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Editorial on the Research Topic

Seizure Forecasting andDetection: ComputationalModels,Machine Learning, andTranslation

Into Devices

For the 50 million people with epilepsy worldwide, seizures are seemingly unpredictable events
that can be associated with significant morbidity and mortality. Reliable methods to identify and
anticipate seizures could enable powerful new therapeutic strategies. Owing to the paroxysmal
nature of seizures and the challenges associated with long-term monitoring of brain activity,
however, such methods have been elusive—until now. Recent advances in computational methods
and device technology have reshaped the epilepsy landscape and made accurate detection and
forecasting of seizures a reality. This Research Topic was launched with the aims of highlighting
the latest of these advances and portraying the current state of seizure detection and forecasting
through the viewpoints of patients and researchers. The 18 articles in this special issue comprise
three Perspectives, three Reviews, and 12 Original Research articles.

This collection begins with a first-person account from Moss et al. of one family’s experience
with drug-resistant epilepsy, including their appraisal of current seizure detection devices;
challenges encountered related to privacy, stigma, and comfort; and the need for greater
collaboration between patients and researchers, Grzeskowiak and Dumanis survey a large sample
of caregivers and adults living with epilepsy to assess directly their perspectives on seizure
forecasting, including the optimal forecast horizon, the types of information that would be most
useful for day-to-day planning, and the potential risks of forecasting tools. Hubbard et al. and
Brinkmann et al. review the current status, technical challenges, and performance characteristics
of contemporary seizure detection devices. Both groups highlight the critical need for research
on several fronts: robustly designed clinical validation studies; algorithms to detect seizure types
in addition to convulsive seizures (CS); better incorporation of meaningful clinical outcomes—
such as morbidity, mortality, and quality of life—into algorithm evaluation; and more emphasis by
developers on patient-centered considerations prior to beta-testing of new algorithms.

Several research groups whose work is included in this issue have already made
substantial progress toward these goals. Glaba et al. and Kjaer et al. describe promising
new algorithms that leverage physiological measurements to detect seizure types
other than CS, including absence seizures, using electroencephalography (EEG),
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and focal seizures, using subcutaneous EEG, accelerometry,
and electromyography. Although collection of these types of
physiological data is essential for seizure detection, patient
privacy and unobtrusiveness of devices are also paramount
considerations in algorithm and technology development. In
this context, Manzouri et al. quantify and compare the relative
energy efficiency and performance of several common machine
learning methods, including random forests, recurrent (e.g.,
long short-term memory), and convolutional neural networks.
Hyperdimensional computing, reviewed in an accessible tutorial
by Schindler and Rahimi, is proposed as a powerful approach
to develop energy-efficient seizure detection algorithms. Similar
considerations of efficiency and performance are relevant
for devices being developed for seizure detection. Frankel
et al. report on a prospective feasibility study of Epilog by
Epitel, Inc., a wearable 10-channel EEG system for long-
term recordings. The authors recruited expert EEG readers
and evaluated their ability to detect seizures using Epilog
with or without a clinical decision support system. Onorati
et al. conducted the first prospective multi-center study of
a multimodal CS detection system, based on a wrist-worn
device combining accelerometers and electrodermal activity
sensors, and they report excellent sensitivity and a low false
alarm rate.

Seizure detection algorithms also promise improvements to
epilepsy diagnostic evaluations. As discussed by Parasuram et al.
computational methods that accommodate spatial and temporal
features of EEGmay be more useful for identifying the ictal onset
zone compared to methods relying on temporal features alone.
Li et al. provide promising evidence that deep neural networks
can identify seizures that are occult on scalp EEG but visible
in intracranial EEG. These neural networks can also achieve
high prediction accuracy for other tasks, including ictal onset
zone lateralization and discrimination between ictal, preictal, and
interictal periods.

Seizure detection and seizure forecasting represent
complementary strategies for mitigating morbidity in epilepsy.
Whereas, seizure detection provides a means to alert caregivers
to seizures when they occur, seizure forecasting aims at reducing
uncertainty by quantifying the likelihood of seizures in the future
(1–3). The niche endeavor of forecasting seizures already has a
decades-long history (4, 5), but has only recently gained traction
among clinicians and patients, as the recent development
of devices and algorithms makes it a plausible near-reality.
Brinkmann et al. review variables that can be incorporated into
seizure forecasting algorithms, including cycles of brain activity
that help determine seizure risk (6, 7). Karoly et al. delve into
these seizure cycles and debunk several common misconceptions
related to seizure forecasting. For example, the authors clarify
that cycles in epilepsy cannot be explained solely by behavioral
patterns, medications, or catamenial effects, and they argue
that long timescale rhythms in epilepsy may reflect systemic
physiological processes that are cyclical and that manifest
across a range of human diseases (Karoly et al.). This view
agrees with the identification of multidien rhythms of epileptic
brain activity as free-running, and thus likely endogenous in
nature (8, 9).

The feasibility of seizure prediction on a population scale
hinges on the development of minimally- and non-invasive
devices. In a study of 11 patients with wearable devices,
Stirling, Grayden et al. demonstrate that seizure likelihood can
be forecasted with better than chance-level accuracy by using
algorithms that incorporate data on heart rate, sleep, and step
counts. Stirling, Maturana et al. show that seizure prediction
is also possible with subcutaneous EEG (10) by using a state-
based approach involving a two-step combination of logistic
regression and random forests. Despite growing interest in
potential applications of subcutaneous EEG (11), scalp EEG
remains far more widely available, so Truong et al. use scalp
EEG data and a Bayesian convolutional neural network to predict
seizures in three patients. Attia et al. describe the design and
architecture of the Mayo Epilepsy Personal Assistant Device,
a cloud-based mobile platform integrated with an implanted
intracranial neurostimulation device that is being used in an
ongoing trial of neurostimulation in ten patients with bilateral
mesial temporal lobe epilepsy. This special issue concludes with
a cautionary note from Bosl et al. who draw upon experience
from seizure detection efforts to highlight both the promise of
seizure forecasting and the need for tempered optimism in a
burgeoning field.

The 18 articles featured in this issue provides a status update
and insight into representative lessons learned thus far in the
years since the goals set by colleagues Mormann et al. (4)
and Freestone et al. (5). In summary, we offer the reader the
following insights on the current status of seizure detection and
forecasting and several important priorities that emerge from this
special issue:

1. Emphasis on multimodal techniques: There is no single
perfect data stream; seizure detection and forecasting
approaches will benefit from increased focus on statistical
methods that accommodate multimodal data.

2. Focus on understanding patient priorities and patient-

researcher partnerships: Patient perspectives are crucial to
aid understanding of essential algorithm and device design
aspects early in the development cycle, and to ensure
that patient priorities maintain primacy in algorithm/device
development (12).

3. Interpretability and explainability in machine learning:

Machine learning methods may identify insights that humans
cannot. Interpretability and explainability of predictions
are active areas of research. We anticipate that the coming
years will see translation of emerging computational
techniques to enhance explainability into the area of
seizure detection/forecasting.

4. Expansion of seizure detection to other seizure types:

Current seizure detection methods achieve excellent
performance using EEG. Detection algorithms with non-
EEG signals have attained high sensitivity and specificity
for certain types of seizures (convulsions), but remain
limited for detection of other seizure types. Communicating
the nuanced limitations of these methods to the patient
community is just as critical as research on algorithms to
detect non-convulsive seizure types. Developing technology
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to quantitatively measure patient behavior and consciousness
may help advance seizure classification.

5. Need for increased studies evaluating

reproducibility/generalizability: Studies are emerging
which seek to evaluate the reproducibility and generalizability
of seizure detection/forecasting algorithms, and additional
development will be needed to translate these algorithms
into real-world settings. Expanding the sensing, data
storage, and streaming capabilities of the next generation
of devices will facilitate seizure detection/forecasting
algorithm development.

6. Computational efficiency vs. performance: Given the
importance to patients of non-stigmatizing devices,
designing computationally efficient algorithms, balancing
computational efficiency vs. performance, and developing
minimally-invasive devices are research priorities.

7. Individualized algorithm development: Patients are
heterogeneous in their seizure patterns and semiologies,
as well as in the salient variables and non-linear functions
relating these variables. A patient whose seizures may not be
detected/forecasted by one algorithm and/or set of variables
may be well-predicted by another. It is likely that multiple

methods will need to be combined and tailored based on
patient-specific factors.

8. No prediction or detection method is perfect: Seizure
forecasts reduce uncertainty but do not eliminate it. The hope
is that quantified uncertainty will translate into improved
quality of life for people with epilepsy, but, although
reasonable, this leap of faith will require direct testing in the
clinical setting.
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