BBB
crossing properties and cell-type specific tropism following
systemic administration (119).

Capsid shuffling generates hybrid serotypes such as AAV-
Olig001, which was created by fusing together elements of
different capsids originating from AAV serotypes 1, 2, 6, 8, and 9.
AAV-Olig001 shows exceptional specificity for oligodendrocytes
(95%) after intravenous administration in rats, with no reported
transgene expression in astrocytes and microglia (120).

To date, perhaps the most successful strategy for AAV capsid
evolution aimed at improving BBB crossing has been through
modification via peptide insertion. This methodology forms the
basis of the Cre recombination-based AAV directed evolution
(CREATE) platform (121). In this method, a library of capsid
variants was generated by introduction of a randomized sequence
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FIGURE 4 | Desired characteristics of rAAV vectors for A-MAD. Certain rAAV vector serotypes show BBB crossing properties, thus allowing minimally invasive and

long-term delivery of mAbs and their derivatives within the CNS. However, improvements to the rAAV vector platform are desirable to maximize the therapeutic

potential of A-MAD strategies, and decrease the risk of potential side effects. In particular, capsid engineering can be used to enhance BBB penetration, and enable

CNS cell-type specific tropism. These modifications would also have the benefit of reducing potential off-target toxicity which, in the case of systemic administration, is

usually linked to liver transduction. Introduction of capsid modifications is also desirable to reduce the likelihood of vector capture by pre-existing neutralizing

antibodies (NAbs), which have been found to severely limit the efficiency of the system. In parallel, engineering of the rAAV transgene cassette is desirable to maximize

transgene expression efficiency, thus allowing high (therapeutically relevant) levels of mAbs (or derivatives) within the CNS. Moreover, following systemic administration,

it will be essential to spatially restrict transgene expression, de-targeting the periphery. The ability to turn transgene expression “on” or “off” will serve to prevent, or

limit, adverse reactions to the transgene. Incorporation of such modifications into basic vector design will, in all likelihood, allow remaining concerns over the safety of

AAV systems for CNS use to be overcome, while also increasing their therapeutic potential.
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of 7 amino acids (aa) between aa 588 and 589 of the VP1 capsid
subunit from AAV9. The capsid library was engineered around
an expression cassette encoding a Cre-inducible fluorescent
reporter, allowing recovery of capsid variants which successfully
transduced cells in a Cre-expressing mouse (astrocyte-specific
Gfap-promoter) following systemic injection. CREATE was used
to generate the serotypes AAV-PHP.B, AAV-PHP.eB and AAV-
PHP.S, which show enhanced BBB penetration with concomitant
increases in brain (121) and spinal cord transduction (122),
in comparison to the parental serotype. Unfortunately, the
increased BBB crossing seen with AAV-PHP.B appears limited
to C57Bl/6J mice, with other mouse strains and animal
species (including non-human primates) showing limited CNS
transduction following systemic administration, due to a lack
of the obligate LY6A receptor on endothelial cells of the brain
vasculature (123, 124). This limitation could be potentially
overcome by the work of Hanlon et al. (125), who described a
peptide insertion strategy, iTransduce, in which pseudorandom
21-base nucleotides were inserted between amino acids 588–
589 of the AAV9 VP1 capsid subunit. Selection of BBB crossing
capsids in iTransduce was again based on Cre-inducible marker
expression, albeit in this case Cre was encoded by the AAV
expression cassette and the vector was systemically applied to a
fluorescent reporter mouse. This strategy was used to generate
AAV-F, with a transgene expression efficiency in the murine
brain comparable to that of AAV-PHP.B following intravenous
administration. However, AAV-F does not rely on the LY6A
receptor for BBB crossing, and it appears able to efficiently cross
the BBB in non-C57Bl/6J genetic backgrounds (BALB/c) after
systemic administration. To date, however, it is impossible to
foresee whether AAV-F could be a clinically useful serotype, as it
has not been systemically administered in non-human primates.
In all likelihood, ongoing research efforts will provide us with a
plethora of novel BBB crossing rAAV serotypes, allowing efficient
targeting of CNS disorders in humans.

As introduced earlier, capsid modifications are also, to date,
the most successful aid to AAV vector evasion of both capsid
specific cytotoxic T-lymphocytes (CTL) and innate immune
responses upon vector administration (126). For example,
introduction of mutations in the epitope on the AAV2.5 capsid
recognized by the monoclonal antibody A20 reduces levels of
vector neutralization (127); while the chimera AAV-DJ shows the
ability to evade neutralizing antibodies generated by exposure to
other serotypes (128). In our opinion, the benefits of engineering
new, immunosilent AAV serotypes exceed those of alternative
strategies required to maximize the efficiency of systemic AAV
administration and its use in A-MAD. Administration of empty
“decoy” capsids, use of immunosuppressants in patients (129)
and plasmapheresis have all been proposed as useful strategies
but, in fact, all pose some concerns. To begin with, as NAbs
recognize the same epitopes on both empty capsids and those
carrying the therapeutic transgene, extremely high doses of
“decoy” capsids (∼10-fold higher) are needed to ensure that
NAbs are effectively mopped up, leaving the therapeutic vector
free to cross the BBB and transduce the CNS. In contrast,
immunosuppressive agents and plasmapheresis are non-specific
and effectively remove all circulating antibodies, leaving patients

exposed to the risk of opportunistic infections (130). To
overcome this issue, plasmapheresis methods based on AAV-
specific immune absorption columns are being tested for their
ability to exclusively deplete anti-AAV antibodies in non-human
primates; the safety and efficacy of such an approach is yet to be
determined in humans (131).

IMPROVEMENT OF AAV VECTORS FOR
A-MAD: OPTIMIZING THE TRANSGENE
CASSETTE

Upon successful cell transduction, a critical issue for successful
A-MAD is the production and maintenance of a therapeutic
threshold of biologics within the CNS. Production of the
therapeutic transgene depends on conversion of the rAAV vector
single stranded genome into double-stranded DNA (dsDNA),
to enable subsequent mRNA transcription and translation.
Synthesis of the second strand of DNA is considered a rate
limiting step, delaying the onset of transgene expression and,
in cells with particularly inefficient second strand synthesis,
potentially limiting the steady-state level of therapeutic that can
be produced (132, 133). This issue can be effectively overcome by
creating a synthetic double-stranded genome, through mutating
one of the ITRs so that it can form a short DNA hairpin—the
so-called self-complementary (sc) configuration (134, 135). The
sc configuration does, however, involve a 50% reduction in the
transgene cassette capacity (∼2.4 kb), thus limiting the choice of
potential transgene candidates (136). As the cDNA of full-length
mAbs occupies a minimum 2 kb of packaging space, A-MAD
strategies using full length antibodies tend to accommodate a
single copy of the antibody coding sequence in a single stranded
genome (137, 138), which also includes standard regulatory
elements, such as promoter sequences, the polyA signal and
the woodchuck hepatitis virus post-transcriptional regulatory
element (WPRE, see Section ‘Enhancing VHH Expression’
below). On the contrary, mAbs derivatives, due to their small size,
are optimal for incorporation into a scAAV system.

Derivatives of Monoclonal Antibodies for
A-MAD
Insertion of full-length mAbs within a rAAV expression cassette
often requires extensive reconfiguration, which can potentially
alter antibody properties. mAbs derivatives of smaller size are
therefore better suited for rAAV vector-mediated expression
(139). In particular, camelid derived nanobodies, also known
as VHH, are emerging as ideal candidates for incorporation
into rAAV vectors, due to their single binding domain,
exceptional stability and lack of an Fc effector function.
This latter characteristic could contribute to a more favorable
pharmacokinetic profile within the CNS, in comparison with full-
length mAbs. In fact, it has been hypothesized that the binding of
the Fc domain to Fc receptors in the BBB represents a potential
route for the reverse transcytosis of antibodies across the BBB,
facilitating their clearance from the brain (Figure 2B) (140–142).

VHH are the smallest naturally derived antigen-binding
functional fragments (∼15 kDa) (143), and as such are able to
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target epitopes inaccessible to full-lengthmAbs, such as the active
site of enzymes (to modulate their catalytic activity) (144). The
use of VHH largely overcomes the issues associated with the
use of the single-chain fragment variable (scFv) format; to date,
this is the most commonly employed antibody derivative used
in A-MAD. However, scFv are notoriously difficult to engineer;
scFv are formed from the variable regions of antibody heavy
and light chains, joined by a short peptide linker, which requires
extensive optimization to ensure correct protein folding and
efficient antigen binding (145, 146), and they are frequently
unstable in the highly reducing environment of the cell (147)
(Figure 5).

One major advantage of the small size of VHH is the
possibility to engineer multiple copies within a standard (sc)
AAV expression cassette. This capacity can be used to introduce
multiple copies of the same VHH to boost overall production
levels, or to incorporate VHH raised against different targets.
These could be targeting different domains within the same
protein, to increase avidity, or completely independent proteins
within a common signaling pathway. Employing such a strategy
would significantly enhance the therapeutic potential of A-MAD
in treating CNS proteinopathies, in a manner similar to that
resulting from the use of multi-specific antibody fragments
[bispecific T cell engagers (BiTEs) (148), diabodies (149) and
dual affinity re-targeting antibodies (DARTs) (150)] for the
treatment of peripheral conditions. Interestingly, VHH can be
further engineered without loss of functionality, to (i) direct
them into specific trafficking pathways and improve target
engagement (151, 152), (ii) incorporate specific proteolysis-
promoting sequences (PROTACs), to stimulate intracellular
degradation of (toxic) proteins involved in CNS proteinopathies
(153), or (iii) insert secretion signals allowing VHH to engage
extracellular targets (which is desirable to prevent prion-type
transmission), or allow so-called “cross-correction” in which
VHH can be internalized into non-transduced cells to exert a
therapeutic effect (152, 154, 155).

To date, the use of VHH in the clinics has not raised
significant safety concerns (156). Importantly, VHH safety can
be further enhanced through the process of humanization
(157), and this increases their attractiveness for clinical
applications (158). Indeed, Caplacizumab-yhdp (Cablivi R©), a 28-
kDa bivalent nanobody indicated for the treatment of thrombotic
thrombocytopenic purpura (TTP), was recently granted EMA
and FDA approval. Although the potential of using rAAV vectors
for the long-term delivery of VHH into the CNS has yet to be
fully explored, Marino et al. recently provided significant proof
of concept for the feasibility of A-MAD strategies, based on VHH
delivery, to stop or slow neurodegenerative disease progression,
as shown by the disease modifying effects observed in a murine
model of AD, following systemic administration of AAV-PHP.B
encoding a highly-specific anti-BACE1 VHH (152).

In summary, it has been speculated for years that expression
of VHH in vivo, with the aid of gene therapy vectors, could
ultimately be their most powerful clinical application (159, 160).
However, to take full advantage of A-MAD it will be necessary to
optimize the transgene cassette to obtain robust and controllable
expression of VHH in the CNS.

Enhancing VHH Expression
The use of strategies to maximize production of biologics within
the desired cell-type is beneficial for twomain reasons: i) systemic
administration of lower vector doses would be sufficient to reach
a therapeutic concentration of the biologics within the CNS,
effectively minimizing the risks of potential side effects, as well
as therapy costs; ii) targeted transduction of a limited number
of cells could still suffice to achieve a disease modifying effect,
particularly for biologics engineered for secretion, which could
subsequently be taken up by surrounding cells.

Incorporation of the WPRE element within the rAAV
transgene cassette is now a routine modification, which has
been shown to enhance levels of transgene expression in the
murine brain and in human retina (161, 162). An exciting
recent development adopted to increase transgene expression
in the periphery is the use of a core promoter in combination
with a so-called cis-acting regulatory module (CRM). These
short sequences comprise clusters of evolutionary conserved
transcription factor binding sites that boost transcription in a
cell-type specific manner (163, 164). To date, in silico approaches
proved successful in discovering liver-(163), cardiac-(164) and
skeletal muscle- (165) specific CRMs that, upon incorporation
into the transgene cassette, enhanced transgene expression
up to ∼100-fold in comparison with the levels achieved by
core promoters alone. The identification of CRMs for CNS
would represent a large step forward as mAbs levels produced
by A-MAD are likely critical for the successful treatment
of proteinopathies (Figure 6). Nevertheless, although VHH
show low immunogenicity, the possibility of adverse immune
responses to robust VHH production cannot be overlooked in
the clinic. Hence, systems to spatially and temporarily regulate
VHH production with the CNS are desirable.

Promoters to Drive Transgene Expression
in a Spatially Defined Manner
VHH expression can be driven within the cell-type of
interest using specific promoters, overcoming issues such
as (potential) toxicity resulting from off-target, multi-organ
transgene overexpression, or deleterious immune responses
resulting from the (undesired) transduction of antigen presenting
cells (APCs) (166, 167).

Given the limited packaging capacity of rAAV vectors, short
promoter sequences are beneficial, and the human synapsin 1
promoter [480 base pairs (bp) (168)] and truncated versions
of the glial fibrillary acidic protein (GFAP) promoter [such as
GfaABC1D, 694 bp (169)] have been well-characterized and
are routinely used to restrict transgene expression to neurons
and astrocytes, respectively (168–170). Far less characterized
are short oligodendrocyte-specific promoters (171), albeit
oligodendrocyte pathology seems to contribute significantly to
proteinopathies, such as AD (172) and PD (173). Thus, we
believe that increasing research efforts in this area should
be prioritized to ensure that the full range of components
driving CNS proteinopathies is effectively targeted. In this
direction, ongoing research efforts are now aimed at refining
patterns of transgene expression to target specific cell subtypes:

Frontiers in Neurology | www.frontiersin.org 11 April 2022 | Volume 13 | Article 870799

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Marino and Holt CNS Antibody Delivery Using AAV

FIGURE 5 | mAbs derivatives for A-MAD. (A) Representative scheme of a single-chain fragment variable (scFv) antibody fragment, derived from a human

immunoglobulin. This class of engineered antibody is composed of the variable regions of the heavy (VH) and light chains (VL) fused by a linker. Their applicability is

limited by potential folding and stability issues in the reducing environment of the cell. (B) Representative scheme of a VHH, the smallest antigen-binding functional

fragment in nature, derived from a camelid immunoglobulin. The small size, high antigen specificity and exceptional stability of VHH (including in the reducing

environment of the cell) make them an ideal cargo for rAAV vector-mediated delivery to target CNS proteinopathies.

for example, the mGAD65 promoter drives expression in
GABAergic interneurons throughout the adult mouse brain,
unlike the Dlx promoter, the previous gold standard for
GABAergic interneuron targeting in the cortex, which shows
mainly forebrain restricted expression (174). In addition, the
mGAD65 promoter seems to preferentially drive expression
in parvalbumin-positive interneurons and chandelier cells.
Targeting (subsets of) GABAergic interneurons could provide
significant therapeutic benefit in the treatment of tauopathies,
where pathological tau accumulation has been implicated in
memory deficits due to impaired GABAergic transmission (152,
175, 176).

Although cell-specific promoters significantly restrict
VHH expression to the target cell type, a residual amount
of off-target transgene expression cannot be excluded
following systemic vector administration. To prevent
undesirable effects due to “leaky” transgene expression,
vector targeting can be further improved at the post-
transcriptional level, including the use of micro-RNA
(miRNA)-based methods to suppress transgene expression
(177). As an example, Xie et al. exploited a multi-tissue miRNA-
dependent suppression mechanism to spatially limit transgene
expression to the CNS of adult mice following systemic AAV9
administration (178).

Temporal Control of Transgene Expression
Even though VHH display low immunogenicity, it is not
possible to foresee whether permanent VHH expression in post-
mitotic CNS cells, which display little or no turnover/renewal,
could potentially increase the risk of immune responses,
leading to irreversible cell damage/death. Hence, in our
opinion, inclusion of a safety switch would be ideal to

limit adverse reactions. One interesting approach to regulating
transgene expression has been to take advantage of natural
variations in promoter activity: upregulation of endogenous
GFAP is a well-documented occurrence in several CNS
pathologies in higher vertebrates (179), and proof of concept
experiments with a lentiviral vector-based system for gene
delivery suggest that GFAP promoters could even be used to
enhance production of a therapeutic transgene in the event
of significant astrogliosis (180). However, this approach is
limited by a number of key issues, including that the pattern
of GFAP expression across CNS areas is highly variable, and
therefore, the response to injury is highly heterogeneous (181,
182).

In contrast, the use of small molecule inducible promoter
systems appears a valid option, particularly as transient
therapeutic expression may still produce a therapeutic effect,
as previous studies on BACE1 suggest that transient inhibition
of the enzyme is sufficient to produce sustained long-term
reductions of amyloid-β (Aβ) accumulation in AD (183,
184). An ideal inducible system should be completely free
of endogenous influence, and would be built around: (i) an
inducible promoter dependent on a unique regulatory DNA
sequence exogenous to the host genome; (ii) an effector
protein that recognizes and binds specifically to this regulatory
sequence, without interfering with any other sites within the
host genome and iii) dose-dependent inducibility of the effector
protein by a BBB penetrant drug that can be safely and
repeatedly administered. Although reports of such systems in the
literature are limited to date, the inducer/repressor tetracycline
(Tet)-dependent system is an interesting example, and was
successfully employed to modulate transgene expression for up
to 5 years in the muscle of non-human primates, following
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FIGURE 6 | rAAV vectors and VHH engineering for A-MAD. Summary of potential modifications for A-MAD. Engineering the rAAV capsid and transgene cassette can

maximize BBB crossing, NAbs evasion and spatially restrict VHH expression to the desired cell-type. More efficient production systems will lower production costs.

The outstanding versatility of VHH allows easy engineering to generate multivalent drugs, or drive proteosomal degradation of toxic protein conformations via

construction of Proteolysis targeting chimeras (PROTACs). Additionally, incorporation of secretion signals into the VHH will allow targeting of extracellular aggregates,

preventing prion-type transmission. Together, the impact of improved rAAV vector technology and VHH engineering will produce more efficient A-MAD-based

therapeutics, with concomitant reductions in undesired side-effects and lower treatment costs.

locoregional intravenous AAV administration (185). However,
delayed humoral and cellular immune responses directed against
the bacterial component of the Tet-dependent system have
been reported in some non-human primate studies (186, 187).
Although these issues appear to have been overcome by
fusing the reverse tetracycline-controlled transactivator (rtTA)
with a glycine-alanine repeat (GARrtTA), which is known to
enable the Epstein-Barr virus to evade host immune response
(188, 189), caution is obviously needed moving forward. In

the context of the CNS, the rtTA effector minocycline (190)
appears particularly suited for the inducible expression of
biologics, as it shows (i) high BBB permeability, (ii) low
cytotoxicity [albeit minor side effects can be observed upon
prolonged administration (191, 192)] and (iii) neuroprotective
(anti-apoptotic and anti-inflammatory) effects, dependent on
the inhibition of cytosolic cytochrome C translocation (193),
caspase activity (194), microglial proliferation (195), and
activation of inducible nitric oxide synthase and cytokine
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release in PD, HD, ALS, and cerebral ischemia (196, 197).
These properties suggest minocycline-controlled systems (or
equivalents) are likely to play an important role in the
development of rAAV-mediated strategies (including A-MAD)
for CNS use.

DISCUSSION

In the last four decades, the use of mAbs as therapeutics has
rapidly expanded, with many now “blockbuster drugs,” which
generate billions of dollars of annual revenue. As of November
2020, 88 antibody therapeutics were in stage 3 clinical studies
for a variety of conditions (other than COVID-19) (198), and
when combined with a relatively fast approval rate (currently
twice as fast as for small molecules) their dominant position in
the market place is likely to continue (198). In general, however,
the approval of mAbs for CNS-related indications is lagging
behind, albeit with a few noteworthy exceptions (50, 199–204).
This is not surprising, as perhaps the biggest challenge in the
development of non-invasive strategies to target CNS disorders
is overcoming the restricted permeability of the BBB, which
significantly limits mAbs access to the CNS from the systemic
circulation. rAAV vector technology offers an interesting solution
to this problem, with novel BBB-crossing serotypes allowing
extended production of biologics within the CNS following a
single systemic injection.

Interestingly, gene therapy-based methods are becoming
increasingly popular for the treatment of previously incurable
diseases. In fact, in 2019, the FDA authored a report predicting
that by 2025 ∼10–20 novel cell and gene therapy products
will be approved per year (205). A comprehensive analysis
of the 94 AAV-based clinical trials completed to date shows
that the focus is directed towards four main therapeutic
areas: liver, muscle, retinal and CNS diseases. The general
trend towards optimism is in no small part due to the fact
that in the fields of neurology and ophthalmology, areas
with traditionally high rates of clinical trial failures, ∼30%
of the tested rAAV vector-based drugs successfully completed
the path from investigational new drug (IND) to new drug
application (NDA), a percentage exceeding the historical averages
of any other drug type (206). The potential of AAVs as drug
delivery platforms, particularly if supported by further successful
outcomes in clinical trials, will undoubtedly drive research aimed
at further improving and refining the technology, particularly
for use in areas such as the CNS, where conventional small
molecule therapies have traditionally had long developmental
times and high failure rates (136). In fact, recent progress in
both capsid engineering and manufacturing technology suggest
that widespread gene delivery to the adult CNS via intravenous
administration is now possible, while improvements in antibody
engineering and expression cassette design point towards safe
and effective A-MAD-based strategies for chronic, multi-region
CNS diseases.

Given their unique properties, which are ideally suited
for A-MAD, we anticipate use of VHH will play a key

role in developing the technology, particularly as further
research provides greater insights into disease causing
mechanisms and identifies future targets for therapeutic
intervention. The push towards using VHH in CNS disease
is exemplified by the current efforts of major Biotech and
Pharma companies, such as Ablynx (Sanofi) and Boehringer
Ingelheim, who partnered to explore a potential VHH-based
treatment for Alzheimer’s disease; as of early 2022, the result
of this partnership is an ongoing phase 1 clinical trial in
AD patients for the Aβ-targeting biparatopic nanobody,
NbBI.1031020 (207).

Nevertheless, some open concerns remain to be addressed
before the clinical adoption of A-MAD in earnest. First
and foremost, reports that the enhanced BBB crossing of
AAV-PHP.B is restricted to BL6 mice and absent in non-
human primates should be considered a cautionary tale in
the rush to develop new AAV-based delivery platforms. In
future, time and effort need to be invested in developing
screening platforms which avoid issues arising out of cross-
species differences in BBB composition and immune responses.
Luckily, the growing opportunities to test vector performance in
3D cerebral organoids (208–210), which recapitulate aspects of
the human brain, offer major advantages for the development
of CNS relevant rAAV vectors. Second, and an issue specific
to the use of VHH technology, is whether the lack of an Fc
region is beneficial, reducing the risk of neuroinflammation
and edema (211), or whether the effector function is actually
needed. In all probability, this is likely dependent on the
mechanism of VHH action; for example, inhibition of BACE1
activity in AD does not require an effector domain (152).
In the event that effector function is required, however, the
ease with which VHH can be engineered allows the straight-
forward incorporation of the Fc region from human IgG, thus
generating bivalency and effector function (212). Third, in
the majority of cases, disease onset and the accumulation of
irreversible cellular damage is thought to precede the appearance
of symptoms by many years (213–216), raising the issue of
when treatment should be initiated. Hence, it is likely that
improvements in therapeutics and delivery systems will need
to be mirrored by improvements in biomarker detection and
cognitive testing.

Finally, methods for efficient, high-quality, large-scale
manufacture of AAV vectors, exploiting easily scalable
production systems [baculovirus–Sf9-systems (217);
recombinant HSV-based systems (218); adenovirus–HeLa
cell systems (219)] will ease the translation of A-MAD into
clinical use, by significantly cutting production costs, which
remain high at present. As an example, in early 2022, the
cost of Zolgensma, indicated for children aged <2 years, is
$2.48 million for a single treatment, and in all likelihood the
higher doses required for adult therapeutics will be reflected in
even higher costs. Nevertheless, it should be pointed out that
A-MAD strategies would rely on a “single-dose” therapeutic
approach, due to the ability of rAAV to effectively transform
specific CNS cell-types into “biopharmacies,” capable of long-
term biologic production. In contrast, high level dosing of
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standard, non-vector-based mAbs therapies, repeated over
the course of decades, would itself be extremely expensive,
allowing us to speculate that the final costs will in the end be
potentially comparable.

To conclude, the growing toolbox available for A-MAD
supports a bright future in which the full range of CNS
proteinopathies can be effectively treated. Combining the
cutting-edge power of rAAV vectors for CNS targeting with
the unique properties of VHH promises to revolutionize our
approach to CNS disease: the future is now!
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