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Sleep spindles, defining oscillations of stage II non-rapid eye movement sleep (N2),

mediate sleep-dependent memory consolidation. Spindles are disrupted in several

neurodevelopmental, neuropsychiatric, and neurodegenerative disorders characterized

by cognitive impairment. Increasing spindles can improve memory suggesting spindles

as a promising physiological target for the development of cognitive enhancing therapies.

This effort would benefit from more comprehensive and spatially precise methods to

characterize spindles. Spindles, as detected with electroencephalography (EEG), are

often widespread across electrodes. Available evidence, however, suggests that they

act locally to enhance cortical plasticity in the service of memory consolidation. Here, we

present a novel method to enhance the spatial specificity of cortical source estimates of

spindles using combined EEG and magnetoencephalography (MEG) data constrained

to the cortex based on structural MRI. To illustrate this method, we used simultaneous

EEG and MEG recordings from 25 healthy adults during a daytime nap. We first validated

source space spindle detection using only EEG data by demonstrating strong temporal

correspondence with sensor space EEG spindle detection (gold standard). We then

demonstrated that spindle source estimates using EEG alone, MEG alone and combined

EEG/MEG are stable across nap sessions. EEG detected more source space spindles

than MEG and eachmodality detected non-overlapping spindles that had distinct cortical

source distributions. Source space EEG was more sensitive to spindles in medial frontal

and lateral prefrontal cortex, while MEG was more sensitive to spindles in somatosensory

and motor cortices. By combining EEG and MEG data this method leverages the

differential spatial sensitivities of the two modalities to obtain a more comprehensive and

spatially specific source estimation of spindles than possible with either modality alone.

Keywords: sleep spindles, MEG (magnetoencephalography), EEG, source localization, cortical sources, stage 2

NREM sleep, sleep oscillations
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INTRODUCTION

Sleep spindles, a defining oscillation of stage II non-rapid
eye movement sleep (N2), are brief (∼1 s) powerful bursts of
12–15Hz activity initiated in the thalamic reticular nucleus
(TRN) (1, 2) and propagated to the cortex via thalamocortical
circuitry (3). Sleep spindles are typically separated based on
their frequency into slow (9–12Hz) and fast spindles [12–
15Hz; (4, 5)]. Although both spindle classes are generated
in TRN they have different cortical topographies with slow
spindles being more prominent at frontal and fast spindles at
central and parietal electrodes (6, 7). In humans sleep spindles
correlate with sleep-dependent memory consolidation, learning
efficiency, and IQ [for a review see (8)]. Sleep spindles are
disrupted in several neurodevelopmental, neuropsychiatric,
and neurodegenerative disorders characterized by cognitive
impairment (9). Importantly, increasing spindles both
pharmacologically (10–12) and using non-invasive brain
stimulation (13) can improve memory, consistent with
evidence from optogenetic studies of rodents indicating a
causal role in memory consolidation (14, 15). This provides
an impetus to target spindles to treat cognitive deficits (16).
Since spindles act locally to mediate memory typically in
regions involved in initial learning (17–20), this effort
would benefit from a more spatially precise measurement
of spindles. In humans, spindles are typically detected with
EEG. Relatively few studies have used magnetoencephalography
(MEG) to complement EEG spindle detection (21–30).
Here we describe a new method using simultaneously
acquired EEG and MEG data from afternoon naps to
comprehensively characterize sleep spindles and to estimate their
cortical sources.

Compared with EEG, MEG is more sensitive to focal cortical
spindle sources but mainly detects sources that are tangential to
the cortical surface (31, 32). In contrast, EEG detects both radial
and tangential sources. Spindles detected only by MEG sensors
tended to be more focal and did not propagate across the cortex,
whereas spindles detected in both modalities were first detected
by MEG and then detected by EEG after spreading to additional
regions (23). These studies suggest that (i) MEG is more sensitive
to the emergence of non-synchronous bursts of focal spindles due
to its more confined spatial sensitivity; (ii) EEG is more likely
to detect spindles that cover extended areas on the cortex, and

(iii) because of their complementarity, MEG and EEG together
provide more accurate source estimation than either technique

alone (33). A more spatially specific estimation of sleep spindle
sources is important given the role of local spindles in mediating
memory (17–20).

Here, we present a novel method to estimate the cortical

sources of spindles using simultaneous EEG/MEG recordings,
constrained to the cortex based on structural MRIs, during

an afternoon nap. To validate this method, we compared
spindles detected in source space to those detected on the scalp
(sensor space) using EEG (gold standard). We next evaluated
the spatial distribution of spindles that were common and
unique to each modality by comparing source space spindle
detection using EEG only, MEG only and combined EEG/MEG.

We conclude by discussing the advantages of using combined
EEG/MEG for detecting and source localizing spindles over
either technique alone.

MATERIALS AND METHODS

Participants
Thirty one healthy adults were recruited from the community
through advertisements and were screened to exclude a history
of mental illness diagnosed sleep disorders, treatment with
sleep medications, pregnancy, and a history of head injury,
neurological disorder and substance abuse or dependence within
the past 6 months. All participants gave written informed consent
and were paid for participation. The study was approved by
the Partners Human Research Committee. Participants were
asked not to consume caffeine or alcohol on the day of the
recording. All 25 participants (age 29 ± 6, 21–42; 19 males) who
produced valid nap data (>10min of artifact rejected N2 sleep)
were included.

Procedure
All participants completed two visits at least 1 week apart. The
first visit (Nap 1) acclimated the participant to napping in the
MEG scanner and was followed by a second visit (Nap 2).
Participants were wired for polysomnography (PSG) and given
a 90min afternoon nap opportunity with simultaneous EEG and
MEG recording while lying supine in the MEG scanner. Before
the nap we recorded 5min of quiet rest during which participants
were instructed to maintain fixation on a cross in the center of
the screen. After their second visit participants returned for an
MRI scan.

EEG/MEG Data Acquisition
Data were recorded using a 306 channels whole-head Elekta-
Neuromag MEG system [Elekta Oy (now MEGIN, Croton
Healthcare), Helsinki, Finland] in a magnetically shielded room
(IMEDCO, Hagendorf, Switzerland) simultaneously with 70
channels of EEG, submental electromyography (EMG) and 2
electrooculography electrodes (EOG). All signals were digitized
at 600Hz. The MEG sensors are arranged as triplets at 102
locations; each location contains one magnetometer and two
orthogonal planar gradiometers. Locations of the EEG electrodes
and ∼200 head shape points were recorded using a 3D digitizer
(Polhemus FastTrack). Four head position index (HPI) coils were
used to continuously track the position of the head relative to
the scanner.

EEG/MEG Data Pre-processing
We applied the signal space separation (SSS) algorithm (34) to
the MEG signals to suppress environmental noise and correct
for head movements using the HPI coils. Sleep data were low-
pass filtered at 60Hz and down-sampled to 200Hz using MNE
software for further analysis (35). Each 30 s epoch of EEG data
was visually scored according to standard criteria as WAKE,
REM, N1, N2, or N3 (36) by expert raters (Table 1). Sleep quality
was quantified using sleep onset latency (SOL), total sleep time
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TABLE 1 | Means, standard deviations of participants’ sleep quality, and

architecture measures.

Mean ± sd (min–max)

Sleep quality

*TIB 92 ± 5 (80–105) min

*TST 65 ± 23 (19–96) min

*SOL 6 ± 7 (1–26) min

*WASO 21 ± 19 (1–65) min

Sleep efficiency 70 ± 24 (21–98)%

Sleep architecture

N1 14 ± 6 (4–23) min

N2 38 ± 19 (11–76) min

N3 10 ± 12 (0–37) min

REM 3 ± 6 (0–20) min

*TIB, Time in bed; TST, Total sleep time; SOL, Sleep onset latency; WASO, Wake after

sleep onset.

(TST), time in bed (TIB), sleep efficiency (TST/TIB), and wake
after sleep onset (WASO).

EEG and MEG data were pre-processed and analyzed using
custom scripts in MATLAB (MathWorks, Natick MA), FieldTrip
(37) and MNE software (35). Sleep data were band-pass filtered
at 0.3–35Hz and electrodes displaying significant artifacts were
spatially interpolated. EEG data were then re-referenced to the
common average. Resting state data were notch-filtered at 60Hz.
Signal space projection [SSP; (38)] implemented in MNE was
used to remove cardiac artifacts, and remaining artifacts were
visually identified and removed. Artifact-free data from N2 sleep
were used for further analyses. Although spindles also occur
during N3 sleep, we restricted our analyses to N2 since spindle
physiology differs across sleep stages and only 8 of 25 participants
had more than 10min of N3.

MRI Acquisition
Anatomical images were acquired on a 3T Siemens Trio
whole-body MRI system (Siemens Medical Systems, Erlangen,
Germany) with a 32-channel head coil. The images were
acquired using a 3D RF-spoiled magnetization prepared rapid
gradient echo (MP-RAGE) sequence (TR = 2,530ms; TE =

1.7/3.6/5.5/7.3ms; Flip Angle = 7◦; FOV = 256mm, 176 in-
plane sagittal 1mm isotropic slices, scan duration 6m 12 s). In
addition, a multi echo flip angle (5◦) FLASH pulse sequence was
employed to obtain data for constructing individual boundary
element model (BEM) surfaces for forward modeling (610Hz per
pixel, TR = 20ms, TE = 1.89 + 2 n ms (n = 0–7), 128 in-plane
sagittal slices sized 1× 1.33mm, 1.33 mm thickness).

Source Reconstruction
Co-registration of the EEG andMEG sensors to each participant’s
structural MRI was implemented in MNE using the digitized
electrodes, fiducials, HPI coils and head shape points. MRI
reconstruction and tissue segmentation were performed using
FreeSurfer (39, 40). The FreeSurfer-derived cortical surface
tessellation was decimated to a regular source dipole grid with

3mm spacing between adjacent source locations, corresponding
to ∼18,500 dipoles. The forward solutions were then computed
using the three-layer BEM (41) using inner, outer skull, and scalp
surfaces from segmentations of the FLASH images.

The cortically constrained minimum-norm estimate of the
cortical currents [MNE; (42, 43)] was computed with source
orientations fixed perpendicular to the local cortical surface
and a regularization factor of 0.1. Noise covariance estimates
were calculated using data from the 5min resting-state scan
filtered at 100–140Hz. We used dynamical statistical parametric
mapping [dSPM; (44)] to reduce the MNE inverse solution
bias toward superficial cortical sources. FreeSurfer was used to
automatically parcellate the cortex into 72 regions (45). After
discarding “medial wall" and “corpus callosum,” these regions
were further parcellated into a total of N = 448 similarly sized
cortical regions using FreeSurfer (46). The resulting source-
space time courses of artifact-free N2 sleep were then computed
in these 448 regions. In order to align the signs of the time
series across dipoles within a label, we used the singular value
decomposition (SVD) of the data. The sign of the dot product
between the first left singular vector and all other time-series in
a label was computed. If this sign was negative, we inverted the
time-series before averaging. The same procedure was followed
to generate three source localization estimates, from EEG alone,
MEG alone, and combined EEG/MEG data. For analytic methods
overview see Figure 1.

Spindle Detection
Slow and fast spindles were automatically detected in the 9–12
and 12–15Hz band-pass-filtered data respectively, at each sensor
and cortical region using a wavelet-based algorithm (47, 48).
Specifically, based on temporally smoothed (window duration
= 0.1 s) wavelet coefficients (from a complex Morlet wavelet
transform), spindles were identified as intervals exceeding 9 times
the median for at least 400ms. The frequency range for spindle
detection, defined based on the full-width half-maximum of
the wavelet amplitude response in the frequency domain (49),
was chosen based on prior studies and to minimize the overlap
between the two spindle classes (Supplementary Figure 1) (4, 47,
48). The threshold for spindle detection was chosen to maximize
the between class (“spindle” vs. “non-spindle”) variance (50)
based on data from healthy participants in a previous study
(47). This detector has been validated against visual inspection in
healthy people, individuals with schizophrenia and children with
autism spectrum disorder (47, 51). The duration of individual
spindles was measured in 2 s epochs centered on the point of
spindle detection as the full width half max of the wavelet energy.

Definition of Spindle Events in Sensor and
Source Space
As there is no one-to-one correspondence between scalp sensors
and source space regions we defined windows of spindle activity
in both so that we could compare spindle detection in each.
To define windows of spindle activity we first assigned a binary
value (yi) to each sensor/region at each time point that was set to
one if a spindle was detected and zero if not. The binary signals
were summed across all sensors/regions resulting in an aggregate
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FIGURE 1 | Schematic description of source space spindle detection. (A) Pre-processing of simultaneously acquired EEG/MEG data. (B) Structural MRI. (C) Sleep

scoring of nap data. (D) Noise covariance estimates calculated using the EEG/MEG data from the 5min resting-state scan filtered at 100–140Hz. (E) Construction of

a three-layer boundary element model (BEM) surfaces (inner, outer skull, and scalp) for forward modeling (F) Cortical reconstruction. (G) Source estimates of N2

calculated using the cortically constrained minimum-norm estimate of cortical currents. (H) Parcellation of the cortical surface into 448 regions. (I) Automatic spindle

detection at each cortical region using a wavelet-based detector.

signal (Y) which was >0 when a spindle was detected at any
of the sensors/regions at any given time-point. After smoothing
Y with a 500ms moving average, we detected the temporal
local maxima using the MATLAB function findpeaks. To avoid
detection of spurious spindle activity a minimum distance
between maxima was set at 500ms and a minimum extent was
set at 1% of sensors/regions. One second windows centered at
the detected local maxima were defined as temporal windows
of spindle activity across sensors/regions (Figure 2). We will
refer to these periods of spindle activity across sensors/regions
as “spindle events” to distinguish them from spindles detected at
each sensor/region (e.g., see Supplementary Figures 1, 4). The
duration of the windows was set at 1 s. The spatial extent of a
spindle event (i.e., the total number of sensors/regions where a
spindle was detected) was quantified as the maximum amplitude

of Y (Figure 2). To account for different sleep durations, we
calculated spindle event density (i.e., spindle events per minute).
In contrast to the typical definition of spindle density at each
sensor/region, spindle event density is based on the definition
of spindle events across multiple sensors/regions. Using this
method, we first compared spindle events from sensor vs. source
space EEG to validate spindle detection in source space. We
then compared the density and spatial extent of source space
spindle events detected in EEG alone, MEG alone and combined
EEG/MEG data.

Validation of Spindle Detection
We first validated spindle detection in source space by
quantifying the correspondence of source space EEG estimates
with scalp EEG (i) between subjects, by correlating the total
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FIGURE 2 | Definition of spindle events. Top: Example of 10 s of N2 signal from 20 EEG electrodes. Detected spindles at each sensor are highlighted in red. Bottom:

The raw aggregate signal (red) and smoothed signal (black). Spindle events were defined as 1 s time-windows around the peaks of the smoothed signal (gray patch).

The maximum amplitude within this window reflects the spatial extent of the detected spindle event. The same definition applies to MEG sensors and source space

analyses.

number of spindle events in source vs. sensor space and (ii)
within subjects, by calculating the temporal overlap using the F1
score of detected spindle events in source vs. sensor space. We
defined temporal overlap as≥20% [F1 scores for different overlap
values (10–50%) and window lengths (0.4–2 s) are presented in
Supplementary Figure 2]. Spindle event density in source vs.
sensor space was compared using a paired t-test.

To calculate F1 scores we defined (i) false positives (FPs),
as spindle events detected in source but not sensor space, (ii)
false negatives (FNs) as spindle events detected in sensor but
not source space, and (iii) true positives (TPs) as spindle events
detected in both sensor and source space. Precision (f P), recall
(f R), and the F1 score were calculated as follows:

fP = TP/(TP + FP);

fR = TP/(TP + FN);

F1 =
2fPfR

fPfR
.

To evaluate whether the spatial extents of spindle events detected
in sensor and source space (i.e., TPs) were related, we correlated Y
in the sensor space (the number of sensors showing that spindle)
with Y in the source space (number of regions).

Since spindle detection in source space was more prone
to FPs than FNs (see Results), we asked where these FPs

were more likely to be detected, by calculating the percent
of FPs detected at each region. We then tested whether
these source-detected “FPs” might actually reflect sub-
threshold sensor space spindle activity. For each FP spindle
event detected in the source space we calculated the sigma
power across all EEG sensors using the squared amplitude
of the Hilbert transform, after bandpass filtering at 9–
12Hz for slow and 12–15Hz for fast spindles. We then
z-normalized it against the power of randomly selected
spindle-free 1 s periods and averaged across time-points
and sensors.

TEST-RETEST RELIABILITY OF
SPINDLE EVENTS

Previous studies have demonstrated that sleep spindles are a
heritable trait-like feature of the scalp EEG (5, 52) and are stable
within individuals across nights and naps (48, 53). Here we
wanted to investigate whether this is also true for spindle events
detected in source space using different modalities.We calculated
intraclass correlation coefficients (ICCs) for scalp EEG, source
EEG, MEG, and EEG/MEG in the 19 subjects who had valid
data from two naps. To calculate ICCs, we estimated between-
and within-subjects variances of spindle event density from
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FIGURE 3 | Spindle events in source vs. sensor space EEG. (A) Spindle event density in source vs. sensor space. Regression line (black solid) and the identity line

(gray dashed) are shown. (B) Correspondence of spindle events detected at the source vs. the sensor space (F1 = 0.83 ± 0.03, fP = 0.80 ± 0.04, fR = 0.86 ± 0.04).

(C) Spatial extent of spindle events in source vs. sensor space with regression line.

regression models with subject as a random effect. To compare
the reliability of spindle event density among modalities we
estimated the 95% confidence intervals (CIs) of the ICCs based
on 1,000 bootstrap samples.

Comparison of EEG Alone, MEG Alone, and
Combined EEG/MEG Detected Spindle
Events in Source Space
To determine whether source-space EEG, MEG, and EEG/MEG
are differentially sensitive to spindles we compared the spindle
events detected by each modality. The density of spindle events
was compared with a linear mixed effects model with Modality
as a fixed effect (EEG, MEG, and EEG/MEG) and Subject as a
random effect. The correspondence of spindle events detected
by EEG, MEG, and EEG/MEG, based on their temporal overlap,
was calculated using the same method as above. To compare the
spatial specificity of the source estimates we first used pairwise
comparisons of the spatial extent of spindle events detected by
EEG, MEG, and EEG/MEG.We then examined the spatial extent
and topography of spindle events detected with only one of two
estimates (e.g., spindle events unique to EEG only). To investigate
whether there were cortical regions at which one modality was
more sensitive to spindle events, for each region we calculated
the percent of spindle events that were detected by only one of
two estimates.

RESULTS

We focus on fast spindles (defined as 12–15Hz), which
are a well-replicated biomarker of overnight memory
consolidation (8) and disrupted in neuropsychiatric disorders,
particularly schizophrenia (9). Slow spindle (defined as 9–
12Hz) findings are described in Supplementary Results and
Supplementary Figures 1, 3, 5–9.

Validation of EEG Source Space Spindle
Detection
Source and sensor space EEG spindle event density were highly
correlated (r2 = 0.90, p < 0.001, slope=1.00 ± 0.07, Intercept:

0.78 ± 0.78; Figure 3A). On average EEG spindle event density
was 7% higher in source space than in sensor space (sensor space:
10.92 ± 2.04; source space: 11.70 ± 2.15; t = 5.72, p < 0.001).
In within-subjects analyses, 86% of spindle events detected in
sensor space temporally overlapped with spindle events detected
in source space, while 80% of spindle events detected in source
space overlapped with spindle events measured in sensor space
(F1= 0.83± 0.03, f P = 0.80± 0.04, f R = 0.86± 0.04; Figure 3B).
Spindle events on the scalp were detected on average at 18/70
(26%) sensors and at 73/448 (21%) cortical regions in source
space. The spatial extent of spindle events in source and sensor
space was highly correlated (r2 = 0.65, p < 0.001; Figure 3C).

Spindle events that were detected in source but not sensor
space (FPs) was more likely to be detected in frontal cortex
(Figure 4). On average, for each subject 36% (range 24–
51%) of spindles detected only in source space (FPs) had
significantly elevated sigma power in sensor space (z >

1.69) suggesting that these FPs might reflect sub-threshold
spindle activity.

Test-Retest Reliability of Spindle Events
As in previous studies (5, 48, 52, 53) sensor space EEG
spindle events were stable within individuals across two naps
[ICC = 0.83, CI: (0.66, 0.91)]. Similarly, source space detected
spindle events were stable across naps and ICCs did not differ
significantly [i.e., their CIs overlapped; EEG: ICC = 0.81, CI:
(0.55, 0.92); MEG: ICC = 0.80, CI: (0.56, 0.93]; EEG/MEG: ICC
= 0.72, CI: (0.42, 0.88); Figure 5].

Comparison of Source Space Spindle
Events Detected With EEG Alone, MEG
Alone, and Combined EEG/MEG
Overall spindle event density differed significantly between
source estimates [F(2,72) = 238.46, p < 0.001): Spindle event
density was lower in MEG than either EEG (44%; t = 15.78, p
< 0.001) or EEG/MEG (40%; t = 16.61, p < 0.001), and lower
for EEG/MEG than EEG (6%, t = 5.12, p < 0.001; Figure 6A).
We excluded the possibility that this result was simply due to a
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higher absolute spindle detection threshold in MEG by showing
that the threshold was higher in EEG (EEG: 2.91 ± 1.86, MEG:
0.62 ± 0.35; Wilcoxon z = 5.65, p < 0.001). Fifty-five percent

FIGURE 4 | Topography of spindle events detected only in source space EEG

(FPs). The color of each region represents the number of FPs expressed in this

region over the total number of FPs as a percentage.

of EEG-detected spindle events had no corresponding event in
MEG. Conversely 19% of MEG-detected spindle events lacked
a corresponding EEG event (Figure 6B). This indicates that
although EEG detects more spindle events than MEG, the two
modalities also detect different events. The combined EEG/MEG
estimate captured more of the spindles present in EEG alone
than MEG alone (t = 18.74, p < 0.001). Similarly, there were
more common spindles between the combined EEG/MEG and
the MEG alone than between the EEG alone and MEG alone (t =
5.95, p< 0.001). These data indicate that the combination of EEG
and MEG provides a more comprehensive account of spindles
than either modality alone.

The spatial distribution of spindle density differed across
modalities with EEG showingmaximum spindle density in lateral
and medial frontal cortex extending into posterior cingulate
cortex, while MEG spindle density was relatively low over
prefrontal cortex and peaked in posterior cingulate cortex
(Supplementary Figure 3).

Spindle events detected by EEG included more regions
than MEG (t = 16.00, p < 0.001) or combined EEG/MEG
(Figure 6C; t = 14.24, p < 0.001). EEG/MEG detected spindle
events were more widespread than those detected by MEG (t
= 15.70, p < 0.001; Figure 6C). More focal spindle events were
less likely to be detected regardless of modality and, contrary
to expectations, MEG was not more sensitive to focal events

FIGURE 5 | Test-retest reliability of spindle events across naps for each modality. Plot of spindle event density for each subject during Nap 1 and Nap 2. Spindle

events were detected (from top to bottom) at scalp EEG, source EEG, MEG, and EEG/MEG.

Frontiers in Neurology | www.frontiersin.org 7 June 2022 | Volume 13 | Article 871166

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Mylonas et al. Spindle Detection Using Simultaneous EEG/MEG

FIGURE 6 | Spindle events in source space using EEG alone, MEG alone and combined EEG/MEG. (A) Venn diagram and violin plots depicting spindle event density

in EEG, MEG, and EEG/MEG with p-values for pairwise comparisons. (B) Percent of uniquely detected spindle events by each modality for EEG vs. MEG, EEG vs.

EEG/MEG, and MEG vs. EEG/MEG. (C) Spatial specificity of commonly detected spindle events (intersection of Venn diagrams). Spatial extent of spindle events

detected by EEG and MEG, EEG and EEG/MEG, and MEG and EEG/MEG. Black circles represent individual data.

(Supplementary Figure 4). However, there were topographical
differences between modalities: MEG was less likely than EEG to
detect medial and lateral frontal spindle events (Figure 7A) and
EEG was less likely than MEG to detect spindle events in motor
and somatosensory cortex (Figure 7B).

DISCUSSION

We employed a novel method using simultaneous EEG and
MEG recordings during sleep to estimate the cortical sources of
sleep spindles. We first validated source space spindle detection
with EEG by demonstrating strong agreement with sensor
space (i.e., scalp) EEG spindle detection. We also extended
previous findings that sensor space EEG spindles are stable across
sessions to source space spindle estimates using EEG, MEG,
and EEG/MEG. Finally, we show that by combining EEG/MEG
data, anatomically constrained by structural MRI, we leverage the
differential sensitivities of the two modalities to cortical sources

to obtain a more comprehensive view of spindles and increase
the spatial specificity of the source estimation compared to EEG
or MEG alone.

The density of EEG spindle events detected in source space
showed a good correspondence with those detected in sensor
space, but on average was 7% higher for fast spindles and 19%
higher for slow spindles. The significantly higher agreement
between sensor and source space for fast spindles may reflect
the reduced amplitude and increased variability of EEG slow
spindle spectral peaks (4). During over a third of the spindle
events detected in source but not sensor space, the averaged
sigma power of scalp EEG electrodes was elevated suggesting that
source detection was more sensitive to sub-threshold scalp EEG
spindle activity. This may reflect that each EEG scalp electrode
captures activity from multiple brain regions while the point
spread functions in source space are more focal (31, 32, 54). Some
of the remaining two thirds of spindles detected in source but not
sensor space (i.e., “false positives”) may be more focal spindles
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FIGURE 7 | Topography of spindle events uniquely detected by (A) EEG and (B) MEG. The color represents the percent of spindle events detected in each region

relative to the total spindle events detected.

whose signal is obscured by averaging across all electrodes or they
may be noise.

We replicated previous findings that spindle activity is stable
over sessions within individuals and extended these results to
spindle events detected in source space regardless of modality.
This is consistent with evidence that spindle activity is a heritable
trait-like feature of the sleep EEG (5, 48, 52, 53). Although
this was a nap study, spindle density during naps is a reliable
estimate of overnight spindle density indicating that our findings
can generalize to overnight sleep (55). Spindle event density
using MEG and combined EEG/MEG source estimates was more
variable within subjects compared to EEG, particularly for slow
spindles. The increased number of MEG sensors compared to
EEG (70 EEG vs. 306MEG sensors) could potentially increase the
variability of the measurements across sessions. Another possible
explanation could be that although we track the head position
and take any head motion into account in the post-processing
(56, 57), different head positions across sessions could still affect
the source estimates of MEG alone and EEG/MEG.

Spindle events detected exclusively by EEG or MEG had
distinct topographical distributions. EEG was more sensitive to
spindles in medial and lateral frontal cortex, while MEG was
more sensitive to spindles in somatosensory and motor regions.
These topographies may reflect differential sensitivity of EEG and
MEG to spindles arising from two thalamocortical pathways: the
core pathway that projects to middle cortical layers, particularly
in somatosensory and motor regions, and the matrix pathway
that projects diffusely to more superficial cortical layers (58, 59).
Our findings support the hypothesis that EEG is more sensitive to
widely expressed matrix spindles whereas MEG is more sensitive
to focal core spindles (29, 60). The differential sensitivity of EEG
and MEG may reflect that widely distributed sources lead to
greater signal loss in MEG due to cancellation (61).

Contrary to a prior report (19), MEG detected significantly
fewer spindle events than EEG. This may reflect MEG’s relative
insensitivity to radially oriented and distributed sources of some

spindle activity. Our results are consistent with older studies that
report more spindles detected with EEG than MEG (21, 27).
The inconsistent results could reflect different methodology.
Dehghani et al. (23) detected spindles using a spectral peak
algorithm across EEG andMEG sensors during 2min of N2 sleep
whereas in this study we detected spindles on a sensor/region
basis during all of N2 (mean duration: 38 min).

Spindles are generated in the thalamic reticular nucleus (1, 2)
and are propagated to the cortex via thalamocortical circuitry
(3). Since the contribution of subcortical sources to EEG is weak
and to MEG even weaker, we restricted spindle detection to the
cortical surface (62, 63). The lack of access to thalamic activity
renders the question of what constitutes “true spindle activity”
impossible to answer. Here we used spindle activity detected at
the scalp EEG as the “gold standard,” to validate our spindle
detection method in the source space. The lack of ground truth
precludes any statements of which source estimate of spindles is
the most valid. More sophisticated methods are needed to non-
invasively assess the interaction between cortex and thalamus
during spindle activity (63–65). Because this was an afternoon
nap study, fewer than a third of the participants had more than
10min of N3 sleep, not allowing us to investigate whether our
findings generalize to N3.

Fast spindlesmediate sleep-dependentmemory consolidation,
are disrupted in a number of neurodevelopmental and
neurodegenerative disorders [for a review see (9)] and have
been identified as a mechanistic biomarker of cognitive
dysfunction and a potential treatment target, [e.g., see (16)].
Although spindles can be expressed widely in the cortex,
they act in a spatially specific manner to induce the plasticity
underlying memory consolidation. For example, during the
sleep that follows training on a motor task, increased spindles
and sigma power in the contralateral motor cortex correlates
with improved performance upon awakening (17–20). In
schizophrenia, spindle deficits correlate with both memory
deficits and increased connectivity of the thalamus specifically
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with somatosensory and motor cortex (47, 66). Children
with Rolandic epilepsy have a focal spindle deficit in the
affected regions that correlates with cognitive and motor
dysfunction (67). The spatial specificity that characterizes
both the functionality of spindles in health, and their
disruption in disorders highlights the utility of techniques
with high spatial resolution for both basic and clinical studies of
sleep-dependent cognition.

In summary we present a novel method that leverages
the differential sensitivities of EEG and MEG to reveal the
cortical sources of spindles. Combined EEG and MEG provide
a more comprehensive detection and focal source estimation
than either technique alone. Accurate estimation of spindle
activity will illuminate the function of spindles, how it goes
awry in disorders, and guide the development of more
targeted treatments.
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